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Abstract. A new semi-local convergence analysis of the Gauss-Newton method for solving convex composite

optimization problems is presented using restricted convergence domains. The results extend the applicability of

the Gauss-Newton method under the same computational cost as in earlier studies. In particular, the advantages

are: the error estimates on the distances involved are tighter and the convergence ball is at least as large. Numerical

examples are also provided in this study.
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1. Introduction

In this study, we are concerned with the problem of approximating a solution of the equation

F(x) = 0, (1.1)

where D is open and convex and F : D ⊂ R j → Rm is a nonlinear operator with its Fréchet

derivative denoted by F ′. In the case m = j, the inexact Newton method was defined in [7] by:

xn+1 = xn + sn, F ′(xn)sn =−F(xn)+ rn for each n = 0,1,2, . . . , (1.2)
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where x0 is an initial point, the residual control rn satisfy

‖rn‖ ≤ λn‖F(xn)‖ for each n = 0,1,2, . . . , (1.3)

and {λn} is a sequence of forcing terms such that 0≤ λn < 1. Let x∗ be a solution of (1.1) such

that F ′(x∗) is invertible. As shown in [7], if λn ≤ λ < 1, then, there exists r > 0 such that for

any initial guess x0 ∈ U(x∗,r) := {x ∈ R j : ‖x− x∗‖ < r}, the sequence {xn} is well defined

and converges to a solution x∗ in the norm ‖y‖∗ := ‖F ′(x∗)y‖, where ‖ · ‖ is any norm in R j.

Moreover, the rate of convergence of {xn} to x∗ is characterized by the rate of convergence of

{λn} to 0. It is worth noting that, in [7], no Lipschitz condition is assumed on the derivative

F ′ to prove that {xn} is well defined and linearly converging. However, no estimate of the

convergence radius r is provided. As pointed out by [16] the result of [7] is difficult to apply

due to dependence of the norm ‖ · ‖∗, which is not computable.

In [41], Ypma used the affine invariant condition of residual control in the form:

‖F ′(xn)
−1rn‖ ≤ λn‖F ′(xn)

−1F(xn)‖ for each n = 0,1,2, . . . , (1.4)

instead of (1.3) to study the local convergence of inexact Newton method (1.2). And the radius

of convergent result are also obtained. Morini in [32] presented the following variation for the

residual controls:

‖Pnrn‖ ≤ λn‖PnF(xn)‖ for each n = 0,1,2, . . . , (1.5)

where {Pn} is a sequence of invertible operator from R j to R j and {λn} is the forcing term. If

Pn = I and Pn = F ′(xn) for each n, (1.5) reduces to (1.3) and (1.4), respectively.

Recently, several authors have studied the convergence behaviou of singular nonlinear sys-

tems by Gauss-Newton’s method, which is defined by

xn+1 = xn−F ′(xn)
†F(xn) for each n = 0,1,2, . . . , (1.6)

where x0 ∈ D is an initial point and F ′(xn)
† denotes the Moore-Penrose inverse of the linear

operator (of matrix) F ′(xn) [1, 12, 14, 15, 17, 18, 20, 21, 36].

In the present study, using the idea of restricted convergence doamins, we provide a new

local convergence analysis for Gauss-Newton method under the same computational cost and
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the following advantages: larger radius of convergence; tighter error estimates on the distances

‖xn−x∗‖ for each n= 0,1, . . . and a clearer relationship between the majorant function (see (2.7)

and the associated least squares problems (1.1). These advantages are obtained because we use

a center-type majorant condition (see (2.8)) for the computation of inverses involved which

is more precise that the majorant condition used in [21–26, 30, 31, 39–43]. Moreover, these

advantages are obtained under the same computational cost, since as we will see in Section

3 and Section 4, the computation of the majorant function requires the computation of the

center-majorant function. Furthermore, these advantages are very important in computational

mathematics, since we have a wider choice of initial guesses x0 and fewer computations to

obtain a desired error tolerance on the distances ‖xn− x∗‖ for each n = 0,1,2, . . ..

The rest of this study is organized as follows. In Section 2, we introduce some preliminary

notions and properties of the majorizing function. The main result about the local convergence

are stated in Section 3. In Section 4, we prove the local convergence results given in Section 3.

Section 5 contains the numerical examples and Section 6 the conclusion of this study.

2. Preliminaries

We present some standard results to make the study as selfcontained as possible. More results

can be found in [13, 28, 35].

Let A : R j → Rm be a linear operator (or an m× j matrix). Recall that an operator (or

j×m matrix) A† : Rm→ R j is the Moore-Penrose inverse of A if it satisfies the following four

equations:

A†AA† = A†; AA†A = A; (AA†)∗ = AA†; (A†A)∗ = A†A,

where A∗ denotes the adjoint of A. Let kerA and imA denote the kernel and image of A, respec-

tively. For a subspace E of R j, we use ΠE to denote the projection onto E. Clearly, we have

that

A†A = ΠkerA⊥ and AA† = ΠimA.

In particular, in the case when A is full row rank (or equivalently, when A is surjective),

AA† = IRm; when A is full column rank (or equivalently, when A is injective), A†A = IR j .
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The following lemma gives a Banach-type perturbation bound for Moore-Penrose inverse,

which is stated in [25].

Lemma 2.1. ( [25, Corollary 7. 1. 1 & Corollary 7. 1. 2]). Let A and B be m× j matrices

and let r ≤ min{m, j}. Suppose that rankA = r, 1 ≤ rankB ≤ A and ‖A†‖‖B−A‖ < 1. Then,

rankB = r and

‖B†‖ ≤ ‖A†‖
1−‖A†‖‖B−A‖

·

Also, we need the following useful lemma about elementary convex analysis.

Lemma 2.2. ( [25, Proposition 1.3]). Let R > 0. If ϕ : [0,R]→ R is continuously differentiable

and convex, then, the following assertions hold:

(a)
ϕ(t)−ϕ(τt)

t
≤ (1− τ)ϕ ′(t) for each t ∈ (0,R) and τ ∈ [0,1].

(b)
ϕ(u)−ϕ(τu)

u
≤ ϕ(v)−ϕ(τv)

v
for each u,v ∈ [0,R), u < v and 0≤ τ ≤ 1.

From now on we suppose that the (I) conditions listed below hold.

For a positive real R ∈ R+, let

ψ : [0,R]× [0,1)× [0,1)→ R

be a continuous differentiable function of three of its arguments and satisfy the following prop-

erties:

(i) ψ(0,λ ,θ) = 0 and
∂

∂ t
ψ(t,λ ,θ)

∣∣∣∣
t=0

=−(1+λ +θ).

(ii)
∂

∂ t
ψ(t,λ ,θ) is convex and strictly increasing with respect to the argument t.

For fixed λ ,θ ∈ [0,1), we write hλ ,θ (t), ψ(t,λ ,θ) for short below. Then the above two prop-

erties can be restated as follows.

(iii) hλ ,θ (0) = 0 and h′
λ ,θ (0) =−(1+λ +θ).

(iv) h′
λ ,θ (t) is convex and strictly increasing.

(v) g : [0,R]→ R is strictly increasing with g(0) = 0.

(vi) g′ is convex and strictly increasing with g′(0) =−1.

(vii) g(t)≤ hλ ,θ (t), g′(t)≤ h′
λ ,θ (t) for each t ∈ [0,R), λ , θ ∈ [0,1].
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Define

ζ0 := sup{t ∈ [0,R) : h′0,0(t)< 0}, ζ := sup{t ∈ [0,R) : g′(t)< 0}, (2.1)

ρ0 := sup

{
t ∈ [0,ζ0) :

∣∣∣∣∣hλ ,θ (t)
h′0,0(t)

− t

∣∣∣∣∣< t

}
, ρ = sup

{
t ∈ [0,ζ ) :

∣∣∣∣∣hλ ,θ (t)− th′0,0(t)

g′(t)

∣∣∣∣∣< t

}
(2.2)

σ := sup{t ∈ [0,R) : U(x∗, t)⊂ D}. (2.3)

The next two lemmas show that the constants ζ and ρ defined in (2.1) and (2.2), respectively,

are positive.

Lemma 2.3. The constant ζ defined in (2.1) is positive and
th′0,0(t)−hλ ,θ (t)

g′(t)
< 0 for each

t ∈ (0,ζ ).

Proof. Since g′(0) = −1, there exists δ > 0 such that g′(t) < 0 for each t ∈ (0,δ ). Then, we

get ζ ≥ δ (> 0). We must show that
th′0,0(t)−hλ ,θ (t)

g′(t)
< 0 for each t ∈ (0,ζ ). By hypothesis,

functions h′
λ ,θ , g′(t) are strictly increasing, then functions hλ ,θ , g′(t) are strictly convex. It

follows from Lemma 2.2 (i) and hypothesis (vii) that

hλ ,θ (t)−hλ ,θ (0)
t

< h′
λ ,θ (t), t ∈ (0,R).

In view of hλ ,θ (0) = 0 and g′(t) < 0 for all t ∈ (0,ζ ). This together with the last inequality

yields the desired inequality.

Lemma 2.4. The constant ρ defined in (2.2) is positive. Consequently,∣∣∣∣∣th′0,0(t)−hλ ,θ (t)

g′(t)

∣∣∣∣∣< t,∀t ∈ (0,ρ).

Proof. Firstly, by Lemma 2.3, it is clear that

(
hλ ,θ (t)
th′0,0(t)

−1

)
h′0,0(t)

g′(t)
> 0 for t ∈ (0,ζ ). Secondly,

we get from Lemma 2.3 that

lim
t→0

(
hλ ,θ (t)
th′0,0(t)

−1

)
h′0,0(t)

g′(t)
= 0.

Hence, there exists a δ > 0 such that

0 <

(
hλ ,θ (t)
th′0,0(t)

−1

)
h′0,0(t)

g′(t)
< 1, t ∈ (0,ζ ).
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That is ρ is positive.

Define

r := min{ρ,δ}, (2.4)

where ρ and δ are given in (2.2) and (2.3), respectively. For any starting point x0 ∈U(x∗,r)\{x∗},

let {tn} be a sequence defined by:

t0 = ‖x0− x∗‖, tn+1 =

∣∣∣∣∣
(

tn−
hλ ,θ (tn)
h′0,0(tn)

)
h′0,0(tn)

g′(tn)

∣∣∣∣∣ for each n = 0,1,2, . . . (2.5)

Lemma 2.5. The sequence {tn} given by (2.5) is well defined, strictly decreasing, remains in

(0,ρ) for each n = 0,1,2, . . . and converges to 0.

Proof. Since 0 < t0 = ‖x0− x∗‖ < r ≤ ρ , using Lemma 2.4, we have that {tn} is well defined,

strictly decreasing and remains in [0,ρ) for each n = 0,1,2, . . . Hence, there exists t∗ ∈ [0,ρ)

such that lim
n→+∞

tn = t∗. That is, we have

0≤ t∗ =

(
hλ ,θ (t∗)
h′0,0(t

∗)
− t∗

)
h′0,0(t

∗)

g′(t∗)
< ρ.

If t∗ 6= 0, it follows from Lemma 2.4 that(
hλ ,θ (t∗)
h′0,0(t

∗)
− t∗

)
h′0,0(t

∗)

g′(t∗)
< t∗,

which is a contradiction. Hence, we conclude that tn→ 0 as n→+∞.

If g(t) = hλ ,θ (t), then Lemmas 2.3, 2.4 and 2.5 reduce to the corresponding ones in [42, 43].

Otherwise, i. e., if g(t)< hλ ,θ (t), then our results are better, since

ζ0 < ζ and ρ0 < ρ.

Moreover, the scalar sequence used in [42, 43] is defined by

u0 = ‖x0− x∗‖, un+1 =

∣∣∣∣∣un−
hλ ,θ (un)

h′0,0(un)

∣∣∣∣∣ for each n = 0,1,2, . . . . (2.6)

Using the properties of the functions hλ ,θ , g, (2.5), (2.6) and a simple inductive argument we

get that

t0 = u0, t1 = u1, tn < un, tn+1− tn < un+1−un for each n = 1,2, . . .
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and

t∗ ≤ u∗ = lim
n→+∞

un,

which justify the advantages of our approach as claimed in the introduction of this study.

In Section 3, we shall show that {tn} is a majorizing sequence for {xn}.

We state the following modified majorant condition for the convergence of various Newton-

type methods in [10–13].

Definition 2.6. Let r > 0 be such that U(x∗,r) ⊂ D. Then, F ′ is said to satisfy the majorant

condition on U(x∗,r) if

‖F ′(x∗)†[F ′(x)−F ′(x∗+ τ(x− x∗))]‖ ≤ h′
λ ,θ (‖x− x∗‖)−h′

λ ,θ (τ‖x− x∗‖) (2.7)

for any x ∈U(x∗,r) and τ ∈ [0,1].

In the case when F ′(x∗) is not surjective, the information on imF ′(x∗)⊥ may be lost. This is

why the above notion was modified in [42, 43] to suit the case when F ′(x∗) is not surjective as

follows.

Definition 2.7. Let r > 0 be such that U(x∗,r) ⊂ D. Then, F ′ is said to satisfy the modified

majorant condition on U(x∗,r), if

‖F ′(x∗)†‖‖F ′(x)−F ′(x∗+ τ(x− x∗))‖ ≤ h′
λ ,θ (‖x− x∗‖)−h′

λ ,θ (τ‖x− x∗‖) (2.8)

for any x ∈U(x∗,r) and τ ∈ [0,1].

If τ = 0, condition (2.8) reduces to

‖F ′(x∗)†‖‖F ′(x)−F ′(x∗)‖ ≤ h′
λ ,θ (‖x− x∗‖)−h′

λ ,θ (0). (2.9)

In particular, for λ = θ = 0, condition (2.9) reduces to

‖F ′(x∗)†‖‖F ′(x)−F ′(x∗)‖ ≤ h′0,0(‖x− x∗‖)−h′0,0(0). (2.10)

Condition (2.10) is used to produce the Banach-type perturbation Lemmas in [42, 43] for the

computation of the upper bounds on the norms ‖F ′(x)†‖. In this study we use a more flexible

function g than hλ ,θ function for the same purpose. This way the advantages as stated in the

Introduction of this study can be obtained.

In order to achieve these advantages we introduce the following notion [2, 3, 5–12].
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Definition 2.8. Let r > 0 be such that U(x∗,r)⊂D. Then g′ is said to satisfy the center-majorant

condition on U(x∗,r), if

‖F ′(x∗)†‖‖F ′(x)−F ′(x∗)‖ ≤ g′(‖x− x∗‖)−g′(0). (2.11)

Clearly,

g′(t)≤ h′
λ ,θ (t) for each t ∈ [0,R], λ ,θ ∈ [0,1] (2.12)

holds in general and
h′

λ ,θ (t)

g′(t)
can be arbitrarily large [2, 3, 5–12].

It is worth noticing that (2.11) is not an additional condition to (2.8) since in practice the com-

putation of function hλ ,θ requires the computation of g as a special case (see also the numerical

examples).

3. Local convergence

In this section, we present local convergence for inexact Newton method (1.2). Equation

(1.1) is a surjective-undetermined (resp. injective-overdetermined) system if the number of

equations is less (resp. greater) than the number of knowns and F ′(x) is of full rank for each

x ∈ D. It is well known that, for surjective-underdetermined systems, the fixed points of the

Newton operator NF(x) := x−F ′(x)†F(x) are the zeros of F , while for injective-overdetermined

systems, the fixed points of NF are the least square solutions of (1.1), which, in general, are not

necessarily the zeros of F .

We shall use the notation D0 =U(x∗,ξ ) and D =U(x∗,R) and set D1 = D0∩U(x∗,r).

Next, we present the local convergence properties of inexact Newton method for general

singular systems with constant rank derivatives.

Theorem 3.1. Let F : D⊂R j→Rm be continuously Fréchet differentiable nonlinear operator,

D is open and convex. Suppose that F(x∗) = 0, F ′(x∗) 6= 0 and that F ′ satisfies the modified

majorant condition (2.7) on D1 and the center-majorant condition (2.8) on D, where r is given

in (2.4). In addition, we assume that rankF ′(x)≤ rankF ′(x∗) for any x ∈U(x∗,r) and that

‖[IR j −F ′(x)†F ′(x)](x− x∗)‖ ≤ θ‖x− x∗‖, x ∈U(x∗,r), (3.1)
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where the constant θ satisfies 0 ≤ θ < 1. Let sequence {xn} be generated by inexact Gauss-

Newton method with any initial point x0 ∈U(x∗,r)\{x∗} and the conditions for the residual rn

and the forcing term λn:

‖rn‖ ≤ λn‖F(xn)‖, 0≤ λnF ′(xk)≤ λ for each n = 0,1,2, . . . . (3.2)

Then, {xn} converges to a zero x∗ of F ′(·)†F(·) in U(x∗,r). Moreover, we have the following

estimate:

‖xn+1− x∗‖ ≤ tn+1

tn
‖xn− x∗‖ for each n = 0,1,2, . . . , (3.3)

where the sequence {tn} is defined by (2.5).

Remark 3.2.

(a) If g(t) = hλ ,θ (t), then the results obtained in Theorem 3.1 reduce to the ones given

in [42, 43].

(b) If g(t) and hλ ,θ (t) are

(0.1) g(t) = hλ ,θ (t) =−(1+λ +θ)t +
∫ t

0
L(u)(t−u)du, t ∈ [0,R],

then the results obtained in Theorem 3.1 reduce to the one given in [25]. Moreover, if

taking λ = 0 (in this case λn = 0 and rn = 0) in Theorem 3.1, we obtain the local con-

vergence of Newton’s method for solving the singular systems, which has been studied

by Dedieu and Kim in [17] for analytic singular systems with constant rank derivatives

and Li, Xu in [39] and Wang in [38] for some special singular systems with constant

rank derivatives.

(c) If g(t) < hλ ,θ (t) then the improvements as mentioned in the Introduction of this study

we obtained (see also the discussion above and below Definition 2.6).

If F ′(x) is full column rank for every x ∈U(x∗,r), then we have F ′(x)†F ′(x) = IR j . Thus,

‖[IRm−F ′(x)†F ′(x)](x− x∗)‖= 0,

i. e., θ = 0. We immediately have the following corollary.

Corollary 3.3. Suppose that rankF ′(x)≤ rankF ′(x∗) and that

‖[IRm−F ′†(x)F ′(x)](x− x∗)‖= 0,
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for any x ∈ U(x∗,r). Suppose that F(x∗) = 0, F ′(x∗) 6= 0 and that F ′ satisfies the modifed

majorant condition (2.7) on D1 and the center-majorant condition (2.8) on D. Let sequence

{xn} be generated by inexact Gauss-Newton method with any initial point x0 ∈U(x∗,r)\{x∗}

and the condition (3.2) for the residual rn and the forcing term λn. Then, {xn} converges to a

zero x∗ of F ′(·)†F(·) in U(x∗,r). Moreover, we have the following estimate:

‖xn+1− x∗‖ ≤ tn+1

tn
‖xn− x∗‖ for each n = 0,1,2, . . . , (3.5)

where the sequence {tn} is defined by (2.5) for θ = 0.

In the case when F ′(x∗) is full row rank, the modified majorant condition (2.7) can be replaced

by the majorant condition (2.6).

Theorem 3.4. Suppose that F(x∗) = 0, F ′(x∗) is full row rank, and that F ′ satisfies the majorant

condition (2.6) on D1 and the center-majorant condition (2.8) on D, where r is given in (2.4). In

addition, we assume that rankF ′(x)≤ rankF ′(x∗) for any x ∈U(x∗,r) and that condition (3.1)

holds. Let sequence {xn} be generated by inexact Gauss-Newton method with any initial point

x0 ∈U(x∗,r)\{x∗} and the conditions for the residual rn and the forcing term λn:

‖F ′(x∗)†rn‖ ≤ λn‖F ′(x∗)†F(xn)‖,0≤ λnF ′(x∗)†F ′(xn)≤ λ for each n = 0,1,2, . . . . (3.6)

Then, {xn} converges to a zero x∗ of F ′(·)†F(·) in U(x∗,r). Moreover, we have the following

estimate:

‖xn+1− x∗‖ ≤ tn+1

tn
‖xn− x∗‖ for each n = 0,1,2, . . . ,

where the sentence {tn} is defined by (2.5).

Remark 3.5. Comments as in Remark 3.2 can follow for this case.

Theorem 3.6. Suppose that F(x∗) = 0, F ′(x∗) is full row rank, and that F ′ satisfies the majorant

condition (2.6) on D1 and the center-majorant condition on D, where r is given in (2.4). In

addition, we assume that rankF ′(x)≤ rankF ′(x∗) for any x ∈U(x∗,r) and that condition (3.1)

holds. Let sequence {xn} be generated by inexact Gauss-Newton method with any initial point

x0 ∈U(x∗,r)\{x∗} and the conditions for the control residual rn and the forcing term λn:

‖F ′(xn)
†rn‖ ≤ λn‖F ′(xn)

†F(xn)‖, 0≤ λnF ′(xn)≤ λ for each n = 0,1,2, . . . . (3.7)
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Then, {xn} converges to a zero x∗ of F ′(·)†F(·) in U(x∗,r). Moreover, we have the following

estimate:

‖xn+1− x∗‖ ≤ tn+1

tn
‖xk− x∗‖ for each n = 0,1,2, . . . ,

where sequence {tn} is defined by (2.5).

Remark 3.7. In the case when F ′(x∗) is invertible in Theorem 3.6, hλ ,θ is given by 3.4 and

g(t) =−1+
∫ t

0
L0(t)(t−u)du for each t ∈ [0,R], we obtain the local convergence results of

inexact Gauss-Newton method for nonsingular systems, and the convergence ball r is this case

satisfies ∫ r
0 L(u)udu

r ((1−λ )−
∫ r

0 L0(u)du)
≤ 1, λ ∈ [0,1). (3.8)

In particular, if taking λ = 0, the convergence ball r determined in (3.8) reduces to the one

given in [38] by Wang and the value r is the optimal radius of the convergence ball when the

equality holds. That is our radius r is larger than the one obtained in [38], if L0 < L (see also

the numerical examples). Notice that L is used in [38] for the estimate (3.8). Then, we can

conclude that vanishing residuals, Theorem 3.6 merges into the theory of Newton’s method.

4. Proofs

In this section, we prove our main results of local convergence for inexact Gauss-Newton

method (1.2) given in Section 3.

4.1. Proof of Theorem 3.1.

Lemma 4.1. Suppose that F ′ satisfies the modified majorant condition on U(x∗,r) and that

‖x∗− x‖ < min{ρ,x∗}, where r, ρ and x∗ are defined in (2.4), (2.2) and (2.1), respectively.

Then, rankF ′(x) = rankF ′(x∗) and

‖F ′(x)†‖ ≤ − ‖F
′(x∗)†‖

g′(‖x− x∗‖)
·

Proof. Since g′(0) =−1, we have

‖F ′(x∗)†‖‖F ′(x)−F ′(x∗)‖ ≤ g′(‖x− x∗‖)−g′(0)<−g′(0) = 1.
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It follows from Lemma 2.1 that rankF ′(x) = rankF ′(x∗) and

‖F ′(x)†‖ ≤ ‖F ′(x∗)†‖
1− (g′(‖x− x∗‖)−g′(0))

=− ‖F
′(x∗)†‖

g′(‖x− x∗‖)
.

Proof of Theorem 3.1. We shall prove by mathematical induction on n that {tn} is the majoriz-

ing sequence for {xn}, i. e.,

‖x∗− x j‖ ≤ t j for each j = 0,1,2, . . . . (4.1)

Because t0 = ‖x0− x∗‖, thus (4.1) holds for j = 0. Suppose that ‖x∗− x j‖ ≤ t j for some j =

n ∈ N. For the case j = n+1, we first have that

xn+1− x∗ = xn− x∗−F ′(xn)
†[F(xn)−F(x∗)]+F ′(xn)

†rn

= F ′(xn)
†[F(x∗)−F(xn)−F ′(xn)(x∗− xn)]+F ′(xn)

†rn

+[IR j −F ′(xn)
†F ′(xn)](xn− x∗)

= F ′(xn)
†
∫ 1

0
[F ′(xn)−F ′(x∗+ τ(xn− x∗))](xn− x∗)dτ

+F ′(xn)
†rn +[IR j −F ′(xn)

†F ′(xn)](xn−ζ ).

(4.2)

By using the modified majorant condition (2.8), Lemma 2.4, the inductive hypothesis (4.1) and

Lemma 2.2, we obtain in turn that∥∥∥∥F ′(xn)
†
∫ 1

0
[F ′(xn)−F ′(x∗+ τ(xn− x∗))](xn− x∗)dτ

∥∥∥∥
≤ − 1

g′(‖xn− x∗)‖

∫ 1

0
‖F ′(x∗)†‖‖F ′(xn)−F ′(x∗+ τ(xn− x∗))‖‖xn− x∗‖dτ

= − 1
g′(‖xn− x∗‖)

∫ 1

0

h′
λ ,0(‖xn− x∗‖)−h′

λ ,0(τ‖xn− x∗‖)
‖xn− x∗‖

dτ · ‖xn− x∗‖2

≤ − 1
g′(tn)

∫ 1

0

h′
λ ,0(tn)−hλ ,0(τtn)

tn
dτ · ‖xn− x∗‖2

= − 1
g′(tn)

(tnh′
λ ,0(tn)−hλ ,0(tn))

‖xn− x∗‖2

t2
n

·

In view of (3.2),

‖F ′(xn)
†rn‖ ≤ ‖F ′(xn)

†‖‖rn‖ ≤ λn‖F ′(xn)
†‖‖F(xn)‖, (4.3)
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we have that

−F(xn) = F(x∗)−F(xn)−F ′(xn)(x∗− xn)+F ′(xn)(x∗− xn)

=
∫ 1

0
[F ′(xn)−F ′(x∗+ τ(xn− x∗))](xn− x∗)dτ

+F ′(xn)(x∗− xn).

(4.4)

Then, combining Lemma 2.2, Lemma 4.1, the modified majorant condition (2.8), the inductive

hypothesis (4.1) and the condition (3.2), we obtain in turn that

λn‖F ′(xn)
†‖‖F(xn)‖ ≤ λn‖F ′(xn)

†‖
∫ 1

0
‖F ′(xn)−F ′(x∗+ τ(xn− x∗))‖‖xn− x∗‖dτ

+λn‖F ′(xn)
†‖‖F ′(xn)‖‖xn− x∗‖

≤ − λ

g′(tn)
(tnh′

λ ,0(tn)−hλ ,0(tn))
‖xn− x∗‖2

t2
n

+λ tn
‖xn− x∗‖

tn

≤ λ
λ tn +hλ ,0(tn)

g′(tn)
‖xn− x∗‖

tn
.

(4.5)

Combining (3.1), (4.3), (4.4) and (4.5), we get that

‖xn+1− x∗‖ ≤

[
−

tnh′
λ ,0(tn)−hλ ,0(tn)

g′(tn)
+λ

λ tn +hλ ,0(tn)
g′(tn)

+θ tn

]
‖xn− x∗‖

tn

=

[
−tn +(1+λ )

(
λ tn

g′(tn)
+

hλ ,0(tn)
g′(tn)

)
+θ tn

]
‖xn− x∗‖

tn
·

But, we have that −1 < g′(t)< 0 for any t ∈ (0,ρ), so

(1+λ )

(
λ tn

g′(tn)
+

hλ ,0(tn)
g′(tn)

)
+θ tn ≤

hλ ,0(tn)
g′(tn)

+θn ≤
hλ ,0(tn)−θ tn

g′(tn)
=

hλ ,θ (tn)
g′(tn)

·

Using the definition of {tn} given in (2.5), we get that

‖xn+1− x∗‖ ≤ tn+1

tn
‖xn− x∗‖,

so we deduce that ‖xn+1− x∗‖ ≤ tn+1, which completes the induction. In view of the fact that

{tn} converges to 0 (by Lemma 2.5), it follows from (4.1) that {xn} converges to x∗ and the

estimate (3.3) holds for all n≥ 0.

4.2. Proof of Theorem 3.4.
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Lema 4.2. Suppose that F(x∗) = 0, F ′(x∗) is full row rank and that F ′ satisfies the majorant

condition (2.7) on D1. Then, for each x ∈U(x∗,r), we have rankF ′(x) = rankF ′(x∗) and

‖[IR j −F ′(x∗)†(F ′(x∗)−F ′(x))]−1‖ ≤ − 1
g′(‖x− x∗‖)

·

Proof. Since g′(0) =−1, we have

‖F ′(x∗)†[F ′(x)−F ′(x∗)]‖ ≤ g′(‖x− x∗‖)−g′(0)<−g′(0) = 1.

It follows from Banach lemma that [IR j −F ′(x∗)†(F ′(x∗)−F ′(x))]−1 exists and

‖[IR j −F ′(x∗)†(F ′(x∗)−F ′(x))]−1‖ ≤ − 1
g′(‖x− x∗‖)

·

Since F ′(x∗) is full row rank, we have F ′(x∗)F ′(x∗)† = IRm and

F ′(x) = F ′(x∗)[IR j −F ′(z∗)†(F ′(x∗)−F ′(x))],

which implies that F ′(x) is full row, i. e., rankF ′(x) = rankF ′(x∗).

Proof of Theorem 3.4. Let F̂ : U(x∗,r)→ Rm be defined by

F̂(x) = F ′(x∗)†F̂(x), x ∈U(x∗,r),

with residual r̂k = F ′(x∗)†rn. In view of

F̂ ′(x)† = [F ′(x∗)†F ′(x)]† = F ′(x)†F ′(x∗), x ∈U(x∗,r),

we have that {xn} coincides with the sequence generated by inexact Gauss-Newton method

(1.2) for F̂ . Moreover, we get that

F̂ ′(x∗)† = (F ′(x∗)†F ′(x∗))† = F ′(x∗)†F ′(x∗).

Consequently,

‖F̂ ′(x∗)†F̂ ′(x∗)‖= ‖F ′(x∗)†F ′(x∗)F ′(x∗)†F(x∗)‖= ‖F ′(x∗)†F(x∗)‖.

Because ‖F ′(x∗)†F(x∗)‖= ‖ΠkerF ′(x∗)⊥‖= 1, thus, we have

‖F̂ ′(x∗)†‖= ‖F̂ ′(x∗)†F̂ ′(x∗)‖= 1.
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Therefore, by (2.7), we can obtain that

‖F̂ ′(x∗)†‖‖F̂ ′(x)− F̂ ′(x∗+ τ(x− x∗))‖ = ‖F ′(x∗)†(F ′(x)−F ′(x∗+ τ(x− x∗)))‖

≤ h′
λ ,θ (‖x− x∗‖)−hλ ,θ (τ‖x− x∗‖).

Hence, F̂ satisfies the modified majorant condition (2.8) on D1. Then, Theorem 3.1 is ap-

plicable and {xk} converges to x∗ follows. Note that, F̂ ′(·)†F̂(·) = F ′(·)†F(·) and F(·) =

F ′(·)F ′(·)†F(·). Hence, we conclude that x∗ is a zero of F .

4.3. Proof of Theorem 3.6.

Lemma 4.3. Suppose that F(x∗) = 0, F ′(x∗) is full row rank and that F ′ satisfies the majorant

condition (2.7) on D1. Then, we have

‖F ′(x)†F ′(x∗)‖ ≤ − 1
g′(‖x− x∗‖)

for each x ∈ D1.

Proof. Since F ′(x∗) is full row rank, we have F ′(x∗)F ′(x∗)† = IRm . Then, we get that

F ′(x)†F ′(x∗)(IR j −F ′(x∗)†(F ′(x∗)−F ′(x∗))) = F ′(x)†F ′(x), x ∈ D1.

By Lemma 4.2, IR j −F ′(x∗)†(F ′(x∗)−F ′(x)) is invertible for any x ∈ D1. Thus, in view of the

equality A†A = ΠkerA⊥ for any m× j matrix A, we obtain that

F ′(x)†F ′(x∗) = ΠkerF ′(x)⊥[IR j −F ′(x∗)†(F ′(x∗)−F ′(x))]−1.

Therefore, by Lemma 4.2 we deduce that

‖F ′(x)†F ′(x∗)‖ ≤ ‖ΠkerF ′(x)⊥‖‖[IR j −F ′(x∗)†(F ′(x∗)−F ′(x))]−1‖ ≤ − 1
g′(‖x− x∗‖)

·

Proof of Theorem 3.6. Using Lemma 4.3, majorant condition (2.7) and the residual condition

(3.7), respectively, instead of Lemma 4.1, modified majorant condition (2.8) and condition (3.2),

one can complete the proof of Theorem 3.6 in an analogous way to the proof of Theorem 3.1.

Remark 4.4. The results in [4] improved the corresponding ones in [42, 43]. In the present

study, we improved the results in [4], since D1 ⊂U(x∗,r) leading to an at least as tight function

h′
λ ,θ than the one used in [4] (see also Example 5.2).
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5. Numerical examples

We present some numerical examples, where

g(t)< hλ ,θ (t) (5.1)

and

g′(t)< h′
λ ,θ (t). (5.2)

For simplicity we take F ′(x)† = F ′(x)−1 for each x ∈ D.

Example 5.1. Let X = Y = (−∞,+∞) and define function F : X → Y by

F(x) = d0x−d1 sin(1)+d1 sin(ed2x)

where d0, d1, d2 are given real numbers. Then x∗ = 0. Define functions g and hλ ,θ by g(t) =
L0
2 t2− t and hλ ,θ (t) =

L
2 t2− t. Then, it can easily be seen that for d2 sufficiently large and d1

sufficiently small L
L0

can be arbitrarily large. Hence, (5.1) and (5.2) hold.

Example 5.2. Let F(x,y,z) = 0 be a nonlinear system, where F : D =U(0,1)⊆ R3→ R3 and

F(x,y,z) = (x,
e−1

2
y2 + y,ez−1). It is obvious that (0,0,0) = x∗ is a solution of the system.

From F , we deduce

F ′(x) =


1 0 0

0 (e−1)y 0

0 0 ez

 and F ′(x∗) = diag{1,1,1},

where x = (x,y,z). Hence, [F ′(x∗)]−1 = diag{1,1,1}. Moreover, we can define for L0 = e−1 <

L = 1.78957239, g(t) =
e−1

2
t2−t and hλ ,θ (t) =

1.78957239
2

t2−t. Then, again (5.1) and (5.2)

hold. Notice also that in [4] we used L = e and h̄λ ,θ (t) =
e
2

t2− t > hλ ,θ (t). Hence, the present

results improve the ones in [4].

Other examples where (5.1) and (5.2) are satisfied can be found in [2, 6, 9, 10, 12].

6. Conclusions
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We expanded the applicability of inexact Gauss-Newton method under a majorant and a

center-majorant condition. The advantages of our analysis over earlier works such as [6, 8, 13–

43] are also shown under the same computational cost for the functions and constants involved.

These advantages include: a large radius of convergence and more precise error estimates on

the distances ‖xn+1−x∗‖ for each n = 0,1,2, . . ., leading to a wider choice of initial guesses and

computation of less iterates xn in order to obtain a desired error tolerance. Numerical examples

show that the center-function can be smaller than the majorant function.
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