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SOME RESULTS ON NONEXPANSIVE AND RELAXED COCOERCIVE
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Abstract. In this paper, we instigate a viscosity approximation method for nonexpansive and relaxed cocoercive

mappings. A strong convergence theorem is established in the framework of Hilbert spaces.
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1. Introduction and preliminaries

Throughout this paper, we assume that H is a real Hilbert space, whose inner product and

norm are denoted by 〈·, ·〉 and ‖ · ‖. Let C be a nonempty closed and convex subset of H and let

PC denote the metric projection from H onto C.

Consider the following generalized variational inequality problem. Give nonlinear mappings

T1 : C→ H and T2 : C→ H, find an u ∈C such that

〈u−T1u+λT2u,v−u〉 ≥ 0, ∀v ∈C, (1.1)

where λ is a constant. In this paper, we use V I(T1,T2) to denote the set of solutions of variational

inequality problem (1.1).

It is easy to see that an element u ∈C is a solution to problem (1.1) if and only if u ∈C is a

fixed point of mapping PC(T1−λT2).
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If T1 = I, the identity mapping, then problem (1.1) is reduced to the following. Find u ∈C

such that

〈λT2u,v−u〉 ≥ 0, ∀v ∈C. (1.2)

Variational inequality problem (1.2) was introduced by Stampacchia [1] in 1964. Problem (1.2)

has emerged as a fascinating and interesting branch of mathematical and engineering sciences

with a wide range of applications in industry, finance, economics, social, ecology, regional, pure

and applied sciences. In this paper, we use V I(C,T2) to denote the set of solutions of variational

inequality problem (1.2). Recently, gradient methods have been extensively investigated for

solving problems (1.1) and (1.2); see [2-9] and the references therein.

Let A : C→ H be a mapping. Recall that A is said to be monotone iff

〈Ax−Ay,x− y〉 ≥ 0, ∀x,y ∈C.

A is said to be relaxed η-cocoercive if there exists a positive real number η > 0 such that

〈Ax−Ay,x− y〉 ≥ (−η)‖Ax−Ay‖2, ∀x,y ∈C.

A is said to be ρ-strongly monotone if there exists a positive real number ρ > 0 such that

〈Ax−Ay,x− y〉 ≥ ρ‖x− y‖2, ∀x,y ∈C.

A is said to be relaxed (η ,ρ)-cocoercive if there exist positive real numbers η ,ρ > 0 such that

〈Ax−Ay,x− y〉 ≥ (−η)‖Ax−Ay‖2 +ρ‖x− y‖2, ∀x,y ∈C.

Let S : C→C be a mapping. Recall that S is said to be contractive if there exits a constant

0≤ α < 1 such that

‖Sx−Sy‖ ≤ α‖x− y‖, ∀x,y ∈C.

S is said to be nonexpansive if

‖Sx−Sy‖ ≤ ‖x− y‖, ∀x,y ∈C.

In this paper, we use F(S) to denote the set of fixed points of the mapping S. It is know if C is

weakly compact, then F(S) is not empty.
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Recently, many authors studied the problem of finding a common element of the set of so-

lutions of variational inequality problem (1.2) and of the set of fixed points of a nonexpansive

mapping; see, for example, [9-14] and the references therein.

In this paper, Motivated by the research work going on in this direction, we consider varia-

tional inequality problem (1.2) and a fixed point problem of nonexpansive mappings by viscos-

ity iterative method. Strong convergence theorems of common elements are established in the

framework of Hilbert spaces.

Lemma 1.1. [15] Let C be a nonempty closed and convex subset of a real Hilbert space H. Let

S1 : C→ C and S2 : C→ C be nonexpansive mappings on C. Suppose that F(S1)∩F(S2) is

nonempty. Define a mapping S : C→C by

Sx = aS1x+(1−a)S2x, ∀x ∈C.

Then S is nonexpansive with F(S) = F(S1)∩F(S2).

Lemma 1.2 [16] Let C be a nonempty closed and convex subset of a real Hilbert space H and

S : C→C a nonexpansive mapping. Then I−S is demi-closed at zero.

Lemma 1.3. [17] Let {xn} and {yn} be bounded sequences in a Hilbert space H and let {βn}

be a sequence in (0,1) with

0 < liminf
n→∞

βn ≤ limsup
n→∞

βn < 1.

Suppose that xn+1 = (1−βn)yn +βnxn for all integers n≥ 0 and

limsup
n→∞

(‖yn+1− yn‖−‖xn+1− xn‖)≤ 0.

Then limn→∞ ‖yn− xn‖= 0.

Lemma 1.4. [18] Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤ (1− γn)αn +δn,

where {γn} is a sequence in (0,1) and {δn} is a sequence such that

(a) limn→∞ γn = 0, ∑
∞
n=1 γn = ∞;

(b) limsupn→∞ δn/γn ≤ 0 or ∑
∞
n=1 |δn|< ∞.
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Then limn→∞ αn = 0.

Now, we are in a position to show our main results.

2. Main results

Theorem 2.1. Let H be a real Hilbert space and let C be a nonempty closed and convex subset

of H. Let T1 : C→ H be a relaxed (η1,ρ1)-cocoercive and µ1-Lipschitz continuous mapping

and let T2 : C→H a relaxed (η2,ρ2)-cocoercive and µ2-Lipschitz continuous mapping, respec-

tively. Let f : C→C be a contractive mapping and let S : C→C be a nonexpansive mapping

with a fixed point. Assume that F(S)∩V I(T1,T2) 6= /0. Let {xn} be a sequence generated by the

following manner: x1 ∈C, chosen arbitrarily, yn = δnSxn +(1− δn)PC(T1xn−λT2xn), xn+1 =

αn f (xn)+βnxn+γnyn, n≥ 1, where {αn}, {βn}, {γn} and {δn} are sequences in (0,1) satisfy-

ing the following restrictions: αn+βn+γn = 1, ∀n≥ 1; 0 < liminfn→∞ βn ≤ limsupn→∞ βn <

1; limn→∞ αn = 0 and ∑
∞
n=1 α = ∞; limn→∞ δn = δ ∈ (0,1), and λ is a constant such that√

1−2ρ1 +µ2
1 +2η1µ2

1 +
√

1−2λρ2 +λ 2µ2
2 +2λη2µ2

2 ≤ 1. Then the sequence {xn} gener-

ated by the algorithm (ϒ) converges strongly to a common element x̄ ∈ F(S)∩V I(T1,T2), which

uniquely solves the following variational inequality

〈 f (x̄)− x̄, x̄− x∗〉 ≥ 0, ∀x∗ ∈ F(S)∩V I(T1,T2).

Proof. The proof is split into 5 steps.

Step 1. Show that {xn} is bounded.

Note that PC(T1−λT2) is nonexpansive. Indeed, for each x,y ∈C, we have

‖PC(T1−λT2)x−PC(T1−λT2)y‖

≤ ‖(T1−λT2)x− (T1−λT2)y‖

≤ ‖(x− y)− (T1x−T1y)‖+‖(x− y)−λ (T2x−T2y)‖.

(2.1)
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It follows from the assumption that T1 is relaxed (η1,ρ1)-cocoercive and µ1-Lipschitz continu-

ous that

‖x− y− (T1x−T1y)‖2 = ‖x− y‖2−2〈T1x−T1y,x− y〉+‖T1x−T1y‖2

≤ ‖x− y‖2−2[(−η1)‖T1x−T1y‖2 +ρ1‖x− y‖2]+µ
2
1‖x− y‖2

= (1−2ρ1 +µ
2
1 )‖x− y‖2 +2η1‖T1x−T1y‖2

≤ θ
2
1 ‖x− y‖2,

where θ1 =
√

1−2ρ1 +µ2
1 +2η1µ2

1 . That is,

‖x− y− (T1x−T1y)‖ ≤ θ1‖x− y‖. (2.2)

On the other hand, by the the assumption that T2 is relaxed (η2,ρ2)-cocoercive and µ2-Lipschitz

continuous, we arrive at

‖x− y−λ (T2x−T2y)‖2

= ‖x− y‖2−2λ 〈T2x−T2y,x− y〉+λ
2‖T2x−T2y‖2

≤ ‖x− y‖2−2λ [(−η2)‖T2x−T2y‖2 +ρ2‖x− y‖2]+λ
2
µ

2
2‖x− y‖2

= (1−2λρ2 +λ
2
µ

2
2 )‖x− y‖2 +2λη2‖T3x−T3y‖2

≤ θ
2
2 ‖x− y‖2,

where θ2 =
√

1−2λρ2 +λ 2µ2
2 +2λη2µ2

2 . This implies that

‖x− y−λ (T2x−T2y)‖ ≤ θ2‖x− y‖. (2.3)

From the assumption (e), we see that θ1+θ2 ≤ 1. Substituting (2.2) and (2.3) into (2.1), we see

that

‖PC(T1−λT2)x−PC(T1−λT2)y‖ ≤ ‖x− y‖.

This shows that PC(T1−λT2) is nonexpansive. Fixing p ∈ V I(T1,T2)∩F(S), we see that p =

PC(T1−λT2)p and p = Sp. Put zn = PC(T1xn−λT2xn). It follows that

‖yn− p‖ ≤ δn‖Sxn−Sp‖+(1−δn)‖PC(T1xn−λT2xn)−PC(T1 p−λT2 p)‖

≤ ‖xn− p‖.
(2.4)
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It follows that

‖xn+1− p‖ ≤ αn‖ f (xn)− p‖+βn‖xn− p‖+ γn‖Syn− p‖

≤ αn‖ f (p)− p‖+αnα‖xn− p‖+βn‖xn− p‖+ γn‖yn− p‖

≤ αn(1−α)
‖ f (p)− p‖

1−α
+(1−αn(1−α))‖xn− p‖.

By mathematical inductions, we see that {xn} is bounded.

Step 2. Show that xn+1− xn→ 0 as n→ ∞.

Since the mapping PC(T1−λT2) is nonexpansive, we see that

‖zn+1− zn‖= ‖PC(T1−λT2)xn+1−PC(T1−λT2)xn‖ ≤ ‖xn+1− xn‖. (2.5)

It follows that

‖yn+1− yn‖= ‖δn+1Sxn+1 +(1−δn+1)zn+1−δnSxn− (1−δn)zn‖

≤ δn+1‖Sxn+1−Sxn‖+(1−δn+1)‖zn+1− zn‖+ |δn+1−δn|‖Sxn− zn‖

≤ δn+1‖xn+1− xn‖+(1−δn+1)‖xn+1− xn‖+ |δn+1−δn|‖Sxn− zn‖

≤ ‖xn+1− xn‖+ |δn+1−δn|M,

(2.6)

where M is an appropriate constant such that M ≥ supn≥1{‖Sxn− zn‖}. Put ln =
xn+1−βnxn

1−βn
, for

all n≥ 1. That is,

xn+1 = (1−βn)ln +βnxn, ∀n≥ 1. (2.7)

Now, we estimate ‖ln+1− ln‖. From

ln+1− ln =
αn+1 f (xn+1)+ γn+1yn+1

1−βn+1
− αn f (xn)+ γnyn

1−βn

=
αn+1

1−βn+1
f (xn+1)+

1−βn+1−αn+1

1−βn+1
yn+1−

αn

1−βn
f (xn)−

1−βn−αn

1−βn
yn

=
αn+1

1−βn+1
( f (xn+1)− yn+1)+

αn

1−βn
(yn− f (xn))+ yn+1− yn,

we have

‖ln+1− ln‖ ≤
αn+1

1−βn+1
‖ f (xn+1)− yn+1‖+

αn

1−βn
‖yn− f (xn)‖+‖yn+1− yn‖. (2.8)

From (2.6), we obtain

‖ln+1− ln‖−‖xn+1− xn‖ ≤
αn+1

1−βn+1
‖ f (xn+1)−Syn+1‖+

αn

1−βn
‖Syn− f (xn)‖+ |δn+1−δn|M.
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It follows that limn→∞ ‖ln+1− ln‖−‖xn+1− xn+1‖< 0. Using Lemma 1.3, we have

lim
n→∞
‖ln− xn‖= 0. (2.9)

By (2.7), we see that xn+1− xn = (1−βn)(ln− xn). Therefore, we have

lim
n→∞
‖xn+1− xn‖= 0. (2.10)

Note that

lim
n→∞
‖yn− xn‖= 0. (2.11)

Define a mapping R : C→C by

Rx = δSx+(1−δ )PC(T1−λT2)x, ∀x ∈C,

where δ = limn→∞ δn. From Lemma 1.1, we see that R is nonexpansive with F(R) = F(PC(T1−

λT2))∩F(S) =V I(T1,T2)∩F(S).

Step 3. Show that Rxn− xn→ 0 as n→ ∞. Note that

‖Rxn− xn‖ ≤ ‖Rxn− yn‖+‖yn− xn‖

≤ ‖δSxn +(1−δ )PC(T1−λT2)xn−δnSxn− (1−δn)PC(T1−λT2)xn‖+‖yn− xn‖

≤ |δ −δn|M+‖yn− xn‖.

Using (2.11), we obtain

lim
n→∞
‖Rxn− xn‖= 0. (2.12)

Step 4. Show that limsupn→∞〈 f (x̄)− x̄,xn− x̄〉 ≤ 0.

To show it, we can choose a sequence {xni} of {xn} such that

limsup
n→∞

〈 f (x̄)− x̄,xn− x̄〉= lim
i→∞
〈 f (x̄)− x̄,xni− x̄〉. (2.13)

Since {xni} is bounded, there exists a subsequence {xni j
} of {xni} which converges weakly to

b. Without loss of generality, we may assume that xni ⇀ b. From Lemma 1.2, we see that

b ∈ F(R) = F(PC(T1−λT2))∩F(S) =V I(T1,T2)∩F(S).

It follows from (2.13) that

limsup
n→∞

〈 f (x̄)− x̄,xn− x̄〉= lim
i→∞
〈 f (x̄)− x̄,xni− x̄〉= 〈 f (x̄)− x̄,b− x̄〉 ≤ 0. (2.14)
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Step 5. Show that xn→ x̄ as n→ ∞. Note that

‖xn+1− x̄‖2 = αn〈 f (xn)− x̄,xn+1− x̄〉+βn〈xn− x̄,xn+1− x̄〉+ γn〈yn− x̄,xn+1− x̄〉

≤ αn〈 f (xn)− x̄,xn+1− x̄〉+βn‖xn− x̄‖‖xn+1− x̄‖+ γn‖yn− x̄‖‖xn+1− x̄‖

≤ αn〈 f (x̄)− x̄,xn+1− x̄〉+
(
1−αn(1−α)

)
‖xn− x̄‖‖xn+1− x̄‖.

It follows that

‖xn+1− x̄‖2 ≤ 2αn〈 f (x̄)− x̄,xn+1− x̄〉+
(
1−αn(1−α)

)
‖xn− x̄‖2.

From Lemma 1.4, we have limn→∞ ‖xn− x̄‖= 0. This completes the proof.

Finally, we give a convergence theorem on problem 1.2 as a sub-result of Theorem 2.1.

Corollary 2.2. Let H be a real Hilbert space and let C be a nonempty closed and convex sub-

set of H. Let T2 : C→ H a relaxed (η2,ρ2)-cocoercive and µ2-Lipschitz continuous mapping,

respectively. Let f : C → C be a contractive mapping and let S : C → C be a nonexpansive

mapping with a fixed point. Assume that F(S)∩V I(C,T2) 6= /0. Let {xn} be a sequence generat-

ed by the following manner: x1 ∈C, chosen arbitrarily, yn = δnSxn +(1− δn)PC(xn−λT2xn),

xn+1 = αn f (xn) + βnxn + γnyn, n ≥ 1, where {αn}, {βn}, {γn} and {δn} are sequences in

(0,1) satisfying the following restrictions: αn + βn + γn = 1, ∀n ≥ 1; 0 < liminfn→∞ βn ≤

limsupn→∞ βn < 1; limn→∞ αn = 0 and ∑
∞
n=1 α = ∞; limn→∞ δn = δ ∈ (0,1), and λ is a con-

stant such that 0 < λ < 2(ρ−ηµ2)
µ2 . Then the sequence {xn} converges strongly to a element

x̄ ∈V I(C,T ), which uniquely solves the following variational inequality

〈 f (x̄)− x̄, x̄− x∗〉 ≥ 0, ∀x∗ ∈V I(C,T ).
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