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Abstract. In this article, we introduce the notion of C-Kannan type cyclic weakly contractions and derive the

existence of fixed points for such mappings in the framework of complete metric spaces. Our results extend and

improve some fixed point theorems in the literature.
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1. Introduction

Banach’s fixed point theorem for contraction mappings is one of the pivotal results in analy-

sis, but it suffers from one major drawback i.e. in order to use the contractive condition, a self

mapping T must be Lipschitz continuous, with Lipschitz constant L < 1. In particular, T must

be continuous at all points of its domain.

A natural question is that whether we can find contractive conditions which will imply exis-

tence of fixed points in a complete metric space but will not imply continuity.

Kannan [11], [12] proved the following result, giving an affirmative answer to above question.
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Theorem 1.1. If T : X → X, where (X ,d) is a complete metric space, satisfies

d(T x,Ty)≤ k[d(x,T x)+d(y,Ty)],

where 0 < k < 1
2 and x,y ∈ X, then T has a unique fixed point.

The mappings satisfying the above inequality are called Kannan type mappings.

Alber and Guerre-Delabriere [1] introduced the concept of weakly contractive mappings and

proved the existence of fixed points for single-valued weakly contractive mappings in Hilbert

spaces. Thereafter, in 2001, Rhoades [16] proved the fixed point theorem which is one of the

generalizations of Banach’s Contraction Mapping Principle, because the weakly contractions

contain contractions as a special case and Rhoades also showed that some results of [1] are true

for any Banach space. In fact, weakly contractive mappings are closely related to the mappings

of Boyd and Wong [4] and of Reich types [15]. Fixed point problems involving different types

of contractive type inequalities have been studied by many authors (see [1]-[16] and references

cited therein).

On the other hand, Kirk et al. [14] introduced the notion of cyclic representation and charac-

terized the Banach Contraction Principle in the context of cyclic mappings.

In this paper, we introduce the C-Kannan type cyclic weakly contraction mapping and then

derive a fixed point theorem on such class of cyclic contractions in the framework of complete

metric spaces.

2. Preliminaries

Definition 2.1. (see [14]) Let X be a non-empty set and T : X → X be a self mapping. Then

X = ∪m
i=1Xi is a cyclic representation of X with respect to T if

(a) Xi; i = 1, . . . ,m are non-empty sets,

(b) T (X1)⊂ X2,. . . , T (Xm−1)⊂ Xm, T (Xm)⊂ X1.

Definition 2.2. (see [2]) Let F :R2
+→R be a continuous mapping, it is called a C-class function

if it satisfies the following conditions:

(F1) : F(s, t)≤ s, for all (s, t) ∈ R2
+.
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(F2) : F(s, t) = s implies that s = 0, or t = 0,for all (s, t) ∈ R2
+.

We denote C-class functions as C .

Example 2.3. (see [2]) The following functions F : [0,∞)2 → R are elements of C , for all

s, t ∈ [0,∞):

(1) F(s, t) = s− t, F(s, t) = s⇒ t = 0;

(2) F(s, t) = ms, 0<m<1, F(s, t) = s⇒ s = 0;

(3) F(s, t) = s
(1+t)r ; r ∈ (0,∞), F(s, t) = s⇒ s = 0 or t = 0;

(4) F(s, t) = log(t +as)/(1+ t), a > 1, F(s, t) = s⇒ s = 0 or t = 0;

(5) F(s, t) = ln(1+as)/2, a > e, F(s,1) = s⇒ s = 0;

(6) F(s, t) = (s+ l)(1/(1+t)r)− l, l > 1,r ∈ (0,∞), F(s, t) = s⇒ t = 0;

(7) F(s, t) = s logt+a a, a > 1, F(s, t) = s⇒ s = 0 or t = 0;

(8) F(s, t) = s− (1+s
2+s)(

t
1+t ), F(s, t) = s⇒ t = 0;

(9) F(s, t) = sβ (s), β : [0,∞)→ [0,1),and is continuous, F(s, t) = s⇒ s = 0;

(10) F(s, t) = s− t
k+t ,F(s, t) = s⇒ t = 0;

(11) F(s, t) = s−ϕ(s),F(s, t) = s⇒ s = 0,here ϕ : [0,∞)→ [0,∞) is a continuous function

such that ϕ(t) = 0⇔ t = 0;

(12) F(s, t) = sh(s, t),F(s, t) = s⇒ s = 0,here h : [0,∞)× [0,∞)→ [0,∞)is a continuous

function such that h(t,s)< 1 for all t,s > 0;

(13) F(s, t) = s−(2+t
1+t )t, F(s, t) = s⇒ t = 0.(8) F(s, t) = s−(1+s

2+s)(
t

1+t ), F(s, t) = s⇒ t = 0;

(14) F(s, t) = n
√

ln(1+ sn), F(s, t) = s⇒ s = 0;

(15) F(s, t) = φ(s),F(s, t) = s⇒ s = 0,here φ : [0,∞)→ [0,∞) is a upper semicontinuous

function such that φ(0) = 0, and φ(t)< t for t > 0;

(16) F(s, t) = s
(1+s)r ; r ∈ (0,∞), F(s, t) = s⇒ s = 0;

(17) F(s, t) = ϑ(s); ϑ : R+×R+→R is a generalized Mizoguchi-Takahashi type function ,

F(s, t) = s⇒ s = 0;

(18) F(s, t) = s
Γ(1/2)

∫
∞

0
e−x
√

x+t dx, where Γ is the Euler Gamma function.

Let Ψ be the set of all continuous functions ψ : R+→R+ satisfying the following conditions:

(ψ1) ψ is continuous and strictly increasing.
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(ψ2) ψ(t) = 0 if and only of t = 0.

Let Φu denote the class of functions ϕ : [0,∞)→ [0,∞) which satisfy the following conditions:

(a) ϕ is continuous;

(b) ϕ(t)> 0, t > 0 and ϕ(0)≥ 0.

Let Ψu be a set of all continuous functions ψ : [0,∞)× [0,∞)→ [0,∞) satisfying the following

conditions:

(ψ1) ψ is continuous.

(ψ2) ψ(s, t)> 0 if (s, t) 6= (0,0) and ψ(0,0)≥ 0.

The following lemma of Babu and Sailaja [3] will be used in sequel.

Lemma 2.4. Suppose (X ,d) is a metric space. Let {xn} be a sequence in Xsuch that d(xn,xn+1)→

0 as n→∞. If {xn} is not a Cauchy sequence then there exist an ε > 0 and sequences of positive

integers {m(k)} and {n(k)} with

m(k)> n(k)> k such that d(xm(k),xn(k))≥ ε , d(xm(k)−1,xn(k))< ε and

(i) limk→∞ d(xm(k)−1,xn(k)+1) = ε;

(ii) limk→∞ d(xm(k),xn(k)) = ε;

(iii) limk→∞ d(xm(k)−1,xn(k)) = ε .

On the lines of above lemma one can also note that limk→∞ d(xm(k)+1,xn(k)+1) = ε and

limk→∞ d(xm(k),xn(k)−1) = ε .

3. Main results

To begin with, we introduce the notion of C-Kannan type cyclic weakly contractions in metric

spaces.

Definition 3.1. Let (X ,d) be a metric space, m ∈ N, A1,A2 . . . ,Am nonempty subsets of X and

Y = ∪m
i=1Ai. A mapping T : Y → Y is called a C-Kannan type cyclic weakly contraction if

(1) ∪m
i=1Ai is a cyclic representation of Y with respect to T ;

(2) µ(d(T x,Ty))≤ F(µ(1
2 [d(x,T x)+d(y,Ty)]),ψ(d(x,T x),d(y,Ty)))

for any x ∈ Ai, y ∈ Ai+1, i = 1,2, . . . ,m where Am+1 = A1, F ∈ C ,µ ∈Ψ and ψ ∈Ψu.
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Theorem 3.2. Let (X ,d) be a complete metric space, m ∈ N, A1,A2, . . . ,Am nonempty closed

subsets of X and Y = ∪m
i=1Ai. Suppose that T is a C-Kannan type cyclic weakly contraction.

Then, T has a fixed point z ∈ ∩m
i=1Ai.

Proof. Let x0 ∈ X . We can construct a sequence xn+1 = T xn, n = 0,1,2, . . . . If there exists

n0 ∈ N such that xn0+1 = xn0 , then the result follows. Indeed, we have T xn0 = xn0+1 = xn0 . So

we assume that xn+1 6= xn for any n = 0,1,2, . . .. As X = ∪m
i=1Ai, for any n > 0 there exists

in ∈ {1,2, . . . ,m} such that xn−1 ∈ Ain and xn ∈ Ain+1 . Since T is a C-Kannan type cyclic weakly

contraction, we have

µ(d(xn+1,xn)) = µ(d(T xn,T xn−1))

≤ F(µ(
1
2
[d(xn,T xn)+d(xn−1,T xn−1)]),ψ(d(xn,T xn),d(xn−1,T xn−1)))

= F(µ(
1
2
[d(xn,xn+1)+d(xn−1,xn)]),ψ(d(xn,xn+1),d(xn−1,xn)))

≤ µ(
1
2
[d(xn,xn+1)+d(xn−1,xn)]).

(3.1)

Since µ is a non-decreasing function, for all n = 1,2 . . ., we have

d(xn+1,xn)≤ d(xn,xn−1). (3.2)

Thus {d(xn+1,xn)} is a monotone decreasing sequence of non-negative real numbers and so

convergent. Hence there exists r ≥ 0 such that d(xn+1,xn)→ r. Letting n→ ∞ in (3.2), we

obtain that limd(xn−1,xn+1) = 2r.

Letting n→∞ in (3.1), using the continuity of µ and ψ , we obtain that µ(r)≤F(µ(r),ψ(r,r)).

This implies that, µ(r) = 0, or ,ψ(r,r) = 0 thus r = 0.

Thus we obtain

lim
n→∞

d(xn+1,xn) = 0.

Now, we show that {xn} is a Cauchy sequence. Suppose, to the contrary, that {xn} is not

a Cauchy sequence. By Lemma 2.4 there exists ε >0 for which we can find subsequences
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{xnk}and {xmk} of {xn}with nk> mk>ksuch that

ε = lim
k→∞

d(xm(k),xn(k)) = lim
k→∞

d(xm(k),xn(k)+1)

= lim
k→∞

d(xm(k)+1,xn(k)) = lim
k→∞

d(xm(k)+1,xn(k)+1).
(3.3)

On the other hand, we have

µ(d(xmNk+1,xnNk+1))

≤ F(µ(
1
2
[d(xmNk

,xmNk+1)+d(xnNk
,xnNk+1)]),ψ(d(xmNk

,xmNk+1),d(xnNk
,xnNk+1))).

(3.3)

When k→ ∞, and using Lemma 2.4, we have

µ(ε)≤ F(µ(0),ψ(0,0))≤ µ(0) = 0.

So, ε = 0, which is a contradiction. Hence {xn} is a Cauchy sequence in Y . Since Y is closed

in X , then Y is also complete and there exists x ∈ Y such that limxn = x.

Now, we are in a position to prove that x is a fixed point of T . As Y = ∪m
i=1Ai is a cyclic

representation of Y with respect to T , the sequence {xn} has infinite terms in each Ai for i =

{1,2, . . . ,m}. Suppose that x ∈ Ai, T x ∈ Ai+1 and we take a subsequence {xnk} of {xn} with

xnk ∈ Ai. By using the contractive condition, we obtain

µ(d(xnk+1,T x)) = µ(d(T xnk ,T x))

≤ F(µ(
1
2
[d(xnk ,T xnk)+d(x,T x)]),

ψ(d(xnk ,T xnk),d(x,T x)))

= F(µ(
1
2
[d(xnk ,xnk+1)+d(x,T x)]),

ψ(d(xnk ,xnk+1),d(x,T x))).

Letting n→ ∞ and using continuity of F,µ and lower semi-continuity of ψ , we have

µ(d(x,T x))≤ F(µ(
1
2

d(x,T x)),ψ(0,d(x,T x))).

This implies that either µ(d(x,T x)) = 0, or ψ(0,d(x,T x)) = 0, d(x,T x) = 0. Hence x is a fixed

point of T .
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Now, we shall prove the uniqueness of fixed point. Suppose that x1 and x2 (x1 6= x2) are two

fixed points of T . Using the contractive condition and continuity of µ and ψ , we have

µ(d(x1,x2)) = µ(d(T x1,T x2))

≤ F(µ(
1
2
[d(x1,T x1)+d(x2,T x2)]),ψ(d(x1,T x1),d(x2,T x2)))

= F(µ(
1
2
[d(x1,x1)+d(x2,x2)]),ψ(d(x1,x1),d(x2,x2)))

= F(µ(0),ψ(0,0))≤ µ(0) = 0,

which is a contradiction. Hence the result holds.

If µ(a) = a, then we have the following result.

Corollary 3.3. Let (X ,d) be a complete metric space, m ∈ N, A1,A2, . . . ,Am nonempty closed

subsets of X and Y = ∪m
i=1Ai. Suppose that T : Y → Y is an operator such that

(1) ∪m
i=1Ai is a cyclic representation of Y with respect to T ;

(2) d(T x,Ty)≤ F(1
2 [d(x,T x)+d(y,Ty)],ψ(d(x,T x),d(y,Ty)))

for any x ∈ Ai, y ∈ Ai+1, i = 1,2, . . . ,m where Am+1 = A1, F ∈ C and ψ ∈Ψu. Then, T has a

fixed point z ∈ ∩m
i=1Ai.

If F(s, t) = ks, where k ∈ [0,1), we have the following result.

Corollary 3.4. Let (X ,d) be a complete metric space, m ∈ N, A1,A2, . . . ,Am nonempty closed

subsets of X and Y = ∪m
i=1Ai. Suppose that T : Y → Y is an operator such that

(1) ∪m
i=1Ai is a cyclic representation of Y with respect to T ;

(2) there exists k ∈ [0, 1
2) such that d(T x,Ty)≤ k[d(x,T x)+d(y,Ty)]

for any x∈Ai, y∈Ai+1, i= 1,2, . . . ,m where Am+1 =A1. Then, T has a fixed point z∈∩m
i=1Ai.

Remark 3.5. If F(s, t) = s− t, in the above theorem, we have the corresponding result of

Chandok [10].

Other consequences of our results for mappings involving contractions of integral type are:

Denote by Λ the set of functions µ : [0,∞)→ [0,∞) satisfying the following hypotheses:

(h1) µ is a Lebesgue-integrable mapping on each compact subset of [0,∞);

(h2) for any ε > 0, we have
∫

ε

0 µ(t)> 0.
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Corollary 3.6. Let (X ,d) be a complete metric space, m ∈ N, A1,A2, . . . ,Am nonempty closed

subsets of X and Y = ∪m
i=1Ai. Suppose that T : Y → Y is an operator such that

(1) ∪m
i=1Ai is a cyclic representation of Y with respect to T ;

(2) there exists k ∈ [0, 1
2) such that∫ d(T x,Ty)

0
α(s)ds≤ k

∫ d(x,T x)+d(y,Ty)

0
α(s)ds

for any x ∈ Ai, y ∈ Ai+1, i = 1,2, . . . ,m where Am+1 = A1 and α ∈ Λ. Then, T has a fixed

point z ∈ ∩m
i=1Ai.

If we take Ai = X , i = 1,2, . . . ,m, we obtain the following result.

Corollary 3.7. Let (X ,d) be a complete metric space and T : X → X be a mapping such that∫ d(T x,Ty)

0
α(s)ds≤ k

∫ d(x,T x)+d(y,Ty)

0
α(s)ds

for any xy ∈ X, k ∈ [0, 1
2) and α ∈ Λ. Then, T has a fixed point z ∈ ∩m

i=1Ai.
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