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Abstract. In this article, a two-step iterative algorithm is investigated for a fixed point problem of a strict pseu-

docontraction and an equilibrium problem of a bifunction. Strong convergence theorems of common solutions are

established in the framework of Hilbert spaces.
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1. Introduction

Throughout this paper, we always assume that H is a real Hilbert space with the inner product

〈·, ·〉 and the norm ‖ · ‖. Let C a nonempty closed convex subset of H and let PC be the metric

projection from H onto C.

Let A : C→ H be a mapping. Recall that A is said to be monotone if

〈Ax−Ay,x− y〉 ≥ 0, ∀x,y ∈C.

A is said to be strongly monotone if there exists a constant α > 0 such that

〈Ax−Ay,x− y〉 ≥ α‖x− y‖2, ∀x,y ∈C.
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For such a case, A is also called an α-strongly monotone mapping. A is said to be inverse-

strongly monotone if there exists a constant α > 0 such that

〈Ax−Ay,x− y〉 ≥ α‖Ax−Ay‖2, ∀x,y ∈C.

For such a case, A is also called an α-inverse-strongly monotone mapping. From the definition,

we see that A is inverse-strongly if and only if the inverse of A is strongly monotone. From the

definition, we also have A is Lipschitz continuous.

Recall that a set-valued mapping T : H → 2H is said to be monotone if for all x,y ∈ H,

f ∈ T x and g ∈ Ty imply 〈x−y, f −g〉> 0. A monotone mapping T : H→ 2H is maximal if the

graph Graph(T ) of R is not properly contained in the graph of any other monotone mapping.

It is known that a monotone mapping T is maximal if and only if, for any (x, f ) ∈ H ×H,

〈x− y, f −g〉 ≥ 0 for all (y,g) ∈ Graph(T ) implies f ∈ T x. Let A be a monotone mapping of C

into H and let NCv be the normal cone to C at v ∈C, i.e.,

NCv = {w ∈ H : 〈w,v−u〉 ≥ 0, ∀u ∈C}

and define a mapping R on C by

T v =


/0, v /∈C,

Av+NCv, v ∈C.

Then T is maximal monotone and 0 ∈ Rv if and only if 〈Av,u− v〉 ≥ 0 for all u ∈ C; see [1]

and the references therein. Gradient methods are popular and efficient to study zero points of

monotone operators.

Let S : C→ C be a mapping. In this paper, we use F(S) to denote the fixed point set of S.

Recall that the mapping S is said to be nonexpansive if

‖Sx−Sy‖ ≤ ‖x− y‖, ∀x,y ∈C.

S is said to be k-strictly pseudocontractive if there exists a constant k ∈ [0,1) such that

‖Sx−Sy‖2 ≤ ‖x− y‖2 + k‖(x−Sx)− (y−Sy)‖2, ∀x,y ∈C.

The class of strictly pseudocontractive mappings was introduced by Browder and Petryshyn

[2] in 1967. It is easy to see that the class of strictly pseudocontractive mappings includes the
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class of nonexpansive mappings as a special case. If k = 1, then it called a pseudocontractive

mapping. It is also easy to see that if A is an inverse-strongly monotone mapping, then the

mapping I−A is a strictly pseudocontractive mapping. Let I denote the identity operator on

H and A : H → 2H be a maximal monotone operator. Then we can define, for each r > 0, a

nonexpansive single valued mapping Jr : H → H by Jr = (I + rA)−1. It is called the resolvent

of A. We know that A−10 = F(Jr) for all r > 0 and Jr is firmly nonexpansive.

The classical variational inequality problem is to find u ∈C such that

〈Au,v−u〉 ≥ 0, ∀v ∈C.

We denoted by V I(C,A) the set of solutions of the variational inequality. For a given z∈H,u∈C

satisfies the inequality 〈u− z,v− u〉 ≥ 0, ∀v ∈C, if and only if u = Pro jCz. It is known that

projection operator PC is firmly nonexpansive. It is also known that Pro jCx is characterized by

the property: Pro jCx ∈C and 〈x−Pro jCx,Pro jCx− y〉 ≥ 0 for all y ∈C. One can see that the

variational inequality problem is equivalent to a fixed point problem, that is, an element u ∈C

is a solution of the variational inequality if and only if u ∈ C is a fixed point of the mapping

Pro jC(I−λA), where λ > 0 is a constant and I is the identity mapping.

Let T : C→ H be monotone mapping and let F be a bifunction of C×C into R, where R

denotes the set of real numbers. In this paper, we consider the following generalized equilibrium

problem.

Find x ∈C such that F(x,y)+ 〈T x,y− x〉 ≥ 0, ∀y ∈C. (1.1)

In this paper, we use EP(F,T ) to denote the solution set of the problem (1.1).

Next, we give two special cases of the problem (1.1).

(a) If F ≡ 0, then the problem (1.1) is reduced to the classical variational inequality.

(a) If T ≡ 0, then the generalized equilibrium problem (1.1) is reduced to the following

equilibrium problem:

Find x ∈C such that F(x,y)≥ 0, ∀y ∈C. (1.2)

In this paper, we use EP(F) to denote the solution set of problem (1.2). We remark here that

problem (1.2) is first introduced by Fan [3].
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To study the equilibrium problems, we may assume that F satisfies the following conditions:

(A1) F(x,x) = 0 for all x ∈C;

(A2) F is monotone, i.e., F(x,y)+F(y,x)≤ 0 for all x,y ∈C;

(A3) for each x,y,z ∈C,

limsup
t↓0

F(tz+(1− t)x,y)≤ F(x,y);

(A4) for each x ∈C, y 7→ F(x,y) is convex and weakly lower semi-continuous.

Recently, many authors based on iterative methods investigated the problems (1.1), (1.2); see

[4-17] and the references therein. In this paper, motivated by the above results, we investigated

fixed points of strictly pseudocontractive mappings and solutions of equilibrium problem (1.1).

Weak convergence theorems are established in Hilbert spaces.

Lemma 1.1. [18] Let C be a nonempty closed convex subset of H and let F : C×C→ R be a

bifunction satisfying (A1)-(A4). Then, for any r > 0 and x ∈ H, there exists z ∈C such that

〈y− z,z− x〉+ rF(z,y)≥ 0, ∀y ∈C.

Further, define Trx = {z ∈C : 〈y− z,z− x〉+ rF(z,y) ≥ 0, ∀y ∈C} for all r > 0 and x ∈ H.

Then, the following hold:

(a) Tr is single-valued;

(b) ‖Trx−Try‖2 ≤ 〈Trx−Try,x− y〉;

(c) F(Tr) = EP(F) is closed and convex.

Lemma 1.2. [1] Let C be a nonempty closed convex subset of a real Hilbert space H and S :

C→C a k-strict pseudo-contraction with a fixed point. Define S : C→C by Sax= ax+(1−a)Sx

for each x ∈C. If a ∈ [k,1), then Sa is nonexpansive with F(Sa) = F(S).

Lemma 1.3. [19] Let H be a Hilbert space and 0 < p≤ tn ≤ q < 1 for all n≥ 1. Suppose that

{xn} and {yn} are sequences in H such that limsup
n→∞

‖xn‖ ≤ r, limsup
n→∞

‖yn‖ ≤ r and lim
n→∞
‖tnxn +

(1− tn)yn‖= r hold for some r ≥ 0. Then limn→∞ ‖xn− yn‖= 0.



A TWO-STEP ITERATIVE ALGORITHM 5

Lemma 1.4. [20] Let C be a nonempty closed convex subset of a Hilbert space H and S : C→C

a k-strict pseudocontraction. Then S is 1+k
1−k -Lipschitz. I−S is demi-closed, this is, if {xn} is a

sequence in C with xn ⇀ x and xn−Sxn→ 0, then x ∈ F(S).

2. Main results

Now, we are in a position to show the main results of the article.

Theorem 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T :

C → H be a λ -inverse strongly monotone mapping and let F be a bifunction from C×C to

R which satisfies (A1)-(A4). Let S : C → C be a κ-strict pseudocontraction. Assume that

F := EP(F,T )∩F(S) is not empty. Let {αn}, {βn}, and {δn} be sequences in (0,1). Let {rn}

be a sequence in (0,2λ ). Let {xn} be a sequence generated in the following manner:
rnF(un,u)+ 〈u−un,un− xn〉+ rn〈T xn,u−un〉 ≥ 0, ∀u ∈C,

xn+1 = βnδnun +αnxn +(1−δn)βnSun, ∀n≥ 1.

Assume that the sequences {αn}, {βn}, {δn}, and {rn} satisfy the following restrictions: 0 <

a≤ αn ≤ a′ < 1, 0≤ k ≤ δn ≤ b < 1, 0 < c≤ rn ≤ d < 2λ . Then the sequence {xn} converges

weakly to some point x̄ ∈F , where x̄ = limn→∞ PF xn, where P is the metric projection.

Proof. Set Sn = δnI + (1− δn)S. It follows from Lemma 1.2 that Sn is nonexpansive and

F(Sn) = F(S). Note that

‖(I− rnT )x− (I− rnT )y‖2 = ‖x− y‖2−2rn〈x− y,T x−Ty〉+ r2
n‖T x−Ty‖2

≤ ‖x− y‖2− rn(2λ − rn)‖T x−Ty‖2

≤ ‖x− y‖2, ∀x,y ∈C.

Fixing p ∈F , we find from Lemma 1.1 that p = Sp = Trn(I− rnT )p. Since

‖un− p‖ ≤ ‖Trn(I− rnT )xn−Trn(I− rnT )p‖ ≤ ‖xn− p‖,

we find that
‖xn+1− p‖ ≤ αn‖xn− p‖+βn‖Snun− p‖

≤ ‖xn− p‖.
(2.1)
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This implies that limn→∞ ‖xn− p‖ exists. This shows that {xn} is bounded, so is {un}. Since

‖ · ‖2 is convex, we find that

‖xn+1− p‖2 ≤ αn‖xn− p‖2 +βn‖un− p‖2

≤ αn‖xn− p‖2 +βn‖(I− rnT )xn− p‖2

≤ ‖xn− p‖2− rn(2λ − rn)βn‖T xn−T p‖2.

It follows that

rn(2λ − rn)βn‖T xn−T p‖2 ≤ (1− γn)‖xn− p‖2−‖xn+1− p‖2.

This yields that

lim
n→∞
‖T xn−T p‖= 0. (2.2)

Using Lemma 1.2, we see that

‖un− p‖2 ≤ 〈(I− rnT )xn− (I− rnT )p,un− p〉

=
1
2
(
‖(I− rnT )xn− (I− rnT )p‖2 +‖un− p‖2

−‖(I− rnT )xn− (I− rnT )p− (un− p)‖2)
≤ 1

2
(
‖xn− p‖2 +‖un− p‖2−‖xn−un− rn(T xn−T p)‖2)

=
1
2

(
‖xn− p‖2 +‖un− p‖2−

(
‖xn−un‖2

−2rn〈xn−un,T xn−T p〉+ r2
n‖T xn−T p‖2)).

This implies that

‖un− p‖2 ≤ ‖xn− p‖2−‖xn−un‖2 +2rn‖xn−un‖‖T xn−T p‖.

Since ‖ · ‖2 is convex, we find that

‖xn+1− p‖2 ≤ αn‖xn− p‖2 +βn‖Snun− p‖2

≤ αn‖xn− p‖2 +βn‖un− p‖2

≤ ‖xn− p‖2−βn‖xn−un‖2 +2rnβn‖xn−un‖‖T xn−T p‖.

It follows that that

βn‖xn−un‖2 ≤ ‖xn− p‖2−‖xn+1− p‖2 +2rn‖xn−un‖‖T xn−T p‖.
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Using the restrictions imposed on the sequences, we obtain from (2.2) that

lim
n→∞
‖xn−un‖= 0. (2.3)

Since {xn} is bounded, we see that there exits a subsequence {xni} of {xn} which converges

weakly to x̄. Using (2.3), we also find that {uni} converges weakly to x̄. Note that

F(un,u)+ 〈T xn,u−un〉+
1
rn
〈u−un,un− xn〉 ≥ 0, ∀u ∈C.

From (A2), we see that

〈T xn,u−un〉+
1
rn
〈u−un,un− xn〉 ≥ F(u,un), ∀u ∈C.

Replacing n by ni, we arrive at

〈T xni,u−uni〉+
1

rni

〈u−uni,uni− xni〉 ≥ F(u,uni), ∀u ∈C. (2.4)

For t with 0 < t ≤ 1 and u ∈C, let ut = tu+(1− t)x̄. Since u ∈C and x̄ ∈C, we have ut ∈C. It

follows from (2.4) that

〈ut−uni,Tut〉 ≥ 〈ut−uni,Tut〉−〈T xni,ut−uni〉−〈ut−uni,
uni− xni

rni

〉+F(ut ,uni)

= 〈ut−uni,Tut−Tuni〉+ 〈ut−uni,Tuni−T xni〉

−〈ut−uni,
uni− xni

rni

〉+F(ut ,uni).

(2.5)

Using (2.3), we have Tuni − T xni → 0 as i→ ∞. Using the monotonicity of T , we see that

〈ut−uni,Tut−Tuni〉 ≥ 0. It follows from (A4) that

〈ut− x̄,Tut〉 ≥ F(ut , x̄). (2.6)

Using (A1) and (A4), we see from (2.6) that

0 = F(ut ,ut)≤ tF(ut ,u)+(1− t)F(ut , x̄)

≤ tF(ut ,u)+(1− t)〈ut− x̄,Tut〉

= tF(ut ,u)+(1− t)t〈u− x̄,Tut〉.

It follows that F(ut ,u)+(1− t)〈u− x̄,Tut〉 ≥ 0. Letting t→ 0 in the above inequality, we arrive

at F(x̄,u)+ 〈u− x̄,T x̄〉 ≥ 0. Hence, x̄ ∈ EP(F,T ).
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Next, we are in a position to show that x̄ ∈ F(S). Note that limn→∞ ‖xn− p‖ exists. We may

assume that limn→∞ ‖xn− p‖= d > 0. Note that

lim
n→∞
‖xn+1− p‖= lim

n→∞
‖βn
(
Snun− p

)
+(1−βn)

(
xn− p

)
‖= d.

Note that limn→∞ ‖Snxn− p‖ ≤ d and limn→∞ ‖xn− p‖ ≤ d. Using Lemma Lemma 1.3, we

obtain that limn→∞ ‖Snun− xn‖= 0. In view of

Sun− xn =
Snun− xn

1−δn
+

δn(xn−un)

1−δn
.

It follows that limn→∞ ‖Sun−xn‖= 0. Note that ‖Sxn−xn‖ ≤ ‖Sxn−Sun‖+‖Sun−xn‖. Using

Lemma 1.4, we find that limn→∞ ‖Sxn−xn‖= 0. It follows from Lemma 1.4 that x̄ ∈ F(S). This

proves that x̄ ∈F . Assume that there exits another subsequence {xn j} of {xn} such that {xn j}

converges weakly to x′. We can find that x′ ∈F . If x̄ 6= x′, we get from Opial condition that

lim
n→∞
‖xn− x̄‖= liminf

i→∞
‖xni− x̄‖< liminf

i→∞
‖xni− x′‖

= lim
n→∞
‖xn− x′‖= liminf

j→∞
‖xn j − x′‖

< liminf
j→∞

‖xn j − x̄‖= lim
n→∞
‖xn− x̄‖.

This derives a contradiction. Hence, we have x̄ = x′. This implies that xn ⇀ x̄ ∈F . The proof

is completed.

From Theorem 2.1, we have the following common fixed point problem.

Theorem 2.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let Sm :

C→C be a km-strict pseudocontraction for each 1≤ m≤ N, where N is some positive integer.

Assume that F := ∩∞
m=1F(S) is not empty. Let {αn}, {βn} be sequences in (0,1). Let {en} is a

bounded sequence in C. Let {xn} be a sequence generated in the following manner:

x1 ∈C, xn+1 = αnxn +βn
(
δnxn +(1−δn)

N

∑
i=1

µiSixn
)
, ∀n≥ 1.

Assume that the sequences {αn}, {βn}, {δn}, and {rn} satisfy the following restrictions: 0 <

a≤ αn ≤ a′ < 1, 0≤ k≤ δn ≤ b < 1, 0 < c≤ rn ≤ d < 2λ and ∑
∞
n=1 γn < ∞. Then the sequence

{xn} converges weakly to some point x̄ ∈F , where x̄ = limn→∞ PF xn.



A TWO-STEP ITERATIVE ALGORITHM 9

Proof. Using the definition of strict pseudocontractions, we see that a mapping T is said to be

a k-strict pseudocontraction iff

2〈x− y,(I−T )x− (I−T )y〉 ≥ (1− k)‖(I−T )x− (I−T )y‖2.

Define a mapping S : C→C by S = ∑
N
m=1 µmSm. Next, we prove that F(S) = ∩N

m=1F(Sm) and

S is a k-strict pseudocontraction, where k = max{km : 1≤m≤ N}. It follows that S is a k-strict

pseudocontraction, where k = max{km : 1≤ m≤ N}. Next, we show that F(S) = ∩N
m=1F(Sm).

It is clear to see that F(S) ⊇ ∩N
m=1F(Sm). It suffices to prove that ∩N

m=1F(Sm) ⊇ F(S). Let

x ∈ F(S) and write Tm = I−Sm. Let y ∈ ∩N
m=1F(Sm). For any i, j ∈ {1,2, · · · ,N} and i 6= j, we

have

‖x− y‖2 = ‖
N

∑
m=1

µm(y−Smx)‖2

≤
N

∑
m=1

µm‖y−Smx‖2−µiµ j‖Six−S jx‖2

≤
N

∑
m=1

µm
(
‖y− x‖2 + km‖Tmx‖2)−µiµ j‖Six−S jx‖2

≤ ‖y− x‖2 + k
N

∑
i=1

µm‖Tmx‖2−µiµ j‖Six−S jx‖2.

This shows that

µiµ j‖Six−S jx‖2 ≤ k
N

∑
m=1

µm‖Tmx‖2.

Since ∑
N
i=1 µmTmx = 0, we find that ‖Six− S jx‖ = 0. This proves that Six = S jx. Since x is a

fixed point of S, we obtain ∩N
m=1F(Sm) ⊇ F(S). This proves that F(S) = ∩N

m=1F(Sm). Putting

T = 0, F = 0 and rn = 1, we find from Theorem 2.1 the desired conclusion immediately.
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