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EXISTENCE OF PERIODIC SOLUTIONS OF SECOND-ORDER NONLINEAR
INTEGRO-DIFFERENTIAL EQUATIONS WITH VARIABLE DELAY
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Abstract. In this work, we use fixed point theorems and choose available operators to prove the existence of

periodic solutions of a second-order nonlinear delay integro-differential equations (1). During the process Eq (1) is

converted into an equivalent integral equation but with the same properties from which appropriate mappings are

constructed. We offer existence criteria based on sufficient conditions on f , p, q to conclude existence of periodic

solutions.
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1. Introduction

Ordinary and partial differential equations have long played important roles in the history

of theoretical population dynamics, and they will, with no doubt, continue to serve as indis-

pensable tools in future investigations. However, they are generally the first approximations of

the considered real systems. More realistic models should include some of the past states of

these systems; that is, ideally, a real system should be modeled by differential equations with

time delays. Indeed, the use of delay differential equations (DDEs) in the modeling of pop-

ulation dynamics is currently very active, largely due to the recent rapid progress achieved in
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the understanding of the dynamics of several important classes of delay differential equations

and systems. In this paper, we are interested in the analysis of qualitative theory of periodic

solutions of delay differential equations. Motivated by the papers [1]–[4], [6]–[22] and the ref-

erences therein, we restrict our attention to integro-differential equations as (1). The purpose

of this paper is to deal with the existence of periodic solutions for the second-order nonlinear

integro-differential equations with variables delay

(1) x′′ (t)+ p(t)x′ (t)+q(t)x3 (t) =
∫ t

−∞

D(t,s) f (s,x(s− τ (s)))ds,

where

(I) p,q ∈C (R,R+) and τ ∈C (R,R). p, q and τ are all T -periodic continuous functions with

T > 0 is a constant.

(II) D : R×R→ R for t > s, and f : R×R→ R are continuous functions. where τ is a

continuous scalar function, and τ (t)> τ∗ > 0.

(III) For all a sequence xn→ x in CT implies that | f (t,xn)− f (t,x)| → 0 uniformly for t ∈R

as n→ ∞.

2. Preliminaries

To describe the main result we use the following notation. For T > 0, let CT be the set of all

continuous scalar functions x, periodic in t of period T . Then, (CT ,‖·‖) is a Banach space with

the supremum norm

(2) ‖x‖= sup
t∈R
|x(t)|= sup

t∈[0,T ]
|x(t)| .

We let

(3) CJ
T := {ϕ ∈CT : ‖ϕ‖6 J} .

Since we are searching for the existence of periodic solutions for system (1), it is natural to

assume that

(4) D(t +T,s+T ) = D(s, t) and f (t +T,x) = f (t,x) .
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Also, we assume

(5)
∫ T

0
p(u)du > 0 and

∫ T

0
q(u)du > 0.

Throughout this section we assume that there exists a continuous function FJ (t)> | f (t,x)| for

x ∈CJ
T and a constant E1 > 0 such that

(6)
∫ t

−∞

|D(t,s)FJ (s)|ds 6 E1, E1 6
J

αT
,

with α to be defined later. In order to simplify notation, we define

(7) σ = max{q(t) , 0 6 t 6 T} ,

and let

(8) R1 = max
t∈[0,T ]

∣∣∣∣∣∣
∫ t+T

t

exp
∫ s

t p(u)du

exp
(∫ T

0 p(u)du
)
−1

q(s)ds

∣∣∣∣∣∣ , Q1 =

(
1+ exp

∫ T

0
p(u)du

)2

R2
1.

The next lemmas is crucial to our results.

Lemma 2.1. ([16]) Suppose that (I), (4) and (5) hold and that

(9)
R1

(
exp
(∫ T

0 p(u)du
)
−1
)

Q1T
> 1.

Then there are continuous T−periodic functions a and b such that b(t) > 0,
∫ T

0 a(u)du > 0

and

a(t)+b(t) = p(t) and b′ (t)+b(t)a(t) = q(t) for t ∈ R.

Lemma 2.2. ([21]) Denote, A =
∫ T

0 p(v)dv, B = T 2 exp
(

1
T
∫ T

0 lnq(v)dv
)2

and consider

(10) A2 > 4B.

It can be shown that

min
{∫ T

0
a(v)dv,

∫ T

0
b(v)dv

}
>

1
2

(
A−

√
A2−4B

)
:= l,

max
{∫ T

0
a(v)dv,

∫ T

0
b(v)dv

}
6

1
2

(
A−

√
A2−4B

)
:= m.
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Lemma 2.3. ([21]) Suppose the conditions of Lemma 2.1 hold and that φ ∈ CT . Then the

equation

x′′ (t)+ p(t)x′ (t)+q(t)g(x(t)) = φ (s) ,

has a T−periodic solution. Moreover, the periodic solution can be expressed by

x(t) =
∫ t+T

t
G(t,s)φ (s)ds,

where

G(t,s) =

∫ s
t

(
e
∫ u

t b(v)dv + e
∫ s

u a(v)dv
)

du+
∫ t+T

s

(
e
∫ u

t b(v)dv + e
∫ s+T

u a(v)dv
)

du(
exp
(∫ T

0 a(u)du
)
−1
)(

exp
(∫ T

0 b(u)du
)
−1
) .

Moreover, the Green’s function G satisfies the following properties

(11) G(t, t +T ) = G(t, t) , G(t +T,s+T ) = G(t,s) ,

and

(12) T
(em−1)2 6 G(t,s)6

T exp(
∫ T

0 p(u)du)

(el−1)
2 = α.

Furthermore

(13)
∂

∂ t
G(t,s) =−b(t)G(t,s)+K (t,s) ,

with K (t,s) = exp(
∫ s

t a(v)dv)
exp(

∫ T
0 a(v)dv)−1

.

The following lemma is fundamental to our results.

Lemma 2.4. Assume that the hypotheses of Lemma 2.1 hold. Then, x is T−periodic solution of

(1) if and only if x is a solution of the integral equation

x(t) =
∫ t+T

t
G(t,s)q(s)H (x(s))ds

+
∫ t+T

t
G(t,s)

∫ s

−∞

D(s,u) f (u,x(u− τ (u)))duds.(14)

Proof. In the proof we may assume that x ∈CT and we choose H (x) = x−x3 so we first rewrite

(1) as

x′′ (t)+ p(t)x′ (t)+q(t)x(t) = q(t)H (x(t))+
∫ t

−∞

D(t,s) f (s,x(s− τ (s)))ds.
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Then, from Lemma 2.3 it is easy to see that there is a solution x ∈ CT of (1), which can be

expressed by

x(t) =
∫ t+T

t
G(t,s)

(
q(s)H (x(s))+

∫ s

−∞

D(s,u) f (u,x(u− τ (u)))du
)

ds.

Define operators P1,P2 : CT →CT by

(15) (P1x)(t) :=
∫ t+T

t
G(t,s)q(s)H (x(s))ds,

and

(16) (P2x)(t) :=
∫ t+T

t
G(t,s)

∫ s

−∞

D(s,u) f (u,x(u− τ (u)))duds.

In view of (14), (15), (16) and the above analysis, the existence of periodic solutions for (1) is

equivalent to the existence of solutions for the operator equation

(17) P1x+P2x = x in CT .

Definition 2.1. ([5]) (Large Contraction) Let (M ,d) be a metric space and consider B : M →

M . Then B is said to be a large contraction if given φ ,ϕ ∈M with φ 6= ϕ then d (Bφ ,Bϕ)6

d (φ ,ϕ) and if for all ε > 0, there exists a δ > 1 such that

[φ ,ϕ ∈M , d (φ ,ϕ)> ε] =⇒ d (Bφ ,Bϕ)6 δd (φ ,ϕ) .

Theorem 2.1. ([5]) Let M be a closed bounded convex nonempty subset of a Banach space

(X ,‖·‖). Suppose that A and B map M into M such that

(i) x,y ∈M , implies A x+By ∈M ,

(ii) A is compact and continuous,

(iii) B is a large contraction mapping.

Then there exists z ∈M with z = A z+Bz.

Proposition 2.1. If ‖·‖ is the maximum norm

M :=
{

ϕ ∈CT : ‖ϕ‖6 1√
3

}
.

Let B be a mapping on M as follows for ϕ ∈M , (Bϕ)(t) := ϕ (t)−ϕ3 (t). Then B is a large

contraction of the set M .
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Proof. Indeed, let φ ,ϕ ∈M we have for t ∈ R

|(Bϕ)(t)− (Bφ)(t)| =
∣∣ϕ (t)−φ (t)−

{
ϕ

3 (t)−φ
3 (t)

}∣∣
= |(ϕ (t)−φ (t))|

∣∣1−{ϕ
2 (t)+φ

2 (t)+ |φ (t)ϕ (t)|
}∣∣ .(18)

On the other hand, we have

(ϕ (t)−φ (t))2 = ϕ
2 (t)+φ

2 (t)−2φ (t)ϕ (t)6 2
(
ϕ

2 (t)+φ
2 (t)

)
.

It follows from ϕ2 (t)+φ 2 (t)6 1 that

(19) |(Bϕ)(t)− (Bφ)(t)|6 |ϕ (t)−φ (t)|

∣∣∣∣∣1−
(
ϕ2 (t)+φ 2 (t)

)
2

∣∣∣∣∣6 ‖ϕ−φ‖ .

Now, let ε ∈ (0,1) be given and let φ ,ϕ ∈M with ‖ϕ−φ‖> ε .

Suppose that for some t we have

ε

2
6 |ϕ (t)−φ (t)| .

then

ϕ
2 (t)+φ

2 (t)>
ε2

8
.

From (19) we obtain that

(20) ‖Bϕ−Bφ‖6 ‖ϕ−φ‖
(

1− ε2

16

)
6 ‖ϕ−φ‖ .

In order, for some t we have

|ϕ (t)−φ (t)|6 ε

2
.

So, for all φ ,ϕ ∈M

(21) |(Bϕ)(t)− (Bφ)(t)|6 1
2
|ϕ (t)−φ (t)|6 1

2
‖ϕ−φ‖ .

Thus from (20) and (21) we deduce that

‖Bϕ−Bφ‖6 max
{

1
2
,

(
1− ε2

16

)}
‖ϕ−φ‖ .

The Proposition 2.1 is proved by letting δ = max
{

1
2 ,1−

ε2

16

}
.

We shall consider an example for Proposition 2.1.
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Proposition 2.2. For P1 defined in (16), if in addition

(22) ασT 6 1,

then P1 : M →M is a large contraction.

Proof. Obviously, P1ϕ is continuous and it is easy to show that P1ϕ ∈CT . So, for any ϕ ∈CT ,

we have

|(P1ϕ)(t)| =
∫ t+T

t
|G(t,s)| |q(s)|

∣∣ϕ (s)−ϕ
3 (s)

∣∣ds

6 max
06t6T

{|q(s)|}
∫ t+T

t
|G(t,s)| |Bϕ (s)|ds

6 ασT
∥∥ϕ−ϕ

3∥∥ .
Since, ‖ϕ‖6 J and from (19) we have

|(P1ϕ)(t)|6 ασT ‖Bϕ‖6 ασT ‖ϕ‖6 ασT J 6 J.

Thus P1ϕ ∈M . Consequently, we have P1 : M →M . Now, let ε ∈ (0,1) be given and let

ϕ,φ ∈M with ‖ϕ−φ‖> ε . By (22) and from the proof of the Proposition 2.1 we have found

δ < 1 such that

|(P1ϕ)(t)− (P1φ)(t)|6 ασT δ ‖ϕ−φ‖6 δ ‖ϕ−φ‖ .

Then ‖P1ϕ−P1φ‖6 δ ‖ϕ−φ‖. Consequently, P1 is a large contraction.

Proposition 2.3. Assume the conditions of Lemmas 2.1, 2.2 hold. Suppose also that conditions

(4), (6) hold. Then, P2 : M →M is continuous and the image of P2 is contained in a compact

set, where P2 is defined by (16).

Proof. Let P2 be defined by (16). Obviously, P2ϕ is continuous and it is easy to show that

(P2ϕ)(t +T ) = (P2ϕ)(t). Observe that from (6) for ϕ ∈M we have

|(P2ϕ)(t)| 6
∫ t+T

t
|G(t,s)|

∫ s

−∞

|D(s,u)| | f (u,ϕ (u− τ (u)))|duds

6
∫ t+T

t
|G(t,s)|

∫ s

−∞

|D(s,u)| |FJ (u)|duds

6 αE1T 6 J.(23)
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That is, P2ϕ ∈M . To see that P2 is continuous on CJ
T it suffices to show that for all sequence

of points {ϕn}n>1 in M such that ϕn→ ϕ ∈M as n→ ∞ implies that the sequence (P2ϕn)n>1

converges to (P2ϕ) ∈M as n→ ∞ where n is a positive integer. In fact that ϕn→ ϕ ∈M , so

P2ϕn ∈CT . Next, let r > 0 be given, since∫ t+T

t
|G(t,s)|

∫ s

s−r
|D(s,u)| | f (u,ϕn (u− τ (u)))|duds

6
∫ t+T

t
|G(t,s)|

∫ s

s−r
|D(s,u)|FJ (u)duds

6
∫ t+T

t
|G(t,s)|

∫ s

−∞

|D(s,u)|FJ (u)duds 6 J,(24)

then, for all n > 0 and r > 0 we have

(25)
∫ t+T

t
|G(t,s)|

∫ s

s−r
|D(s,u)| | f (u,ϕn (u− τ (u)))|duds 6 J.

Thus from (III) and by the dominated convergence theorem we deduce that∫ t+T

t
|G(t,s)|

∫ s

s−r
|D(s,u)| | f (u,ϕn (u− τ (u)))− f (u,ϕ (u− τ (u)))|duds→ 0,

as n→ ∞. That is, P2ϕn→ P2ϕ ∈M . To show that the image of P2 is contained in a compact

set, we calculate d
dt (P2ϕn)(t) and show that it is uniformly bounded. For that, by making use

of (25), (13) and (11) we obtain by taking the derivative in, (16)

d
dt

(P2ϕn)(t) =
∫ t+T

t

(
∂

∂ t
G(t,s)

)∫ s

−∞

D(s,u) f (u,ϕn (u− τ (u)))duds

=−b(t)
∫ t+T

t
G(t,s)

∫ s

−∞

D(s,u) f (u,ϕn (u− τ (u)))duds

+
∫ t+T

t
K (t,s)

∫ s

−∞

D(s,u) f (u,ϕn (u− τ (u)))duds.

=−b(t)(P2ϕn)(t)+
∫ t+T

t
K (t,s)

∫ s

−∞

D(s,u) f (u,ϕn (u− τ (u)))duds.

where K (t,s) is as given in (13). Thus the above expression yields∥∥∥∥ d
dt

(P2ϕn)

∥∥∥∥= J max{b(t) ,0 6 t 6 T}+T E1
exp(

∫ T
0 a(v)dv)

exp(
∫ T

0 a(v)dv)−1
= E2,

for some positive constant E2. Thus the sequence (P2ϕn) is uniformly bounded and equicon-

tinuous. Hence by Ascoli-Arzela’s theorem the set {P2ϕ : ϕ ∈M } is equicontinuous and P2 is
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continuous. So P2 is compact operator on M . Also form (23) P2 : M →M we deduce that

{P2ϕ : ϕ ∈M } is contained in a compact subset of M .

2. Existence of periodic solutions

Theorem 3.1. Let (CT ,‖·‖) be the Banach space of continuous T−periodic real valued func-

tions and M :=
{

ϕ ∈CT : ‖ϕ‖6 1/
√

3
}

, where J = 1√
3
. Suppose (3)–(5), (10) and (22) hold.

If the condition (6) is replaced by

(26) E1 6
1

3αT
J,

then, equation (1) has a T−periodic solution x in the subset M .

Proof. By Proposition 2.3, the operator P2 : M →M is compact and continuous. Also, from

Proposition 2.2, the operator P1 : M →M is a large contraction. Moreover, if ϕ,φ ∈M , we

see that|(P1ϕ)(t)|6 ασT ‖Bϕ‖6 ασT ‖ϕ‖

‖P1ϕ +P2φ‖ ≤ ‖P1ϕ‖+‖P2φ‖6 ασT
∥∥ϕ−ϕ

3∥∥+αE1T

6 ασT
2
3

1√
3
+αE1T

6
2
3

J+
1
3

J = J,

because
∥∥ϕ−ϕ3

∥∥ 6 2
3

1√
3
. Thus P1φ +P2ϕ ∈M . Clearly, all the hypotheses of the Theorem

2.1 are satisfied. Thus there exists a fixed point x ∈M such that P1x+P2x = x. From (17) and

by Lemma 2.4 this fixed point is a solution of (1). Hence the Eq (1) has a T−periodic solution.
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