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Abstract. In this paper, we introduce and investigate various inclusion relationships and convolution properties of
a certain class of meromorphically univalent functions f(z) defined by the linear operator L (¢, ) f (z). The aim

of the present paper is to prove some properties for the class L (a, 8, k, A; h) to satisfy the certain subordination.
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1. Introduction

Let X denote the class of meromorphic functions f(z) normalized by
1 &
f@)==+Y and", (1.1)
S
which are analytic in the punctured unit disk
U*={z:zeC and 0< |7 <1}=TU\{0},

C being (as usual) the set of complex numbers. We denote by £5*() and XK () (B = 0)
the subclasses of X consisting of all meromorphic functions which are, respectively, starlike of
order B and convex of order 8 in U* (see also the recent works [1] and [2]).
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For functions fj(z) (j = 1,2) defined by

1 oo
z):E‘f’Zamﬂ" (j=1,2), (1.2)
n=1

we denote the Hadamard product (or convolution) of fi(z) and f>(z) by

1 o0
1*¥J2)(Z) = —~ ap,1an 23 . .
(Fref)@) =+ : (1.3
n=1
Let us consider the function ¢ (¢, 8;z) defined by
= (o)
b(ofid) =+ ﬁ e (1.4)
n=0 ”‘H

(ﬁE(C\Zg; OCEC),
where
Zaz{O,—l,—Z,---}:Z_U{O}.

Here, and in the remainder of this paper, (1) denotes the general Pochhammer symbol defined,

in terms of the Gamma function, by

FA+x) AR+ QA+n—1) (k=neN;A€C),

F(A+x) _ (1.5)
(1) | (k=0; A € C\ {0}),

(A=

it being understood conventionally that (0)¢ := 1 and assumed facitly that the I'-quotient exists
(see, for details, [3, p. 21 et seq.]), N being the set of positive integers.
It is easy to see that, in the case whena, =1 (k=0,1,2,---), the following relationship holds

true between the function (5 (a,B;z) and the Gaussian hypergeometric function [4]:

$<a7B;Z):%2F1(17a;B;Z)? (16)
where
2F (b, B;z) i <

is the well-known Gaussian hypergeometric function. Corresponding to the function ¢ (a, B;z),

using the Hadamard product for f(z) € X, we define a new linear operator L(o, 3) on X by

(@B () = 80 Bic) o ()= 1+ X [(5722 (1.7

n+1
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The meromorphic functions with the generalized and Gaussian hypergeometric functions were
considered recently by Dziok and Srivastava [5], [6], Liu [7], Liu and Srivastava [8], [9],[10],
Cho and Kim [11] .
For a function f € L(a, B) f (z) we define

I°(L(a,B) f(2)) =L(a.B) f (),

and forn =1,2,3, ...,

ML) f@) =2 (I L@ p) f@) + 2 =14 Yt
n=1

4 <

(Ot)n+1

(B);H»l

We note that I¥ in (1.6) was studied by Ghanim and Darus [12], [13], [14] and [15]. It follows

an?". (1.8)

from (1.7) that

z2(L(e, B)f(2)) = aL(e+1,B)f(z) = (a+1)L(a. B) f(2), (1.9)

which implies that

/
<(FML(@.B)f()) = al'L(a+1,B)f(2) ~ (@+ 1) FL(@B)f().  (110)
Let Q be the class of all analytic, convex and univalent functions %(z) in the open unit disk
satisfying 2(0) = 1 and

R{h(z)} >0, |z] <1 (1.11)

for two functions f,g € Q, we say that f is subordinate to g or g is superordinate to f in
U and write f < g, z € U, if there exist a Schwarz function ®, analytic in U with @(0) =0
and |w(z)| < 1 when z € U such that f(z) = g(@(z)), z € U. Furthermore, if the function g is

univalent in U, then we have following equivalence:
f(2)<g@) e f(0)=¢(0) and fU)CgU), (z€l).

Definition 1.1. A function f € X is said to be in the class X(a, B, k,A; h), if it satisfies the

subordination condition

(1+4)2 (L (@) £)) + A2 (1L (@.B)f(2)) < (2). (1.12)
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where A is a complex number and i(z) € Q. Let A be class of functions of the form
f@)=z+) and', (1.13)
n=2

which are analytic in U. A function A(z) € A is said to be in the class $*(a), if
/

(L0

[

For some a(a < 1). When 0 < a < 1, §*(a) is the class of starlike functions of order a in U. A

}>a (ze D).

function h(z) € A is said to be prestarlike of order a in U, if

W*f(z)éé’*(a) (a<1),

where the symbol x means the familiar Hadamard product (or convolution) of two analytic
functions in U. We denote this class by R(a) (see [16] and [17]). A function f(z) € A is in the
class R(0), if and only if f(z) is convex univalentin U and R (%) = S* (%)

In this paper, we introduce and investigate various inclusion relationships and convolution
properties of a certain class of meromorphically univalent functions, which are defined in this

paper by means of a linear operator.
2. Preliminaries

In order to prove our main results, we need the following lemmas.

Lemma 2.1. [18] Let g(z) be analytic in U, and h(z) be analytic and convex univalent in U with
h(0) = £(0). If
g(z)+ ﬁzg' (z) < h(z), (2.1)
where R > 0 and 1 # 0, then
g(2) < h(z) = uz " /Ozt“_lh(t)dt < h(z)
and Z(z) is the best dominant of (2.1).

Lemma 2.2. [17] Let a < 1, f (z) € S*(a) and g(z) € R(a). For any analytic function F(z) in
U, then
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where ¢o (F (U)) denotes the convex hull of F(U).
3. Main results

Theorem 3.1. Let 0 < A < Ay. Then X(a, B, k, A5 h) C X (e, B, k,A1; h)
Proof. Let 0 < A; < A, and suppose that
§(2) =2 (I"L(a.) £(2) (3.1)

for f(z) € £(a, B, k,A2; h). Then the function g(z) is analytic in U with g(0) = 1. Differenti-

ating both sides of (3.1) with respect to z and using (1.10), we have
(14+22)2 ('L (@,B) £(2)) + 72 (1L (0,B) £(2) ) =8(2) + Aoz (D) <h(z).  (32)
Hence an application of Lemma 2.1 with u = %2 > 0 yields that
g(z) < h(z). (3.3)

Noting that 0 < % < 1 and that h(z) is convex univalent in U, it follows from (3.1), (3.2) and

(3.3) that
(14+2)2 (1L (0,B) £(2)) + 2 ('L (. B) £(2))

- % {“ +20)2(I'L (0. B) f()) +207 (1L <a,ﬁ)f(z))'] + (1 - %) 2(2) < h(2).

Thus, f(z) € X(a, B, k,A1; h) and the proof of Theorem 3.1 is completed.

Theorem 3.2. Let

%{Z(ZN)(OQ,OQ;Z)} >% (zeU; ap ¢ {0,—1,-2,...}), (3.4)

where 5(0&1, 0 ;2) is defined as in (1.6). Then,

Z(Ot%ﬁ,k,l;h) CZ(OCl,ﬁ,k,l;h).
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Proof. For f(z) € X, it is easy to verify that

(1L (0. p)f()) = (26 (o, 2:2) ('L (02 ) 1 (2)))
and
2 (PL(@p)0)) = (2B (o, 0052 (FL(@2$)1(2)) ).
Let f (z) € £(a, B, k, A; h). Then from (3.5) and (3.6), we deduce that
(142)z (L (@1,B)£) +22 (L (1. B)£2)) = (26 (en, 02:2)) w2
and
¥ (0) = (1+4)2 (L (02, B) £(0)) + A2 ('L (0, 8) f(2)) < h(2)

In view of (3.4), the function za (a1, ap;z) has the Herglotz representation

20 (a1, 037 =/ dp (%)

lx|=1 1 —xz

(zel),

where (L (x) is a probability measure defined on the unit circle |x| = 1 and

/|x|—1 du (x) = 1.

Since A(z) is convex univalent in U, it follows from (3.7), (3.8) and (3.9) that:

(14+2)2 (1L (01,B) £(2)) + 42 ('L (01, B) (2)) = [ W (x2)dp(x) <h(x).

lx[=1

This shows that f(z) € X (o, B, k,A; h) and the theorem is proved.
Theorem 3.3. Let 0 < ay < . Then X (o, B, k,A;h) CX(ay, B, k,A;h).

Proof. Define

Zn_H (ZGU;O<061<OC2).

(al)n—H
(az)n—H

g(z)=z+ i
n=1

Then,
20 (ar, 0032) = g(2) €A,

where (5(061, 0 ;7) is defined as in (1.6), and

(3.9)

(3.10)

(3.11)
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By (3.11), we see that

g re@es (1-3)es (1-3)

for 0 < oy < o, which implies that

8(z) GR(I—%) (3.12)

Let f(z) € £(0, B, k,A; h). Then we deduce from (3.7) and (3.8) (used in the proof of Theo-
rem 3.2 and (3.10) that

(14+2)2 ('L (00, 8)£(2) ) + 22 (1L (@1, B) £(2))

_ 8(2) _ 8(2)*(2¥(2))
_T*T@_gz—)*z (3.13)
where
¥(0) = (14 )2 (1L (0, B) f2) ) + A2 (1L (@0, 8) £(2) ) <) (3.14)

Since z belongs to S* (1 — %) and h(z) is convex univalent in U. it follows from (3.12), (3.13),

(3.14) and Lemma 2.2 that

(14+2)2 (1L (01,B) £(2)) + A2 (1L (01, B) £(2)) < h(2).
Thus f(z) € X(a, B, k,A; h) and the proof is completed.

As a special case of Theorem 3.3, we have:
Y(a+1,B,kA;h) CX(e, B,k,A;h) (o0>0).
In Theorem 3.4 below we give a generalization of the above result.
Theorem 3.4. Let R > 0 and a # 0. Then,
S(a+1,B, kA h) C z(a, B, k,z;ﬁ) ,

where

h(z) = oz~ % [$1% i (e)dt < h(z).
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Proof. Let us define

§(@) = (14+2)2 ('L (@.B) £(2)) + 22 (L (0.B) £(2)) (3.15)

for f(z) € L. Then (1.10) and (3.15) lead to

88 _ o (L (a+1.8) £2)) + (1 - ) (L (0. B) £ () (3.16)

<

Differentiating both sides of (3.16) and using (1.10), we arrive at

g (z)— @ = olz (IkL (a+ 1,[3)f(z)>/

+(1—ah) o (FL(@+1,8)f() = (1+@) (FL(@.B) f())| . (3.17)
By (3.16) and (3.17), we get

¢ @~ 29 0z (FL(a+1.8)0) +a(44) (FLia+1.) £2).

<

that is,

g(z)ﬁg% = (1442 (PL(a+ 1) ) +22 (FL(@+ 1B @) . (3.18)

If feX(a+1, B,k A;h), then it follows from (3.18) that

< h(z) (Rae >0, a#0).
Hence an application of Lemma 2.1 yields
~ Z
g(z) <h(z) = ocz‘“/ 1 h(t)dt < h(z),
0

which shows that

£() ez(a,ﬁ,k,x;ﬁ) cx(a, B, k,A;h)
Theorem 3.5. Ler A > 0,6 >0and f(z) € X(a, B, k,A; 0h+1—0). If 6 < &, where

“1
1 1 lyi!
——(1-= 1
% 2< A Jo 1+udu) (3.19)

then f(z) € X(at, B, k,A; h). The bound & is sharp when h(z) = .

1—z

Proof. Let us define

g(2) =2 (1L (a.B) f(2)) (3.20)
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for f(z) e Z(a, B, k,A; 6h+1—38) with A > 0, and 6 > 0. Then we have

§(@)+22¢ ()= (14 A)2 (L (€. B) £(2)) + A2 (L (@, B) £(2) ) < 8 (h(e)—1)+1.

Hence an application of Lemma 2.1 yields that

¢(2) <%—i/zti—lh(z)mﬂ—a:(h*\P) (2), (3.21)
0
where
W)= O+ Z’%_ld 1—& 3.22
= — A _
() - /ol—t r+ . (3.22)

If 0 < & < &y, where &y > 1 is given by (3.19), then it follows from (3.21) that

(ze ).

| =

6 o1 1 1 o 1u%_1
1_ >
S{T(Z):_ﬂ,/o ur 93(1 uz)du+1_5>_7t o 1 udu+1—5

Now, by using the Herglotz representation for ¥ (z), from (3.20) and (3.21) we arrive at

2 (I"L (0. B) (2)) < (h+¥) (2) < h(2)
because h(z) is convex univalent in U. This shows that f(z) € X («, B, k,A; h). For h(z) = %_Z
and f(z) € X defined by

271
Z(IkL(OC,ﬁ)f(Z)> Zgz_i/o %dt—i—l—&

it is easy to verify that
(14+21)z (IkL (a,B)f(z)) + A7 (IkL (a,ﬁ)f(z))l =06h(z)+1-0.

Thus, f(z) € X(c, B, k,A; 8h+1—0). Also, for 6 > &, we have

we (ML @B 7)) - 2 [

1
du+1-0< = -1

which implies that f(z) ¢ (o, B, k,A; h). Hence the bound &, cannot be increased when

4. Convolution properties

Theorem 4.1. Let f (z) € X(a, B, k,A; h), g(z) € X and

%(zg(z))>% (1€ ).
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Then,

(f+g)(z) €X(a, B, kA h).

Proof. For f (z) € X (e, B, k,A; h) and g € £, we have

(14 4)2 (L (0,B) (F+8) () + A2 ("L (€. B) (f+2) () )

= (14+2) 28 (2)#2 (ML (@, B) £(2)) + Acg (0)+ & (L (@, B) f(2))

=27g(2)x¥(z), (4.1)

where
¥(0) = (14 A)2 (L (0. B) £(2)) + A2 (L (@, B) f(2) ) <h(2). (4.2)
The remaining part of the proof of Theorem 4.1 is similar to that of Theorem 3.2 and hence we

omit it.
Corollary 4.1. Let f(z) € Z(o, B, k,A; h) be given by (1.1) and let,
1 m—1
9=+ Y at (meN\{1}).
n=1

Then function Gy, (z) = [y t@y, (tz)dt is also in the class £ (a, B, k,A; h).

Proof. Note that

-+ Z —(Fren) @) (meN\{1}), (43)
where
flz)= %—l— ianznfl eX(a, B,k,A;h)
n=1
and
1 m—1 Zn_l
gm(Z) - E"’n:l n+1 eX.

Also, for m € N\ {1}, it is known from [19] that

,IZ y
- 1

%{zgm@}:%{u"i =
n=1

(zeU). (4.4)

| =
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In view of (4.3) and (4.4), an application of Theorem 4.1 leads to 6,,(z) € (o, B, k,A; h).

Theorem 4.2. Let f (z) € X(a, B, k,A; h), g(z) € £ and
2g(z) €R(a) (a<).
Then,

(f+g)(z) €Z(a, B, k,Ash).

Proof. For f(z) € X(a, B, k,A; h) andg (z) € £, from (4.1) (used in the proof of Theorem 4.1),

we can write:

(14 4)2 ("L (@.B) (f+8) (2)) + 22 (L (0. B) (+2) (2))

_ () *2¥(2)

el), 4.5
ol eev (3)
where W (z) is defined as in (4.2). Since h(z) is convex univalent in U, ¥ (z) < h(z), z°g(z) €

R(a) and
z€ 8 (a) (a<1),

it follows from (4.5) and Lemma 2.2 the desired result.

Taking a =0and a = % , Theorem 4.2 reduces to the following.

Corollary 4.2. Let f(z) € Z(a, B, k,A; h) and let g (z) € X satisfy either of the following con-
ditions:
(i) z°g (z) is convex univalent in U or

(i) 228 (2) € S* (%). Then (f+g) (z) € X(at, B, k, A h)
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