

## Journal of Nonlinear Functional Analysis

Available online at http://jnfa.mathres.org



# INCLUSION PROPERTIES ON A LINEAR OPERATOR ASSOCIATED WITH GAUSSIAN HYPERGEOMETRIC FUNCTIONS

F. GHANIM<sup>1,\*</sup>, M. DARUS<sup>2</sup>

<sup>1</sup>Department of Mathematics, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates

<sup>2</sup>School of Mathematical Sciences, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, Bangi 43600 Selangor D. Ehsan, Malaysia

**Abstract.** In this paper, we introduce and investigate various inclusion relationships and convolution properties of a certain class of meromorphically univalent functions f(z) defined by the linear operator  $L(\alpha, \beta) f(z)$ . The aim of the present paper is to prove some properties for the class  $\Sigma(\alpha, \beta, k, \lambda; h)$  to satisfy the certain subordination.

Keywords. Hypergeometric function; Meromorphic function; Hadamard product; Subordination; Linear operator.

## 1. Introduction

Let  $\Sigma$  denote the class of meromorphic functions f(z) normalized by

$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n,$$
(1.1)

which are analytic in the punctured unit disk

$$\mathbb{U}^* = \{z : z \in \mathbb{C} \quad \text{and} \quad 0 < |z| < 1\} = \mathbb{U} \setminus \{0\},\$$

 $\mathbb{C}$  being (as usual) the set of complex numbers. We denote by  $\Sigma S^*(\beta)$  and  $\Sigma K(\beta)$  ( $\beta \ge 0$ ) the subclasses of  $\Sigma$  consisting of all meromorphic functions which are, respectively, starlike of order  $\beta$  and convex of order  $\beta$  in  $\mathbb{U}^*$  (see also the recent works [1] and [2]).

E-mail address: fgahmed@sharjah.ac.ae (F. Ghanim), maslina@ukm.my (M. Darus)

Received December 14, 2015

<sup>\*</sup>Corresponding author.

For functions  $f_i(z)$  (j = 1, 2) defined by

$$f_j(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_{n,j} z^n$$
  $(j = 1, 2),$  (1.2)

we denote the Hadamard product (or convolution) of  $f_1(z)$  and  $f_2(z)$  by

$$(f_1 * f_2)(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_{n,1} a_{n,2} z^n.$$
(1.3)

Let us consider the function  $\widetilde{\phi}(\alpha, \beta; z)$  defined by

$$\widetilde{\phi}(\alpha, \beta; z) = \frac{1}{z} + \sum_{n=0}^{\infty} \frac{(\alpha)_{n+1}}{(\beta)_{n+1}} a_n z^n$$

$$(\beta \in \mathbb{C} \setminus \mathbb{Z}_0^-; \ \alpha \in \mathbb{C}),$$

$$(1.4)$$

where

$$\mathbb{Z}_0^- = \{0, -1, -2, \cdots\} = \mathbb{Z}^- \cup \{0\}.$$

Here, and in the remainder of this paper,  $(\lambda)_{\kappa}$  denotes the general Pochhammer symbol defined, in terms of the Gamma function, by

$$(\lambda)_{\kappa} := \frac{\Gamma(\lambda + \kappa)}{\Gamma(\lambda)} = \begin{cases} \lambda(\lambda + 1) \cdots (\lambda + n - 1) & (\kappa = n \in \mathbb{N}; \ \lambda \in \mathbb{C}), \\ 1 & (\kappa = 0; \ \lambda \in \mathbb{C} \setminus \{0\}), \end{cases}$$
(1.5)

it being understood *conventionally* that  $(0)_0 := 1$  and assumed *tacitly* that the  $\Gamma$ -quotient exists (see, for details, [3, p. 21 *et seq.*]),  $\mathbb{N}$  being the set of positive integers.

It is easy to see that, in the case when  $a_n = 1$   $(k = 0, 1, 2, \cdots)$ , the following relationship holds true between the function  $\widetilde{\phi}(\alpha, \beta; z)$  and the Gaussian hypergeometric function [4]:

$$\widetilde{\phi}(\alpha, \beta; z) = \frac{1}{z} {}_{2}F_{1}(1, \alpha; \beta; z), \tag{1.6}$$

where

$$_{2}F_{1}(b,\alpha,\beta;z) = \sum_{n=0}^{\infty} \frac{(b)_{n}(\alpha)_{n}}{(\beta)_{n}} \frac{z^{n}}{n!}$$

is the well-known Gaussian hypergeometric function. Corresponding to the function  $\tilde{\phi}(\alpha, \beta; z)$ , using the Hadamard product for  $f(z) \in \Sigma$ , we define a new linear operator  $L(\alpha, \beta)$  on  $\Sigma$  by

$$L(\alpha,\beta) f(z) = \tilde{\phi}(\alpha,\beta;z) * f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} \left| \frac{(\alpha)_{n+1}}{(\beta)_{n+1}} \right| a_n z^n.$$
 (1.7)

The meromorphic functions with the generalized and Gaussian hypergeometric functions were considered recently by Dziok and Srivastava [5], [6], Liu [7], Liu and Srivastava [8], [9],[10], Cho and Kim [11].

For a function  $f \in L(\alpha, \beta)$  f(z) we define

$$I^{0}(L(\alpha,\beta) f(z)) = L(\alpha,\beta) f(z),$$

and for n = 1, 2, 3, ...,

$$I^{k}(L(\alpha,\beta)f(z)) = z\left(I^{k-1}L(\alpha,\beta)f(z)\right)' + \frac{2}{z} = \frac{1}{z} + \sum_{n=1}^{\infty} n^{k} \left| \frac{(\alpha)_{n+1}}{(\beta)_{n+1}} \right| a_{n}z^{n}.$$
 (1.8)

We note that  $I^k$  in (1.6) was studied by Ghanim and Darus [12], [13], [14] and [15]. It follows from (1.7) that

$$z(L(\alpha,\beta)f(z))' = \alpha L(\alpha+1,\beta)f(z) - (\alpha+1)L(\alpha,\beta)f(z), \tag{1.9}$$

which implies that

$$z\left(I^{k}L(\alpha,\beta)f(z)\right)' = \alpha I^{k}L(\alpha+1,\beta)f(z) - (\alpha+1)I^{k}L(\alpha,\beta)f(z). \tag{1.10}$$

Let  $\Omega$  be the class of all analytic, convex and univalent functions h(z) in the open unit disk satisfying h(0) = 1 and

$$\Re\{h(z)\} > 0, \ |z| < 1 \tag{1.11}$$

for two functions  $f,g \in \Omega$ , we say that f is *subordinate* to g or g is *superordinate* to f in  $\mathbb{U}$  and write  $f \prec g, z \in \mathbb{U}$ , if there exist a Schwarz function  $\omega$ , analytic in  $\mathbb{U}$  with  $\omega(0) = 0$  and  $|w(z)| \leq 1$  when  $z \in \mathbb{U}$  such that  $f(z) = g(\omega(z)), z \in \mathbb{U}$ . Furthermore, if the function g is univalent in  $\mathbb{U}$ , then we have following equivalence:

$$f(z) \prec g(z) \Leftrightarrow f(0) = g(0)$$
 and  $f(U) \subset g(U)$ ,  $(z \in \mathbb{U})$ .

**Definition 1.1.** A function  $f \in \Sigma$  is said to be in the class  $\Sigma(\alpha, \beta, k, \lambda; h)$ , if it satisfies the subordination condition

$$(1+\lambda)z\left(I^{k}L\left(\alpha,\beta\right)f(z)\right)+\lambda z^{2}\left(I^{k}L\left(\alpha,\beta\right)f(z)\right)' \prec h(z), \tag{1.12}$$

where  $\lambda$  is a complex number and  $h(z) \in \Omega$ . Let A be class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$
 (1.13)

which are analytic in  $\mathbb{U}$ . A function  $h(z) \in A$  is said to be in the class  $S^*(\mathfrak{a})$ , if

$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} > \mathfrak{a} \qquad (z \in \mathbb{U}).$$

For some  $\mathfrak{a}(\mathfrak{a} < 1)$ . When  $0 < \mathfrak{a} < 1$ ,  $S^*(\mathfrak{a})$  is the class of starlike functions of order  $\mathfrak{a}$  in  $\mathbb{U}$ . A function  $h(z) \in A$  is said to be prestarlike of order  $\mathfrak{a}$  in  $\mathbb{U}$ , if

$$\frac{z}{\left(1-z\right)^{2\left(1-\mathfrak{a}\right)}}*f\left(z\right)\in S^{*}\left(\mathfrak{a}\right)\quad \left(\mathfrak{a}<1\right),$$

where the symbol \* means the familiar Hadamard product (or convolution) of two analytic functions in  $\mathbb{U}$ . We denote this class by  $R(\mathfrak{a})$  (see [16] and [17]). A function  $f(z) \in A$  is in the class R(0), if and only if f(z) is convex univalent in  $\mathbb{U}$  and  $R\left(\frac{1}{2}\right) = S^*\left(\frac{1}{2}\right)$ .

In this paper, we introduce and investigate various inclusion relationships and convolution properties of a certain class of meromorphically univalent functions, which are defined in this paper by means of a linear operator.

## 2. Preliminaries

In order to prove our main results, we need the following lemmas.

**Lemma 2.1.** [18] Let g(z) be analytic in  $\mathbb{U}$ , and h(z) be analytic and convex univalent in  $\mathbb{U}$  with h(0) = g(0). If,

$$g(z) + \frac{1}{\mu} z g'(z) \prec h(z),$$
 (2.1)

where  $\Re \mu \geq 0$  and  $\mu \neq 0$ , then

$$g(z) \prec \widetilde{h}(z) = \mu z^{-\mu} \int_0^z t^{\mu - 1} h(t) dt \prec h(z)$$

and  $\widetilde{h}(z)$  is the best dominant of (2.1).

**Lemma 2.2.** [17] *Let* a < 1,  $f(z) \in S^*(a)$  and  $g(z) \in R(\mathfrak{a})$ . For any analytic function F(z) in  $\mathbb{U}$ , then

$$\frac{g*\left(fF\right)}{g*f}\left(\mathbb{U}\right)\subset\overline{co}\left(F\left(\mathbb{U}\right)\right),$$

where  $\overline{co}(F(\mathbb{U}))$  denotes the convex hull of  $F(\mathbb{U})$ .

## 3. Main results

**Theorem 3.1.** Let  $0 \le \lambda_1 < \lambda_2$ . Then  $\Sigma(\alpha, \beta, k, \lambda_2; h) \subset \Sigma(\alpha, \beta, k, \lambda_1; h)$ 

**Proof.** Let  $0 \le \lambda_1 < \lambda_2$  and suppose that

$$g(z) = z \left( I^{k} L(\alpha, \beta) f(z) \right)$$
(3.1)

for  $f(z) \in \Sigma(\alpha, \beta, k, \lambda_2; h)$ . Then the function g(z) is analytic in  $\mathbb{U}$  with g(0) = 1. Differentiating both sides of (3.1) with respect to z and using (1.10), we have

$$(1+\lambda_2)z\left(I^kL\left(\alpha,\beta\right)f(z)\right) + \lambda_2z^2\left(I^kL\left(\alpha,\beta\right)f(z)\right)' = g(z) + \lambda_2zg'(z) \prec h(z). \tag{3.2}$$

Hence an application of Lemma 2.1 with  $\mu = \frac{1}{\lambda_2} > 0$  yields that

$$g(z) \prec h(z). \tag{3.3}$$

Noting that  $0 \le \frac{\lambda_1}{\lambda_2} < 1$  and that h(z) is convex univalent in  $\mathbb{U}$ , it follows from (3.1), (3.2) and (3.3) that

$$(1+\lambda_1)z\left(I^kL\left(\alpha,\beta\right)f(z)\right)+\lambda_1z^2\left(I^kL\left(\alpha,\beta\right)f(z)\right)'$$

$$=\frac{\lambda_{1}}{\lambda_{2}}\left[\left(1+\lambda_{2}\right)z\left(I^{k}L\left(\alpha,\beta\right)f(z)\right)+\lambda_{2}z^{2}\left(I^{k}L\left(\alpha,\beta\right)f(z)\right)'\right]+\left(1-\frac{\lambda_{1}}{\lambda_{2}}\right)g(z)\prec h\left(z\right).$$

Thus,  $f(z) \in \Sigma(\alpha, \beta, k, \lambda_1; h)$  and the proof of Theorem 3.1 is completed.

#### Theorem 3.2. Let

$$\Re\left\{z\widetilde{\phi}\left(\alpha_{1},\alpha_{2};z\right)\right\} > \frac{1}{2} \qquad (z \in \mathbb{U}; \ \alpha_{2} \notin \{0,-1,-2,\ldots\}), \tag{3.4}$$

where  $\widetilde{\phi}(\alpha_1, \alpha_2; z)$  is defined as in (1.6). Then,

$$\Sigma(\alpha_2, \beta, k, \lambda; h) \subset \Sigma(\alpha_1, \beta, k, \lambda; h)$$
.

**Proof.** For  $f(z) \in \Sigma$ , it is easy to verify that

$$z\left(I^{k}L\left(\alpha_{1},\beta\right)f(z)\right) = \left(z\widetilde{\phi}\left(\alpha_{1},\alpha_{2};z\right)*\left(zI^{k}L\left(\alpha_{2},\beta\right)f(z)\right)\right) \tag{3.5}$$

and

$$z^{2}\left(I^{k}L\left(\alpha_{1},\beta\right)f(z)\right)' = \left(z\widetilde{\phi}\left(\alpha_{1},\alpha_{2};z\right)*z^{2}\left(I^{k}L\left(\alpha_{2},\beta\right)f(z)\right)'\right). \tag{3.6}$$

Let  $f(z) \in \Sigma(\alpha_2, \beta, k, \lambda; h)$ . Then from (3.5) and (3.6), we deduce that

$$(1+\lambda)z\left(I^{k}L\left(\alpha_{1},\beta\right)f(z)\right)+\lambda z^{2}\left(I^{k}L\left(\alpha_{1},\beta\right)f(z)\right)'=\left(z\widetilde{\phi}\left(\alpha_{1},\alpha_{2};z\right)\right)*\Psi(z) \tag{3.7}$$

and

$$\Psi(z) = (1 + \lambda) z \left( I^k L(\alpha_2, \beta) f(z) \right) + \lambda z^2 \left( I^k L(\alpha_2, \beta) f(z) \right)' \prec h(z)$$
(3.8)

In view of (3.4), the function  $z\widetilde{\phi}$  ( $\alpha_1, \alpha_2; z$ ) has the Herglotz representation

$$z\widetilde{\phi}\left(\alpha_{1}, \alpha_{2}; z\right) = \int_{|x|=1} \frac{d\mu\left(x\right)}{1-xz} \quad (z \in \mathbb{U}),$$
 (3.9)

where  $\mu(x)$  is a probability measure defined on the unit circle |x|=1 and

$$\int_{|x|=1} d\mu (x) = 1.$$

Since h(z) is convex univalent in  $\mathbb{U}$ , it follows from (3.7), (3.8) and (3.9) that:

$$(1+\lambda)z\left(I^{k}L\left(\alpha_{1},\beta\right)f(z)\right)+\lambda z^{2}\left(I^{k}L\left(\alpha_{1},\beta\right)f(z)\right)'=\int_{|x|=1}\Psi\left(xz\right)d\mu\left(x\right)\prec h\left(z\right).$$

This shows that  $f(z) \in \Sigma(\alpha_1, \beta, k, \lambda; h)$  and the theorem is proved.

**Theorem 3.3.** Let  $0 < \alpha_1 < \alpha_2$ . Then  $\Sigma(\alpha_2, \beta, k, \lambda; h) \subset \Sigma(\alpha_1, \beta, k, \lambda; h)$ .

**Proof.** Define

$$g(z) = z + \sum_{n=1}^{\infty} \left| \frac{(\alpha_1)_{n+1}}{(\alpha_2)_{n+1}} \right| z^{n+1} \qquad (z \in \mathbb{U}; \ 0 < \alpha_1 < \alpha_2).$$

Then,

$$z^{2}\widetilde{\phi}(\alpha_{1}, \alpha_{2}; z) = g(z) \in A, \tag{3.10}$$

where  $\widetilde{\phi}(\alpha_1, \alpha_2; z)$  is defined as in (1.6), and

$$\frac{z}{(1-z)^{\alpha_2}} * g(z) = \frac{z}{(1-z)^{\alpha_1}}.$$
(3.11)

By (3.11), we see that

$$\frac{z}{\left(1-z\right)^{\alpha_{2}}} * g\left(z\right) \in S^{*}\left(1-\frac{\alpha_{1}}{2}\right) \subset S^{*}\left(1-\frac{\alpha_{2}}{2}\right)$$

for  $0 < \alpha_1 < \alpha_2$ , which implies that

$$g(z) \in R\left(1 - \frac{\alpha_2}{2}\right) \tag{3.12}$$

Let  $f(z) \in \Sigma(\alpha_2, \beta, k, \lambda; h)$ . Then we deduce from (3.7) and (3.8) (used in the proof of Theorem 3.2 and (3.10) that

$$(1+\lambda)z\left(I^{k}L\left(\alpha_{1},\beta\right)f(z)\right) + \lambda z^{2}\left(I^{k}L\left(\alpha_{1},\beta\right)f(z)\right)'$$

$$= \frac{g(z)}{z} *\Psi(z) = \frac{g(z)*(z\Psi(z))}{g(z)*z},$$
(3.13)

where

$$\Psi(z) = (1+\lambda)z\left(I^{k}L\left(\alpha_{2},\beta\right)f(z)\right) + \lambda z^{2}\left(I^{k}L\left(\alpha_{2},\beta\right)f(z)\right)' \prec h(z). \tag{3.14}$$

Since z belongs to  $S^* \left(1 - \frac{\alpha_2}{2}\right)$  and h(z) is convex univalent in  $\mathbb{U}$ . it follows from (3.12), (3.13), (3.14) and Lemma 2.2 that

$$(1+\lambda)z\left(I^{k}L\left(\alpha_{1},\beta\right)f(z)\right)+\lambda z^{2}\left(I^{k}L\left(\alpha_{1},\beta\right)f(z)\right)' \prec h(z).$$

Thus  $f(z) \in \Sigma(\alpha_1, \beta, k, \lambda; h)$  and the proof is completed.

As a special case of Theorem 3.3, we have:

$$\Sigma(\alpha+1,\beta,k,\lambda;h) \subset \Sigma(\alpha,\beta,k,\lambda;h) \quad (\alpha>0).$$

In Theorem 3.4 below we give a generalization of the above result.

**Theorem 3.4.** Let  $\Re \alpha \ge 0$  and  $\alpha \ne 0$ . Then,

$$\Sigma(\alpha+1,\beta,k,\lambda;h)\subset\Sigma\left(\alpha,\beta,k,\lambda;\widetilde{h}\right),$$

where

$$\widetilde{h}(z) = \alpha z^{-\alpha} \int_0^z t^{\alpha - 1} h(t) dt \prec h(z).$$

**Proof.** Let us define

$$g(z) = (1 + \lambda)z \left( I^{k}L(\alpha, \beta) f(z) \right) + \lambda z^{2} \left( I^{k}L(\alpha, \beta) f(z) \right)'$$
(3.15)

for  $f(z) \in \Sigma$ . Then (1.10) and (3.15) lead to

$$\frac{g(z)}{z} = \alpha \lambda \left( I^{k} L(\alpha + 1, \beta) f(z) \right) + (1 - \alpha \lambda) \left( I^{k} L(\alpha, \beta) f(z) \right)$$
(3.16)

Differentiating both sides of (3.16) and using (1.10), we arrive at

$$g'(z) - \frac{g(z)}{z} = \alpha \lambda z \left( I^{k} L(\alpha + 1, \beta) f(z) \right)'$$
$$+ (1 - \alpha \lambda) \left[ \alpha \left( I^{k} L(\alpha + 1, \beta) f(z) \right) - (1 + \alpha) \left( I^{k} L(\alpha, \beta) f(z) \right) \right]. \tag{3.17}$$

By (3.16) and (3.17), we get

$$g'(z) - \frac{\alpha g(z)}{z} = \alpha \lambda z \left( I^k L(\alpha + 1, \beta) f(z) \right)' + \alpha (1 + \lambda) \left( I^k L(\alpha + 1, \beta) f(z) \right),$$

that is,

$$g(z) + \frac{zg'(z)}{\alpha} = (1+\lambda)z\left(I^kL(\alpha+1,\beta)f(z)\right) + \lambda z^2\left(I^kL(\alpha+1,\beta)f(z)\right)'. \tag{3.18}$$

If  $f \in \Sigma(\alpha + 1, \beta, k, \lambda; h)$ , then it follows from (3.18) that

$$g(z) + \frac{zg'(z)}{\alpha} \prec h(z)$$
  $(\Re \alpha \ge 0, \alpha \ne 0).$ 

Hence an application of Lemma 2.1 yields

$$g(z) \prec \widetilde{h}(z) = \alpha z^{-\alpha} \int_0^z t^{\alpha - 1} h(t) dt \prec h(z),$$

which shows that

$$f(z) \in \Sigma(\alpha, \beta, k, \lambda; \widetilde{h}) \subset \Sigma(\alpha, \beta, k, \lambda; h)$$

**Theorem 3.5.** Let  $\lambda > 0$ ,  $\delta > 0$  and  $f(z) \in \Sigma(\alpha, \beta, k, \lambda; \delta h + 1 - \delta)$ . If  $\delta \leq \delta_0$ , where

$$\delta_0 = \frac{1}{2} \left( 1 - \frac{1}{\lambda} \int_0^1 \frac{u^{\frac{1}{\lambda} - 1}}{1 + u} du \right)^{-1} \tag{3.19}$$

then  $f(z) \in \Sigma(\alpha, \beta, k, \lambda; h)$ . The bound  $\delta_0$  is sharp when  $h(z) = \frac{1}{1-z}$ .

Proof. Let us define

$$g(z) = z \left( I^{k} L(\alpha, \beta) f(z) \right)$$
(3.20)

for  $f(z) \in \Sigma(\alpha, \beta, k, \lambda; \delta h + 1 - \delta)$  with  $\lambda > 0$ , and  $\delta > 0$ . Then we have

$$g(z) + \lambda z g'(z) = (1 + \lambda) z \left( I^k L(\alpha, \beta) f(z) \right) + \lambda z^2 \left( I^k L(\alpha, \beta) f(z) \right)' \prec \delta(h(z) - 1) + 1.$$

Hence an application of Lemma 2.1 yields that

$$g(z) \prec \frac{\delta}{\lambda} z^{-\frac{1}{\lambda}} \int_0^z t^{\frac{1}{\lambda} - 1} h(t) dt + 1 - \delta = (h * \Psi)(z), \qquad (3.21)$$

where

$$\Psi(z) = \frac{\delta}{\lambda} z^{-\frac{1}{\lambda}} \int_0^z \frac{t^{\frac{1}{\lambda} - 1}}{1 - t} dt + 1 - \delta.$$
 (3.22)

If  $0 < \delta \le \delta_0$ , where  $\delta_0 > 1$  is given by (3.19), then it follows from (3.21) that

$$\Re\Psi(z) = \frac{\delta}{\lambda} \int_0^1 u^{\frac{1}{\lambda} - 1} \Re\left(\frac{1}{1 - uz}\right) du + 1 - \delta > \frac{\delta}{\lambda} \int_0^1 \frac{u^{\frac{1}{\lambda} - 1}}{1 + u} du + 1 - \delta \ge \frac{1}{2} \quad (z \in \mathbb{U}).$$

Now, by using the Herglotz representation for  $\Psi(z)$ , from (3.20) and (3.21) we arrive at

$$z\left(I^{k}L\left(\alpha,\beta\right)f(z)\right) \prec \left(h*\Psi\right)(z) \prec h(z)$$

because h(z) is convex univalent in  $\mathbb{U}$ . This shows that  $f(z) \in \Sigma(\alpha, \beta, k, \lambda; h)$ . For  $h(z) = \frac{1}{1-z}$  and  $f(z) \in \Sigma$  defined by

$$z\left(I^{k}L\left(\alpha,\beta\right)f(z)\right) = \frac{\delta}{\lambda}z^{-\frac{1}{\lambda}}\int_{0}^{z}\frac{t^{\frac{1}{\lambda}-1}}{1-t}dt + 1 - \delta,$$

it is easy to verify that

$$(1+\lambda)z\left(I^{k}L\left(\alpha,\beta\right)f(z)\right)+\lambda z^{2}\left(I^{k}L\left(\alpha,\beta\right)f(z)\right)'=\delta h(z)+1-\delta.$$

Thus,  $f(z) \in \Sigma(\alpha, \beta, k, \lambda; \delta h + 1 - \delta)$ . Also, for  $\delta > \delta_0$ , we have

$$\Re z \left( I^k L\left(\alpha, \beta\right) f(z) \right) \to \frac{\delta}{\lambda} \int_0^1 \frac{u^{\frac{1}{\lambda} - 1}}{1 + u} du + 1 - \delta < \frac{1}{2} \qquad (z \to -1),$$

which implies that  $f(z) \notin \Sigma(\alpha, \beta, k, \lambda; h)$ . Hence the bound  $\delta_0$ , cannot be increased when  $h(z) = \frac{1}{1-z}$ .

## 4. Convolution properties

**Theorem 4.1.** *Let*  $f(z) \in \Sigma(\alpha, \beta, k, \lambda; h)$ ,  $g(z) \in \Sigma$  *and* 

$$\Re\left(zg\left(z\right)\right) > \frac{1}{2}$$
  $\left(z \in \mathbb{U}\right)$ .

Then,

$$(f*g)(z) \in \Sigma(\alpha, \beta, k, \lambda; h).$$

**Proof.** For  $f(z) \in \Sigma(\alpha, \beta, k, \lambda; h)$  and  $g \in \Sigma$ , we have

$$(1+\lambda)z\left(I^{k}L(\alpha,\beta)(f*g)(z)\right) + \lambda z^{2}\left(I^{k}L(\alpha,\beta)(f*g)(z)\right)'$$

$$= (1+\lambda)zg(z)*z\left(I^{k}L(\alpha,\beta)f(z)\right) + \lambda zg(z)*z^{2}\left(I^{k}L(\alpha,\beta)f(z)\right)'$$

$$= zg(z)*\Psi(z), \tag{4.1}$$

where

$$\Psi(z) = (1+\lambda)z\left(I^{k}L(\alpha,\beta)f(z)\right) + \lambda z^{2}\left(I^{k}L(\alpha,\beta)f(z)\right)' \prec h(z). \tag{4.2}$$

The remaining part of the proof of Theorem 4.1 is similar to that of Theorem 3.2 and hence we omit it.

**Corollary 4.1.** *Let*  $f(z) \in \Sigma(\alpha, \beta, k, \lambda; h)$  *be given by* (1.1) *and let,* 

$$\omega_m(z) = \frac{1}{z} + \sum_{n=1}^{m-1} a_n z^{n-1} \qquad (m \in N \setminus \{1\}).$$

Then function  $\sigma_m(z) = \int_0^1 t \omega_m(tz) dt$  is also in the class  $\Sigma(\alpha, \beta, k, \lambda; h)$ .

Proof. Note that

$$\sigma_m(z) = \frac{1}{z} + \sum_{n=1}^{m-1} \frac{a_n}{n+1} z^{n-1} = (f * g_m)(z) \qquad (m \in N \setminus \{1\}), \tag{4.3}$$

where

$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^{n-1} \in \Sigma(\alpha, \beta, k, \lambda; h)$$

and

$$g_m(z) = \frac{1}{z} + \sum_{n=1}^{m-1} \frac{z^{n-1}}{n+1} \in \Sigma.$$

Also, for  $m \in \mathbb{N} \setminus \{1\}$ , it is known from [19] that

$$\Re \left\{ z g_m(z) \right\} = \Re \left\{ 1 + \sum_{n=1}^{m-1} \frac{z^n}{n+1} \right\} > \frac{1}{2} \qquad (z \in \mathbb{U}). \tag{4.4}$$

In view of (4.3) and (4.4), an application of Theorem 4.1 leads to  $\sigma_m(z) \in \Sigma(\alpha, \beta, k, \lambda; h)$ .

**Theorem 4.2.** *Let*  $f(z) \in \Sigma(\alpha, \beta, k, \lambda; h)$ ,  $g(z) \in \Sigma$  *and* 

$$z^2g(z) \in R(\mathfrak{a}) \qquad (\mathfrak{a} < 1).$$

Then,

$$(f * g)(z) \in \Sigma(\alpha, \beta, k, \lambda; h).$$

**Proof.** For  $f(z) \in \Sigma(\alpha, \beta, k, \lambda; h)$  and  $g(z) \in \Sigma$ , from (4.1) (used in the proof of Theorem 4.1), we can write:

$$(1+\lambda)z\left(I^{k}L\left(\alpha,\beta\right)\left(f*g\right)(z)\right) + \lambda z^{2}\left(I^{k}L\left(\alpha,\beta\right)\left(f*g\right)(z)\right)'$$

$$= \frac{z^{2}g\left(z\right)*z\Psi(z)}{z^{2}g\left(z\right)*z} \qquad (z \in \mathbb{U}), \tag{4.5}$$

where  $\Psi(z)$  is defined as in (4.2). Since h(z) is convex univalent in  $\mathbb{U}$ ,  $\Psi(z) \prec h(z)$ ,  $z^2g(z) \in R(\mathfrak{a})$  and

$$z \in S^*(\mathfrak{a}) \qquad (\mathfrak{a} < 1),$$

it follows from (4.5) and Lemma 2.2 the desired result.

Taking  $\mathfrak{a} = 0$  and  $\mathfrak{a} = \frac{1}{2}$ , Theorem 4.2 reduces to the following.

**Corollary 4.2.** *Let*  $f(z) \in \Sigma(\alpha, \beta, k, \lambda; h)$  *and let*  $g(z) \in \Sigma$  *satisfy either of the following conditions:* 

(i)  $z^2g(z)$  is convex univalent in  $\mathbb{U}$  or

(ii) 
$$z^2g(z) \in S^*\left(\frac{1}{2}\right)$$
. Then  $(f*g)(z) \in \Sigma(\alpha, \beta, k, \lambda; h)$ 

### Acknowledgements

The authors are grateful to the reviewers for useful suggestions which improve the contents of this paper. The work was supported by the Grant AP-2013-009.

#### REFERENCES

- [1] H. M. Srivastava, S. Gaboury and F. Ghanim, Certain subclasses of meromorphically univalent functions defined by a linear operator associated with the  $\lambda$ -generalized Hurwitz-Lerch zeta function, Integral Transforms Spec. Funct. 26 (2015), 258–272.
- [2] H. M. Srivastava, S. Gaboury and F. Ghanim, Some further properties of a linear operator associated with the  $\lambda$ -generalized Hurwitz-Lerch zeta function related to the class of meromorphically univalent functions, Appl. Math. Comput. 259 (2015), 1019–1029.
- [3] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwoord Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.
- [4] E. D. Rainville, Special Functions, Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.
- [5] J. Dziok and H. M. Srivastava, Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function, Adv. Stud. Contemp. Math. kyungshang, 5 (2002), 115-125.
- [6] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. 14 (2003), 7-18.
- [7] J. L. Liu, A linear operator and its applications on meromorphic *p*-valent functions, Bull. Inst. Math., Acad. Sin. 31 (2003), 23-32.
- [8] J. L. Liu and H. M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl. 259 (2001), 566-581.
- [9] J. L. Liu and H. M. Srivastava, Certain properties of the Dziok-Srivastava operator, Appl. Math. Comput. 159 (2004), 485-493.
- [10] J. L. Liu, H. M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, Math. Comput. Modelling, 39 (2004),21-34.
- [11] N. E. Cho, I. H. Kim, Inclusion properties of certain classes of meromorphic functions associated with the generalized hypergeometric function, Appl. Math. Compu. 187 (2007), 115-121.
- [12] F. Ghanim, M. Darus, Linear Operators Associated with Subclass of Hypergeometric Meromorphic Uniformly Convex Functions, Acta Univ. Apulensis, Math. Inform. 17 (2009), 49-60.
- [13] F. Ghanim and M. Darus, A new class of meromorphically analytic functions with applications to generalized hypergeometric functions, Abst. Appl. Anal. 2011 (2011), 159405.
- [14] F. Ghanim, M. Darus, Some results of p-valent meromorphic functions defined by a linear operator, Far East J. Math. Sci. 44 (2010), 155-165.
- [15] F. Ghanim, M. Darus, Some properties of certain subclass of meromorphically multivalent functions defined by liner operator, J. Math. Stat. 6 (2010), 34-41.

- [16] D. G. Yang, J. L. Liu, Multivalent functions associated with a linear operator, Appl. Math. Comput. 204 (2008), 862-871.
- [17] S. Ruscheweyh, Convolutions in geometric function theory, Les Presses de l'Université de Montrèal, Montrèal, (1982).
- [18] S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171.
- [19] R. Singh, S. Singh, Convolution properties of a class of starlike functions, Proc. Am. Math. Soc. 106 (1989), 145-152.