

Journal of Nonlinear Functional Analysis Available online at http://jnfa.mathres.org



# SOME RESULTS ON NONEXPANSIVE AND RELAXED COCOERCIVE MAPPINGS

### YUAN QING

Department of Mathematics, Hangzhou Normal University, Hangzhou, China

**Abstract.** In this paper, we instigate a viscosity approximation method for nonexpansive and relaxed cocoercive mappings. A strong convergence theorem is established in the framework of Hilbert spaces.

Keywords. Relaxed cocoercive mapping; Variational inequality; Nonexpansive mapping; Fixed point.

## **1. Introduction and preliminaries**

Throughout this paper, we assume that *H* is a real Hilbert space, whose inner product and norm are denoted by  $\langle \cdot, \cdot \rangle$  and  $\|\cdot\|$ . Let *C* be a nonempty closed and convex subset of *H* and let *P*<sub>*C*</sub> denote the metric projection from *H* onto *C*.

Consider the following generalized variational inequality problem. Give nonlinear mappings  $T_1: C \to H$  and  $T_2: C \to H$ , find an  $u \in C$  such that

$$\langle u - T_1 u + \lambda T_2 u, v - u \rangle \ge 0, \quad \forall v \in C,$$

$$(1.1)$$

where  $\lambda$  is a constant. In this paper, we use  $VI(T_1, T_2)$  to denote the set of solutions of variational inequality problem (1.1).

It is easy to see that an element  $u \in C$  is a solution to problem (1.1) if and only if  $u \in C$  is a fixed point of mapping  $P_C(T_1 - \lambda T_2)$ .

E-mail address: yuanqingbuaa@hotmail.com

Received January 17, 2013

#### Y. QING

If  $T_1 = I$ , the identity mapping, then problem (1.1) is reduced to the following. Find  $u \in C$  such that

$$\langle \lambda T_2 u, v - u \rangle \ge 0, \quad \forall v \in C.$$
 (1.2)

Variational inequality problem (1.2) was introduced by Stampacchia [1] in 1964. Problem (1.2) has emerged as a fascinating and interesting branch of mathematical and engineering sciences with a wide range of applications in industry, finance, economics, social, ecology, regional, pure and applied sciences. In this paper, we use  $VI(C, T_2)$  to denote the set of solutions of variational inequality problem (1.2). Recently, gradient methods have been extensively investigated for solving problems (1.1) and (1.2); see [2-9] and the references therein.

Let  $A : C \to H$  be a mapping. Recall that A is said to be monotone iff

$$\langle Ax - Ay, x - y \rangle \ge 0, \quad \forall x, y \in C.$$

A is said to be relaxed  $\eta$ -cocoercive if there exists a positive real number  $\eta > 0$  such that

$$\langle Ax - Ay, x - y \rangle \ge (-\eta) ||Ax - Ay||^2, \quad \forall x, y \in C.$$

A is said to be  $\rho$ -strongly monotone if there exists a positive real number  $\rho > 0$  such that

$$\langle Ax - Ay, x - y \rangle \ge \rho ||x - y||^2, \quad \forall x, y \in C.$$

A is said to be relaxed  $(\eta, \rho)$ -cocoercive if there exist positive real numbers  $\eta, \rho > 0$  such that

$$\langle Ax - Ay, x - y \rangle \ge (-\eta) \|Ax - Ay\|^2 + \rho \|x - y\|^2, \quad \forall x, y \in C.$$

Let  $S: C \to C$  be a mapping. Recall that *S* is said to be contractive if there exits a constant  $0 \le \alpha < 1$  such that

$$\|Sx - Sy\| \le \alpha \|x - y\|, \quad \forall x, y \in C.$$

S is said to be nonexpansive if

$$||Sx - Sy|| \le ||x - y||, \quad \forall x, y \in C.$$

In this paper, we use F(S) to denote the set of fixed points of the mapping S. It is know if C is weakly compact, then F(S) is not empty.

Recently, many authors studied the problem of finding a common element of the set of solutions of variational inequality problem (1.2) and of the set of fixed points of a nonexpansive mapping; see, for example, [9-14] and the references therein.

In this paper, Motivated by the research work going on in this direction, we consider variational inequality problem (1.2) and a fixed point problem of nonexpansive mappings by viscosity iterative method. Strong convergence theorems of common elements are established in the framework of Hilbert spaces.

**Lemma 1.1.** [15] Let C be a nonempty closed and convex subset of a real Hilbert space H. Let  $S_1 : C \to C$  and  $S_2 : C \to C$  be nonexpansive mappings on C. Suppose that  $F(S_1) \cap F(S_2)$  is nonempty. Define a mapping  $S : C \to C$  by

$$Sx = aS_1x + (1-a)S_2x, \quad \forall x \in C.$$

Then S is nonexpansive with  $F(S) = F(S_1) \cap F(S_2)$ .

**Lemma 1.2** [16] Let C be a nonempty closed and convex subset of a real Hilbert space H and  $S: C \rightarrow C$  a nonexpansive mapping. Then I - S is demi-closed at zero.

**Lemma 1.3.** [17] Let  $\{x_n\}$  and  $\{y_n\}$  be bounded sequences in a Hilbert space H and let  $\{\beta_n\}$  be a sequence in (0,1) with

$$0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1.$$

Suppose that  $x_{n+1} = (1 - \beta_n)y_n + \beta_n x_n$  for all integers  $n \ge 0$  and

$$\limsup_{n\to\infty} (\|y_{n+1} - y_n\| - \|x_{n+1} - x_n\|) \le 0.$$

Then  $\lim_{n\to\infty} ||y_n - x_n|| = 0.$ 

**Lemma 1.4.** [18] Assume that  $\{\alpha_n\}$  is a sequence of nonnegative real numbers such that

$$\alpha_{n+1} \leq (1-\gamma_n)\alpha_n + \delta_n,$$

where  $\{\gamma_n\}$  is a sequence in (0,1) and  $\{\delta_n\}$  is a sequence such that

- (a)  $\lim_{n\to\infty} \gamma_n = 0$ ,  $\sum_{n=1}^{\infty} \gamma_n = \infty$ ;
- (b)  $\limsup_{n\to\infty} \delta_n / \gamma_n \leq 0$  or  $\sum_{n=1}^{\infty} |\delta_n| < \infty$ .

Then  $\lim_{n\to\infty} \alpha_n = 0$ .

Now, we are in a position to show our main results.

## 2. Main results

**Theorem 2.1.** Let *H* be a real Hilbert space and let *C* be a nonempty closed and convex subset of *H*. Let  $T_1 : C \to H$  be a relaxed  $(\eta_1, \rho_1)$ -cocoercive and  $\mu_1$ -Lipschitz continuous mapping and let  $T_2 : C \to H$  a relaxed  $(\eta_2, \rho_2)$ -cocoercive and  $\mu_2$ -Lipschitz continuous mapping, respectively. Let  $f : C \to C$  be a contractive mapping and let  $S : C \to C$  be a nonexpansive mapping with a fixed point. Assume that  $F(S) \cap VI(T_1, T_2) \neq \emptyset$ . Let  $\{x_n\}$  be a sequence generated by the following manner:  $x_1 \in C$ , chosen arbitrarily,  $y_n = \delta_n S x_n + (1 - \delta_n) P_C(T_1 x_n - \lambda T_2 x_n)$ ,  $x_{n+1} =$  $\alpha_n f(x_n) + \beta_n x_n + \gamma_n y_n$ ,  $n \ge 1$ , where  $\{\alpha_n\}$ ,  $\{\beta_n\}$ ,  $\{\gamma_n\}$  and  $\{\delta_n\}$  are sequences in (0, 1) satisfying the following restrictions:  $\alpha_n + \beta_n + \gamma_n = 1$ ,  $\forall n \ge 1$ ;  $0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n <$ 1;  $\lim_{n \to \infty} \alpha_n = 0$  and  $\sum_{n=1}^{\infty} \alpha = \infty$ ;  $\lim_{n \to \infty} \delta_n = \delta \in (0, 1)$ , and  $\lambda$  is a constant such that  $\sqrt{1 - 2\rho_1 + \mu_1^2 + 2\eta_1\mu_1^2} + \sqrt{1 - 2\lambda\rho_2 + \lambda^2\mu_2^2 + 2\lambda\eta_2\mu_2^2} \le 1$ . Then the sequence  $\{x_n\}$  generated by the algorithm (\Upsilon) converges strongly to a common element  $\bar{x} \in F(S) \cap VI(T_1, T_2)$ , which uniquely solves the following variational inequality

$$\langle f(\bar{x}) - \bar{x}, \bar{x} - x^* \rangle \ge 0, \quad \forall x^* \in F(S) \cap VI(T_1, T_2).$$

**Proof.** The proof is split into 5 steps.

Step 1. Show that  $\{x_n\}$  is bounded.

Note that  $P_C(T_1 - \lambda T_2)$  is nonexpansive. Indeed, for each  $x, y \in C$ , we have

$$\begin{aligned} \|P_{C}(T_{1} - \lambda T_{2})x - P_{C}(T_{1} - \lambda T_{2})y\| \\ &\leq \|(T_{1} - \lambda T_{2})x - (T_{1} - \lambda T_{2})y\| \\ &\leq \|(x - y) - (T_{1}x - T_{1}y)\| + \|(x - y) - \lambda (T_{2}x - T_{2}y)\|. \end{aligned}$$
(2.1)

It follows from the assumption that  $T_1$  is relaxed  $(\eta_1, \rho_1)$ -cocoercive and  $\mu_1$ -Lipschitz continuous that

$$\begin{aligned} \|x - y - (T_1 x - T_1 y)\|^2 &= \|x - y\|^2 - 2\langle T_1 x - T_1 y, x - y \rangle + \|T_1 x - T_1 y\|^2 \\ &\leq \|x - y\|^2 - 2[(-\eta_1)\|T_1 x - T_1 y\|^2 + \rho_1 \|x - y\|^2] + \mu_1^2 \|x - y\|^2 \\ &= (1 - 2\rho_1 + \mu_1^2)\|x - y\|^2 + 2\eta_1 \|T_1 x - T_1 y\|^2 \\ &\leq \theta_1^2 \|x - y\|^2, \end{aligned}$$

where  $\theta_1 = \sqrt{1 - 2\rho_1 + \mu_1^2 + 2\eta_1\mu_1^2}$ . That is,

$$\|x - y - (T_1 x - T_1 y)\| \le \theta_1 \|x - y\|.$$
(2.2)

On the other hand, by the the assumption that  $T_2$  is relaxed  $(\eta_2, \rho_2)$ -cocoercive and  $\mu_2$ -Lipschitz continuous, we arrive at

$$\begin{aligned} \|x - y - \lambda (T_2 x - T_2 y)\|^2 \\ &= \|x - y\|^2 - 2\lambda \langle T_2 x - T_2 y, x - y \rangle + \lambda^2 \|T_2 x - T_2 y\|^2 \\ &\leq \|x - y\|^2 - 2\lambda [(-\eta_2)\|T_2 x - T_2 y\|^2 + \rho_2 \|x - y\|^2] + \lambda^2 \mu_2^2 \|x - y\|^2 \\ &= (1 - 2\lambda \rho_2 + \lambda^2 \mu_2^2) \|x - y\|^2 + 2\lambda \eta_2 \|T_3 x - T_3 y\|^2 \\ &\leq \theta_2^2 \|x - y\|^2, \end{aligned}$$

where  $\theta_2 = \sqrt{1 - 2\lambda\rho_2 + \lambda^2\mu_2^2 + 2\lambda\eta_2\mu_2^2}$ . This implies that

$$\|x - y - \lambda (T_2 x - T_2 y)\| \le \theta_2 \|x - y\|.$$
(2.3)

From the assumption (e), we see that  $\theta_1 + \theta_2 \le 1$ . Substituting (2.2) and (2.3) into (2.1), we see that

$$||P_C(T_1 - \lambda T_2)x - P_C(T_1 - \lambda T_2)y|| \le ||x - y||.$$

This shows that  $P_C(T_1 - \lambda T_2)$  is nonexpansive. Fixing  $p \in VI(T_1, T_2) \cap F(S)$ , we see that  $p = P_C(T_1 - \lambda T_2)p$  and p = Sp. Put  $z_n = P_C(T_1x_n - \lambda T_2x_n)$ . It follows that

$$||y_n - p|| \le \delta_n ||Sx_n - Sp|| + (1 - \delta_n) ||P_C(T_1x_n - \lambda T_2x_n) - P_C(T_1p - \lambda T_2p)|| \le ||x_n - p||.$$
(2.4)

Y. QING

It follows that

$$\begin{aligned} \|x_{n+1} - p\| &\leq \alpha_n \|f(x_n) - p\| + \beta_n \|x_n - p\| + \gamma_n \|Sy_n - p\| \\ &\leq \alpha_n \|f(p) - p\| + \alpha_n \alpha \|x_n - p\| + \beta_n \|x_n - p\| + \gamma_n \|y_n - p\| \\ &\leq \alpha_n (1 - \alpha) \frac{\|f(p) - p\|}{1 - \alpha} + (1 - \alpha_n (1 - \alpha)) \|x_n - p\|. \end{aligned}$$

By mathematical inductions, we see that  $\{x_n\}$  is bounded.

Step 2. Show that  $x_{n+1} - x_n \to 0$  as  $n \to \infty$ .

Since the mapping  $P_C(T_1 - \lambda T_2)$  is nonexpansive, we see that

$$||z_{n+1} - z_n|| = ||P_C(T_1 - \lambda T_2)x_{n+1} - P_C(T_1 - \lambda T_2)x_n|| \le ||x_{n+1} - x_n||.$$
(2.5)

It follows that

$$\begin{aligned} \|y_{n+1} - y_n\| &= \|\delta_{n+1}Sx_{n+1} + (1 - \delta_{n+1})z_{n+1} - \delta_nSx_n - (1 - \delta_n)z_n\| \\ &\leq \delta_{n+1}\|Sx_{n+1} - Sx_n\| + (1 - \delta_{n+1})\|z_{n+1} - z_n\| + |\delta_{n+1} - \delta_n|\|Sx_n - z_n\| \\ &\leq \delta_{n+1}\|x_{n+1} - x_n\| + (1 - \delta_{n+1})\|x_{n+1} - x_n\| + |\delta_{n+1} - \delta_n|\|Sx_n - z_n\| \\ &\leq \|x_{n+1} - x_n\| + |\delta_{n+1} - \delta_n|M, \end{aligned}$$

$$(2.6)$$

where *M* is an appropriate constant such that  $M \ge \sup_{n\ge 1} \{ \|Sx_n - z_n\| \}$ . Put  $l_n = \frac{x_{n+1} - \beta_n x_n}{1 - \beta_n}$ , for all  $n \ge 1$ . That is,

$$x_{n+1} = (1 - \beta_n)l_n + \beta_n x_n, \quad \forall n \ge 1.$$
(2.7)

Now, we estimate  $||l_{n+1} - l_n||$ . From

$$\begin{split} l_{n+1} - l_n &= \frac{\alpha_{n+1} f(x_{n+1}) + \gamma_{n+1} y_{n+1}}{1 - \beta_{n+1}} - \frac{\alpha_n f(x_n) + \gamma_n y_n}{1 - \beta_n} \\ &= \frac{\alpha_{n+1}}{1 - \beta_{n+1}} f(x_{n+1}) + \frac{1 - \beta_{n+1} - \alpha_{n+1}}{1 - \beta_{n+1}} y_{n+1} - \frac{\alpha_n}{1 - \beta_n} f(x_n) - \frac{1 - \beta_n - \alpha_n}{1 - \beta_n} y_n \\ &= \frac{\alpha_{n+1}}{1 - \beta_{n+1}} (f(x_{n+1}) - y_{n+1}) + \frac{\alpha_n}{1 - \beta_n} (y_n - f(x_n)) + y_{n+1} - y_n, \end{split}$$

we have

$$\|l_{n+1} - l_n\| \le \frac{\alpha_{n+1}}{1 - \beta_{n+1}} \|f(x_{n+1}) - y_{n+1}\| + \frac{\alpha_n}{1 - \beta_n} \|y_n - f(x_n)\| + \|y_{n+1} - y_n\|.$$
(2.8)

From (2.6), we obtain

$$||l_{n+1} - l_n|| - ||x_{n+1} - x_n|| \le \frac{\alpha_{n+1}}{1 - \beta_{n+1}} ||f(x_{n+1}) - Sy_{n+1}|| + \frac{\alpha_n}{1 - \beta_n} ||Sy_n - f(x_n)|| + |\delta_{n+1} - \delta_n|M|$$

It follows that  $\lim_{n\to\infty} ||l_{n+1} - l_n|| - ||x_{n+1} - x_{n+1}|| < 0$ . Using Lemma 1.3, we have

$$\lim_{n \to \infty} \|l_n - x_n\| = 0.$$
 (2.9)

By (2.7), we see that  $x_{n+1} - x_n = (1 - \beta_n)(l_n - x_n)$ . Therefore, we have

$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0.$$
(2.10)

Note that

$$\lim_{n \to \infty} \|y_n - x_n\| = 0.$$
 (2.11)

Define a mapping  $R: C \rightarrow C$  by

$$Rx = \delta Sx + (1 - \delta)P_C(T_1 - \lambda T_2)x, \quad \forall x \in C,$$

where  $\delta = \lim_{n \to \infty} \delta_n$ . From Lemma 1.1, we see that *R* is nonexpansive with  $F(R) = F(P_C(T_1 - \lambda T_2)) \cap F(S) = VI(T_1, T_2) \cap F(S)$ .

Step 3. Show that  $Rx_n - x_n \rightarrow 0$  as  $n \rightarrow \infty$ . Note that

$$\begin{aligned} \|Rx_n - x_n\| &\leq \|Rx_n - y_n\| + \|y_n - x_n\| \\ &\leq \|\delta Sx_n + (1 - \delta)P_C(T_1 - \lambda T_2)x_n - \delta_n Sx_n - (1 - \delta_n)P_C(T_1 - \lambda T_2)x_n\| + \|y_n - x_n\| \\ &\leq |\delta - \delta_n|M + \|y_n - x_n\|. \end{aligned}$$

Using (2.11), we obtain

$$\lim_{n \to \infty} \|Rx_n - x_n\| = 0.$$
 (2.12)

Step 4. Show that  $\limsup_{n\to\infty} \langle f(\bar{x}) - \bar{x}, x_n - \bar{x} \rangle \leq 0$ .

To show it, we can choose a sequence  $\{x_{n_i}\}$  of  $\{x_n\}$  such that

$$\limsup_{n \to \infty} \langle f(\bar{x}) - \bar{x}, x_n - \bar{x} \rangle = \lim_{i \to \infty} \langle f(\bar{x}) - \bar{x}, x_{n_i} - \bar{x} \rangle.$$
(2.13)

Since  $\{x_{n_i}\}$  is bounded, there exists a subsequence  $\{x_{n_{i_j}}\}$  of  $\{x_{n_i}\}$  which converges weakly to *b*. Without loss of generality, we may assume that  $x_{n_i} \rightharpoonup b$ . From Lemma 1.2, we see that

$$b \in F(R) = F(P_C(T_1 - \lambda T_2)) \cap F(S) = VI(T_1, T_2) \cap F(S).$$

It follows from (2.13) that

$$\limsup_{n \to \infty} \langle f(\bar{x}) - \bar{x}, x_n - \bar{x} \rangle = \lim_{i \to \infty} \langle f(\bar{x}) - \bar{x}, x_{n_i} - \bar{x} \rangle = \langle f(\bar{x}) - \bar{x}, b - \bar{x} \rangle \le 0.$$
(2.14)

Step 5. Show that  $x_n \to \bar{x}$  as  $n \to \infty$ . Note that

$$\begin{aligned} \|x_{n+1} - \bar{x}\|^2 &= \alpha_n \langle f(x_n) - \bar{x}, x_{n+1} - \bar{x} \rangle + \beta_n \langle x_n - \bar{x}, x_{n+1} - \bar{x} \rangle + \gamma_n \langle y_n - \bar{x}, x_{n+1} - \bar{x} \rangle \\ &\leq \alpha_n \langle f(x_n) - \bar{x}, x_{n+1} - \bar{x} \rangle + \beta_n \|x_n - \bar{x}\| \|x_{n+1} - \bar{x}\| + \gamma_n \|y_n - \bar{x}\| \|x_{n+1} - \bar{x}\| \\ &\leq \alpha_n \langle f(\bar{x}) - \bar{x}, x_{n+1} - \bar{x} \rangle + \left(1 - \alpha_n (1 - \alpha)\right) \|x_n - \bar{x}\| \|x_{n+1} - \bar{x}\|. \end{aligned}$$

It follows that

$$||x_{n+1} - \bar{x}||^2 \le 2\alpha_n \langle f(\bar{x}) - \bar{x}, x_{n+1} - \bar{x} \rangle + (1 - \alpha_n (1 - \alpha)) ||x_n - \bar{x}||^2.$$

From Lemma 1.4, we have  $\lim_{n\to\infty} ||x_n - \bar{x}|| = 0$ . This completes the proof.

Finally, we give a convergence theorem on problem 1.2 as a sub-result of Theorem 2.1.

**Corollary 2.2.** Let *H* be a real Hilbert space and let *C* be a nonempty closed and convex subset of *H*. Let  $T_2 : C \to H$  a relaxed  $(\eta_2, \rho_2)$ -cocoercive and  $\mu_2$ -Lipschitz continuous mapping, respectively. Let  $f : C \to C$  be a contractive mapping and let  $S : C \to C$  be a nonexpansive mapping with a fixed point. Assume that  $F(S) \cap VI(C, T_2) \neq \emptyset$ . Let  $\{x_n\}$  be a sequence generated by the following manner:  $x_1 \in C$ , chosen arbitrarily,  $y_n = \delta_n S x_n + (1 - \delta_n) P_C(x_n - \lambda T_2 x_n)$ ,  $x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n y_n$ ,  $n \ge 1$ , where  $\{\alpha_n\}$ ,  $\{\beta_n\}$ ,  $\{\gamma_n\}$  and  $\{\delta_n\}$  are sequences in (0,1) satisfying the following restrictions:  $\alpha_n + \beta_n + \gamma_n = 1$ ,  $\forall n \ge 1$ ;  $0 < \liminf_{n \to \infty} \beta_n \le 1$ ;  $\limsup_{n \to \infty} \beta_n < 1$ ;  $\lim_{n \to \infty} \alpha_n = 0$  and  $\sum_{n=1}^{\infty} \alpha = \infty$ ;  $\lim_{n \to \infty} \delta_n = \delta \in (0,1)$ , and  $\lambda$  is a constant such that  $0 < \lambda < \frac{2(\rho - \eta \mu^2)}{\mu^2}$ . Then the sequence  $\{x_n\}$  converges strongly to a element  $\overline{x} \in VI(C, T)$ , which uniquely solves the following variational inequality

$$\langle f(\bar{x}) - \bar{x}, \bar{x} - x^* \rangle \ge 0, \quad \forall x^* \in VI(C, T).$$

#### REFERENCES

- G. Stampacchia, Formes bilineaires coercivities sur les ensembles convexes, C.R. Acad. Sci. Paris 258 (1964), 4413-4416.
- [2] M.A. Noor, Extended general variational inequalities, Appl. Math. Lett. 22 (2009), 182-186.
- [3] M.A. Noor, Iterative methods for generalized variational inequality, Appl. Math. Lett. 15 (2002), 77-82.
- [4] M.A. Noor, Predictor-corrector algorithm for general variational inequalities, Appl. Math. Lett. 14 (2001), 53-58.

- [5] H. Zegeye, N. Shahzad, Strong convergence theorem for a common point of solution of variational inequality and fixed point problem, Adv. Fixed Point Theory, 2 (2012), 374-397.
- [6] J. Shen, L.P. Pang, An approximate bundle method for solving variational inequalities, Commn. Optim. Theory, 1 (2012), 1-18.
- [7] R.U. Verma, Generalized variational inequalities involving multivalued relaxed monotone operators, Appl. Math. Lett. 10 (1997) 107-109.
- [8] Y.J. Cho, X. Qin, M. Shang, Y. Su, Generalized nonlinear variational inclusions involving  $(A, \eta)$ -monotone mappings in Hilbert Spaces, J. Inequal. Appl. 2007 (2007), Article ID 29653.
- [9] L.C. Ceng, J.C. Yao, An extragradient-like approximation method for variational inequality problems and fixed point problems, Appl. Math. Comput. 190 (2007), 205-215.
- [10] H. Iiduka, W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal. 61 (2005), 341-350.
- [11] W. Takahashi, M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings J. Optim. Theory Appl. 118 (2003) 417-428.
- [12] Y.J. Cho, X. Qin, Systems of generalized nonlinear variational inequalities and its projection methods, Nonlinear Anal. 69 (2008), 4443-4451.
- [13] Y. Yao, J.C. Yao, On modified iterative method for nonexpansive mappings and monotone mappings, Appl. Math. Comput. 186 (2007), 1551-1558.
- [14] X. Qin, M. Shang. H. Zhou, Strong convergence of a general iterative method for variational inequality problems and fixed point problems in Hilbert spaces, Appl. Math. Comput. 200 (2008), 242-253.
- [15] R.E. Bruck, Properties of fixed point sets of nonexpansive mappings in Banach spaces, Tras. Amer. Math. Soc. 179 (1973) 251-262.
- [16] F.E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Symp. Pure. Math. 18 (1976) 78-81.
- [17] T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochne integrals, J. Math. Anal. Appl. 305 (2005) 227-239.
- [18] H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002) 240-256.