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Abstract. In this paper, we instigate a viscosity approximation method for nonexpansive and relaxed cocoercive

mappings. A strong convergence theorem is established in the framework of Hilbert spaces.
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1. Introduction and preliminaries

Throughout this paper, we assume that H is a real Hilbert space, whose inner product and
norm are denoted by (-,-) and || - ||. Let C be a nonempty closed and convex subset of H and let
Fc denote the metric projection from H onto C.

Consider the following generalized variational inequality problem. Give nonlinear mappings

T\:C—Hand T, :C— H, find an u € C such that
(u—Tu+ATu,yv—u) >0, YveCcC, (1.1)

where A is a constant. In this paper, we use VI(Tj, T ) to denote the set of solutions of variational
inequality problem (1.1).
It is easy to see that an element u € C is a solution to problem (1.1) if and only if u € Cis a

fixed point of mapping Pc(T) — AT).
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If Ty = I, the identity mapping, then problem (1.1) is reduced to the following. Find u € C

such that

(AThu,v—u) >0, YveC. (1.2)

Variational inequality problem (1.2) was introduced by Stampacchia [1] in 1964. Problem (1.2)
has emerged as a fascinating and interesting branch of mathematical and engineering sciences
with a wide range of applications in industry, finance, economics, social, ecology, regional, pure
and applied sciences. In this paper, we use VI(C, T») to denote the set of solutions of variational
inequality problem (1.2). Recently, gradient methods have been extensively investigated for
solving problems (1.1) and (1.2); see [2-9] and the references therein.

Let A : C — H be a mapping. Recall that A is said to be monotone iff
(Ax—Ay,x—y) >0, Vx,yeC.
A is said to be relaxed 1-cocoercive if there exists a positive real number 11 > 0 such that
(Ax—Ay,x—y) = (-n)|Ax—Ay|?, VxyeC.
A is said to be p-strongly monotone if there exists a positive real number p > 0 such that
(Ax—Ay,x—y) > plx—y|?, VxyeC.
A is said to be relaxed (1, p)-cocoercive if there exist positive real numbers 17, p > 0 such that
(Ax—Ay,x—y) > (=) || Ax = Ay|* +pllx—y|*, VxyeC.

Let S : C — C be a mapping. Recall that § is said to be contractive if there exits a constant

0 < a < 1 such that

152 = Syll < eeflx =y, vxyeC.
S is said to be nonexpansive if
15 = Syl| < [lx=yll,  Vx,yeC.

In this paper, we use F(S) to denote the set of fixed points of the mapping S. It is know if C is

weakly compact, then F(S) is not empty.
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Recently, many authors studied the problem of finding a common element of the set of so-

lutions of variational inequality problem (1.2) and of the set of fixed points of a nonexpansive
mapping; see, for example, [9-14] and the references therein.

In this paper, Motivated by the research work going on in this direction, we consider varia-

tional inequality problem (1.2) and a fixed point problem of nonexpansive mappings by viscos-

ity iterative method. Strong convergence theorems of common elements are established in the

framework of Hilbert spaces.

Lemma 1.1. [15] Let C be a nonempty closed and convex subset of a real Hilbert space H. Let
S1:C — Cand Sy : C — C be nonexpansive mappings on C. Suppose that F(Sy) NF(Sy) is
nonempty. Define a mapping S : C — C by

Sx=aS1x+(1—a)Sx, VxeC.
Then S is nonexpansive with F(S) = F(S1) N F(S7).
Lemma 1.2 [16] Let C be a nonempty closed and convex subset of a real Hilbert space H and
S : C — C a nonexpansive mapping. Then I — S is demi-closed at zero.
Lemma 1.3. [17] Let {x,} and {y,} be bounded sequences in a Hilbert space H and let {B,}

be a sequence in (0, 1) with

0< lirginfﬁn <limsupf, < 1.
n—o0

n—o0

Suppose that x, .1 = (1 — Bn)yn + Buxn for all integers n > 0 and

limsup([lyn+1 —yall = X041 —xa|) <O0.
n—soo

Then limy,_ye ||y, — X,|| = 0.

Lemma 1.4. [18] Assume that {0y} is a sequence of nonnegative real numbers such that
Olp+-1 S (1 - '}/n)an + 5n;

where {y,} is a sequence in (0,1) and {8,} is a sequence such that

(@) lim, e Y =0, Z;ozl Y = °°;
(b) imsup,,_,.. 6,/ < 0o0r Y~ |0,| < co.
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Then lim, .. 0, = 0.

Now, we are in a position to show our main results.

2. Main results

Theorem 2.1. Let H be a real Hilbert space and let C be a nonempty closed and convex subset
of H. Let Ty : C — H be a relaxed (n1,p1)-cocoercive and [i-Lipschitz continuous mapping
and let Ty : C — H a relaxed (N, p2)-cocoercive and Wy-Lipschitz continuous mapping, respec-
tively. Let f : C — C be a contractive mapping and let S : C — C be a nonexpansive mapping
with a fixed point. Assume that F(S)N\VI(Ty,T,) # 0. Let {x, } be a sequence generated by the
following manner: x| € C, chosen arbitrarily, y, = 6,5x, + (1 — 0,)Pc(Tixp — ATaxy), Xpi1 =
O f (xn) + BuXn+Yoyn, n>1,where{c,}, {Bu}, {1} and{6,} are sequencesin (0,1) satisfy-
ing the following restrictions: 0+ By +71 =1, Vn>1;0 <liminf, . B, <limsup,_,., B <

I; limy e 0y =0 and Y7 | @ = oo; limy, 4000, = 6 € (0,1), and A is a constant such that

\/1 —2p; +uf+2mud + \/1 —2Apy +A2u3 4+ 2Amou3 < 1. Then the sequence {x,} gener-
ated by the algorithm (Y) converges strongly to a common element X € F(S)NVI(Ty,T»), which

uniquely solves the following variational inequality

(f(®) —%,X—x*) >0, Vx*'€F(S)NVI(T},T).

Proof. The proof is split into 5 steps.
Step 1. Show that {x,} is bounded.

Note that Po(T} — AT5) is nonexpansive. Indeed, for each x,y € C, we have

|Pc(Ty — ATz)x — Pc(T1 — ATz)y||
< [T =AT2)x— (Ty — ATh)y|| (2.1)

< |[(x=y) = (T =Tiy) [ + | (x =) = A(Tax = Tay)|.
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It follows from the assumption that 7} is relaxed (11, p1)-cocoercive and u;-Lipschitz continu-

ous that
=y = (Tix—Tiy)|I> = [l = y[1> = 2(Tix = Tiy,x—y) + | Tix — Thy|?
< e —ylI> = 2[(=m) I Tix — Tiy||> + pullx = yII°] + pillx = yII>
= (1=2p1 +up)llx = y[I> +2m || Tix — Tyy||?

2 2
< 6 [lx— I,

where 6, = \/ 1 —2py + p2 +2m 2. That is,
[x =y — (Tix—Thy)|| < 61]]x—yl. (2.2)

On the other hand, by the the assumption that 75 is relaxed (1, p2)-cocoercive and p,-Lipschitz

continuous, we arrive at
lx =y = A(Tox — Toy)|?
= ||x = y||* = 2A(Tox — Toy,x —y) + 12| Tox — Toy||*
< e = y[I* = 2A[(—=m2) | Tox — Toy||> + pallx — ylI*] 4+ A2p3 [lx — y|?
_ 2,,2 2 2
= (1=2Ap2 + A3 ) [lx = y||” +2An2 || Tx — Tay||

< 03 [lx I,

where 6, = \/1 —2Ap2 + A2u3 +2An,u3. This implies that
[x =y =A(Tox — Toy)|| < 2flx . (2.3)

From the assumption (e), we see that 8; + 6, < 1. Substituting (2.2) and (2.3) into (2.1), we see

that
|1Pc(Ti —ATo)x — Po(Ty — ATh)y|| < [lx—y]|.

This shows that Pc(7; — AT3) is nonexpansive. Fixing p € VI(T1,T>) NF(S), we see that p =
Pc(Ty — ATh)p and p = Sp. Put z, = Pc(Tix, — AThx,). It follows that

[yn =PIl < 8allSxn = Spll + (1 = 80)[|Pc(Tixn — AToxn) — Fe(Tip = ATap) || 2.4
2.4

< e = pl-
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It follows that
[xn+1 =PIl < &l f(xn) — Pl + Ballxn — Pl + 1l1Syn — Pl

< o[ f(P) = pll + ewct|xn = pl| + Ballxn = Pl + Tallyn = Pl

17 (p) = pl
1—a

By mathematical inductions, we see that {x, } is bounded.

<o(l-a)———+-a(1-a))|x—p|.

Step 2. Show that x,,11 —x, — 0 as n — oo.

Since the mapping Pc(7T) — AT») is nonexpansive, we see that
[zn+1 = znll = [[Pe(Th = AT2)xn11 — Pe(Th — AT2)xn || < [l — x| (25)

It follows that
Hyn—i—l _ynH = ||5n+lsxn+1 + (1 - 6n+1)zn+1 — 0pSxy — (1 - SH)ZHH

< 6n+1 ||an+1 —anH + (1 - 5n+1)||Zn+1 _ZnH + |5n+1 - 5n|||an _ZnH ( )
2.6

< Gt [Pt =Xl 4 (1= Gng 1) 01 = Xall + [Sng1 — 8[| 53 — 2a|
< 1 = Xnll 48041 — 6u|M,
where M is an appropriate constant such that M > sup,,~ | {[|Sx, — z4||}. Put [, = x”*f%éf:“, for
all n > 1. That is,
Xnr1 = (1= B)ln+ Buxn, Vn>1. (2.7)
Now, we estimate ||/,+1 — I,||. From

Ol 1.f (i 1) + Yar 19011 _ O f (Xn) + Yo Yn

i1~ = 1= Bt 1—B,
= ) B - P,
= lf‘”—g:H<f<xn+1> Vi) + lf‘—'bn@n ) e p—
we have
it = dall € T2 f 1) = | — FE+ s =l (28)

= Bnt1

From (2.6), we obtain

Ot 1
1 = Lall = Xns1 =l < —2— | f (Xng1) — Syntill+ 75 1Svn = f () || +160+1 = 6a|M.
l_ﬁn—i-l ﬁ
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It follows that limy, e || L1 — In|| — ||Xnt1 — Xus1]] < 0. Using Lemma 1.3, we have
nh_r>r°10 |l — xn|| = 0. (2.9)

By (2.7), we see that x,,+ 1 —x, = (1 — B,) (I, — x,,). Therefore, we have

lim ||x,+1 — x| =0. (2.10)
n—oo
Note that
i [y, — 3| = 0. (2.11)

Define a mapping R : C — C by
Rx=08x+(1—=90)Pc(Ty —ATh)x, VxeC,
where 0 = lim,,_,o §,. From Lemma 1.1, we see that R is nonexpansive with F (R) = F (Pc (T} —
AD))NF(S)=VI(T,T,)NF(S).
Step 3. Show that Rx,, —x;,, — 0 as n — o. Note that
[Rxn —xn | < ||Rxn =yl + [y — Xn]|

< ||188xp 4 (1 = 8)Pe(Ty — ATa)xy — 8,8xn — (1 — 8,)Pe(Ty — ATa)x || + ||yn — x|
< |8 = 8u|M + [lyn — xn]|-

Using (2.11), we obtain
lim ||Rx, —x,|| = 0. (2.12)

n—yoo

Step 4. Show that limsup,,_,.(f(X) — X,x, —X) <O0.

To show it, we can choose a sequence {x,, } of {x,} such that

limsup(f(X) —x,x, —X) = im (f(X) — X, x,, — X). (2.13)

n—oo [—oo
Since {x,,} is bounded, there exists a subsequence {xnij} of {x,,} which converges weakly to

b. Without loss of generality, we may assume that x,,, — b. From Lemma 1.2, we see that
beF(R)=F(Pc(T\ —ATh))NF(S)=VI(T|,T,) NF(S).
It follows from (2.13) that

limsup(f (%) — %,y — %) = lim (£ () — F,%0, — F) = (F(F) — 5,6 — %) 0. (2.14)

n—soo o0
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Step 5. Show that x,, — X as n — oo. Note that
[ _XHZ = 0 (f (Xn) = %, Xp1 — %) + Bun — X, Xn 1 — %) + Y (yn — %, Xp 1 — )
< O (f (xn) = %, Xnp1 — %) =+ Bl — X[ [[ 6041 = X[| + Y llyn — X[ a1 — %]

< 04, (f (%) = X, 2051 — %) + (1 — @ (1 — 00)) |20 — ]| |1 — 5.

It follows that
Pt = E* < 200 (F (%) = Fy20001 = 5) + (1 = 0 (1 = @) v — 5]
From Lemma 1.4, we have lim,_,c ||x, — X|| = 0. This completes the proof.

Finally, we give a convergence theorem on problem 1.2 as a sub-result of Theorem 2.1.

Corollary 2.2. Let H be a real Hilbert space and let C be a nonempty closed and convex sub-
set of H. Let T : C — H a relaxed (12, p2)-cocoercive and [p-Lipschitz continuous mapping,
respectively. Let f : C — C be a contractive mapping and let S : C — C be a nonexpansive
mapping with a fixed point. Assume that F(S)N\VI(C,T;) # 0. Let {x,} be a sequence generat-
ed by the following manner: x| € C, chosen arbitrarily, y, = 6,8x, + (1 — 6,)Pc(x, — ATaxy),
Xnt1 = Onf(X0) + Buxn + Yy, n > 1, where {0}, {Bn}, {m} and {8,} are sequences in
(0,1) satisfying the following restrictions: On+ B+ Y% =1, Vn > 1; 0 < liminf,,. 3, <
limsup,, ., Bn < 1; limy e @y =0 and Y, | 0t = oo; limy, 40 8, = 6 € (0,1), and A is a con-
stant such that 0 < A < 2(’);—727“2). Then the sequence {x,} converges strongly to a element

X € VI(C,T), which uniquely solves the following variational inequality

(f(®)—xx—x*") >0, Vx"eVIC,T).
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