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APPROXIMATE SOLUTIONS OF TIME-FRACTIONAL
SHARMA-TASSO-OLEVER EQUATIONS VIA HOMOTOPY ANALYSIS METHODS

YOUWEI ZHANG

School of Mathematics and Statistics, Hexi University, Zhangye 734000, China

Abstract. In this paper, the homotopy analysis transform method is used to solve the time-fractional Sharma-

Tasso-Olever (STO) equation. This method yields an approximate analytical solution of a rapidly convergent

power series with easily computable terms and produces a good approximate solution on enlarged intervals for

solving the time-fractional STO equation.
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1. Introduction

Homotopy analysis method is based on construction of a homotopy which continuously de-

forms an initial value approximation to the exact solution of the given problem, it was first

proposed and applied by Liao [1, 2] based on homotopy, a fundamental concept in topology

and differential geometry. An auxiliary linear operator is chosen to construct the homotopy

and an auxiliary parameter is used to control the region of convergence of the solution series.

The coupling of homotopy analysis and Laplace transform method are not limited to any small

physical parameters in the considered equation [3, 4, 5]. Therefore, this method can overcome

the foregoing restrictions and limitations of perturbation techniques so that it provides us with

a powerful tool to analyze strongly nonlinear problems, and the main advantage of this method

is its capability of combining two powerful methods for obtaining rapid convergent series.
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Recently, fractional calculus has obtained considerable popularity and importance as gener-

alizations of integer-order evolution equation, and used to model problems in physics, neurons,

hydrology, viscoelasticity and rheology, image processing, mechanics, mechatronics, finance

and control theory, see [6, 7, 8, 9, 10]. In reality, a physical phenomenon may depend on not

only the time instant but also the previous time history, which can be successfully modeled by

using the theory of derivatives and integrals of fractional order [11]. The STO equation has

been applied to describe a wide range of physics phenomena of the evolution and interaction to

nonlinear waves, such as fluid dynamics, aerodynamics, continuum mechanics, solitons and tur-

bulence et al, it possesses an infinitely many symmetries and the bi-Hamiltonian formulation. If

the Hamiltonian of conservative system is constructed using fractional derivatives, the resulting

equations of motion can be nonconservative. Therefore, in many cases, the real physical pro-

cesses could be modeled in a reliable manner using fractional-order differential equations rather

than integer-order equations [12]. Many powerful and efficient methods have been proposed to

construct the solutions for some time-fractional differential equations. Bulut and Pandir [13]

applied the modified trial equation method to time-fractional STO equation by the using of the

complete discrimination system for polynomial method. Golmamadian [14] constructed the ex-

act complex solutions of nonlinear time-fractional STO equation by the direct algebraic method.

Comparison of the obtained results with those of various methods, homotopy analysis method

can lead to conclude that the method gives significantly important consequences, and the ho-

motopy analysis method solution includes an auxiliary parameter which provides a convenient

way of adjusting and controlling the convergence region of solution series [15, 16, 17]. The

aim of this paper is to apply the homotopy analysis method combining with Laplace transfor-

m to approximate solution of the time-fractional STO equation. Since recently, many authors

have paid attention to studying the solution of fractional differential equations by using various

methods with combined the Laplace transform [18, 19]. We will discuss the methodology for

the construction of some schemes and study their performance on test problem, the approximate

solutions are very rapidly convergent. It will be concluded that the time-fractional homotopy

analysis transform method is very powerful and efficient in finding approximate analytical so-

lution as well as analytical solution of many fractional physical models.
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This paper is organized as follows: Section 2 states some background material from frac-

tional calculus. Section 3 presents the principle of the homotopy analysis transform method for

the time-fractional partial differential equation. Section 4 is devoted to describe the analytical

algorithm for time-fractional STO equation to derive an approximate analytical solitary wave

solution. Section 5 makes some analysis for the obtained Table and Figures and discusses the

present work.

2. Main results

We recall some necessary definitions for the fractional calculus (see [20, 21]) which are used

throughout the remaining sections of this paper.

Definition 2.1. A real multivariable function f (x, t), t > 0 is said to be in the space Cγ , γ ∈ R

with respect to t if there exists a real number p (> γ), such that f (x, t) = t p f1(x, t), where

f1(x, t) ∈C(Ω×T ). Obviously, Cγ ⊂Cδ if δ ≤ γ .

Definition 2.2. The Riemann-Liouville fractional integral of a function f is defined as

0Iα
t f (x, t) =

1
Γ(α)

∫ t

0
(t− τ)α−1 f (x,τ)dτ, α > 0, t ∈ T,

0I0
t f (x, t) = f (x, t).

Definition 2.3. The Caputo fractional derivative of the order n−1≤ α < n of a function f ∈Cγ

(γ ≥−1) is defined as

Dα
t f (x, t) =

1
Γ(n−α)

∫ t

0
(t− τ)n−α−1 ∂ n

∂τn f (x,τ)dτ.

Definition 2.4. The Laplace transform of the function g(t) is defined as

f (t) = L(g(t)) =
∫

∞

0
e−stg(t)dt,

where t is the symbolic variable in g(t) as determined by findsym. The inverse Laplace trans-

form of the function h(s) is defined as

f (s) = L−1(h(s)) =
1

2πi

∫ c+i∞

c−i∞
esth(s)ds, t > 0,
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where c is a real number selected so that all singularities of h(s) are to the left of the line s = c, i,

s is a scalar symbolic object.

Definition 2.5. The Laplace transform L(u(x, t)) of the Riemann-Liouville fractional integral is

defined as

L(Iα
t u(x, t)) = s−αL(u(x, t)).

Definition 2.6. The Laplace transform L(u(x, t)) of the Caputo fractional derivative is defined

as

L(Dnα
t u(x, t)) = snαL(u(x, t))−

n−1

∑
k=0

snα−k−1u(k)(x,0), n−1 < nα ≤ n.

3. New time-fractional homotopy analysis transform methods

To illustrate the basic idea of the homotopy analysis transform method for the fractional par-

tial differential equation, we consider the following time-fractional partial differential equation

Dnα
t u(x, t)+R(x)u(x, t)+N(x)u(x, t) = 0, n−1 < nα ≤ n, x ∈ R, t > 0,(1)

where Dnα
t = ∂ nα

∂ tnα , α is a parameter describing the order of the fractional time-derivative, u(x, t)

is a field variable, R(x) is the linear operator in x, N(x) is the general nonlinear operator in x. For

simplicity we ignore all initial and boundary conditions, which can be treated in similar way.

Now the methodology consists of applying Laplace transform first on both sides of equation

(1), it yields

L(Dnα
t u(x, t))+L

(
R(x)u(x, t)+N(x)u(x, t)

)
= 0.

By using of the differentiation property of the Laplace transform, one has

L(u(x, t))− 1
snα

n−1

∑
k=0

snα−k−1u(k)(x,0)+
1

snα
L
(

R(x)u(x, t)+N(x)u(x, t)
)
= 0.

Define the nonlinear operator

η(φ(x, t;q)) = L(φ(x, t;q))− 1
snα

n−1

∑
k=0

snα−k−1
φ
(k)(x,0;q)+

1
snα

L
(

R(x)φ(x, t;q)+N(x)φ(x, t;q)
)
,
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here q ∈ [0,1] be an embedding parameter and φ(x, t;q) is the real function of x, t and q. By

means of generalizing the traditional homotopy methods, we construct the zero order deforma-

tion equation as follows

(1−q)L(φ(x, t;q)−u0(x, t)) = h̄qH(x, t)η(φ(x, t;q)),(2)

where h̄ is a nonzero auxiliary parameter, H(x, t) is a nonzero auxiliary function, u0(x, t) is an

initial value of u(x, t) and φ(x, t;q) is an unknown function. It is important that one has great

freedom to choose auxiliary thing in homotopy analysis transform method. Obviously, when

q = 0 and q = 1, there holds

φ(x, t;0) = u0(x, t), φ(x, t;1) = u(x, t),

respectively. Thus as q increases from 0 to 1, the solution varies from the initial value u0(x, t)

to the solution u(x, t). Expanding φ(x, t;q) in Taylor’s series with respect to q, we have

φ(x, t;q) = u0(x, t)+
∞

∑
m=1

qmum(x, t),(3)

where

um(x, t) =
1

m!
∂ mφ(x, t;q)

∂qm

∣∣∣
q=0

.

The convergence of series solution (3) is controlled by h̄. If the auxiliary linear operator, the

initial value, the auxiliary parameter h̄, and the auxiliary function are properly chosen, the series

(3) converges at q = 1, this is

u(x, t) = u0(x, t)+
∞

∑
m=1

um(x, t),(4)

which must be one of the solutions of original nonlinear equations. The above expression

provides us with a relationship between the initial value u0(x, t) and the solution u(x, t) by means

of the terms (approximate solution) um(x, t) m = 1,2,3, . . ., which are still to be determined.

Defines the vectors of um(x, t)

~um(x, t) = {u0(x, t),u1(x, t), . . . ,um(x, t)}.
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Differentiating the zero order deformation equation (2) m time with respect to embedding pa-

rameter q and then setting q = 0 and finally dividing them by m! we obtain the m-th order

deformation equation

L(um(x, t)−χmum−1(x, t)) = h̄qH(x, t)Rm(~um−1).

Operating the inverse Laplace transform on both sides, yields

um(x, t) = χmum−1(x, t)+ h̄qL−1(H(x, t)Rm(~um−1)
)
.(5)

where

Rm(~um−1) = Dnα
t um−1(x, t)+R(x)um−1(x, t)+N(x)um−1(x, t)

and

χm =


0, m≤ 1,

1, m > 1.

Theorem 3.1. If the series (4) converges, then it must converge to the exact solution of (1).

Proof. Let u(x, t) = lim
N→∞

UN(x, t) = lim
N→∞

∑
N
m=1 um−1(x, t), then we show that u(x, t) is the exact

solution of (1). By (5), we have

h̄q
N

∑
m=1

L−1(H(x, t)Rm(~um−1)
)

= h̄qL−1
( N

∑
m=1

H(x, t)
(

Dnα
t um−1(x, t)+R(x)um−1(x, t)+N(x)um−1(x, t)

))

=
N

∑
m=1

(
um(x, t)−χmum−1(x, t)

)
= uN(x, t)→ 0, as N→ ∞.

(6)

Since h̄ 6= 0, q 6= 0, we find from (6) that

L−1
(

∞

∑
m=1

H(x, t)
(

Dnα
t um−1(x, t)+R(x)um−1(x, t)+N(x)um−1(x, t)

))
= 0.(7)
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Applying L to equation (7) and using the properties calculation of Laplace transform and inverse

Laplace transform, it holds

∞

∑
m=1

H(x, t)
(

Dnα
t um−1(x, t)+R(x)um−1(x, t)+N(x)um−1(x, t)

)
= 0.(8)

Since H(x, t) 6= 0, we see that (8) yields

∞

∑
m=1

(
Dnα

t um−1(x, t)+R(x)um−1(x, t)+N(x)um−1(x, t)
)
= 0.(9)

The RHS of (9) is

∞

∑
m=1

Dnα
t um−1(x, t)+

∞

∑
m=1

R(x)um−1(x, t)+
∞

∑
m=1

N(x)um−1(x, t)
)

= Dnα
t

∞

∑
m=1

um−1(x, t)+R(x)
∞

∑
m=1

um−1(x, t)+N(x)
∞

∑
m=1

um−1(x, t)

= Dnα
t u(x, t)+R(x)u(x, t)+N(x)u(x, t) = 0.

Also u(x,0) = u0(x,0)+∑
∞
m=1 un(x,0) = u(x,0). Thus u(x, t) satisfies (1) and must be the exact

solution of (1). This completes the proof.

4. The time-fractional STO equation

In this section, we will apply the homotopy analysis method and Laplace transform method

to the fractional STO equation. One of the fractional differential equations arising in science

and engineering is STO equation with time-fractional derivative of the form

Dα
t u(x, t)+3au2

x(x, t)+3au2(x, t)ux(x, t)+3au(x, t)uxx(x, t)+auxxx(x, t) = 0, 0 < α ≤ 1,

(10)

where a 6= 0 is a constant, x ∈ Ω is a space coordinate in the propagation direction of the

field and t ∈ T (= [0, t0](t0 > 0)) is the time, the subscripts denote the partial differentiation of

the function u(x, t) with respect to the parameter x and/or t, Dα
t denotes the Caputo fractional

derivative sense.

u(x,0) =−k tanh(
kx
2
),
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where k is constant. Applying the Laplace transform on both sides in equation (10) and after

using the differentiation property of Laplace transform for fractional derivative, we have

sαL(u(x, t))− sα−1u(x,0)+L
(
3au2

x(x, t)+3au2(x, t)ux(x, t)+3au(x, t)uxx(x, t)+auxxx(x, t)
)
= 0.

We simplify and obtain that

L(u(x, t))+
k
s

tanh(
kx
2
)+ s−αL

(
3au2

x(x, t)+3au2(x, t)ux(x, t)+3au(x, t)uxx(x, t)+auxxx(x, t)
)
= 0.

Choose the linear operator as

L (φ(x, t;q)) = L(φ(x, t;q)),

where φ(x, t;q) is defined as (3).

Define a nonlinear operator as

η(φ(x, t;q)) = L (φ(x, t;q))+
k
s

tanh(
kx
2
)+ s−αL

(
3aφ

2
x (x, t;q)+3aφ

2(x, t;q)φx(x, t;q)

+3aφ(x, t;q)φxx(x, t;q)+aφxxx(x, t;q)
)
.

Using above definition, we construct the zero order deformation equation with assumption

H(x, t) = 1,

(1−q)L (φ(x, t;q)−u0(x, t)) = h̄qH(x, t)η(φ(x, t;q)).

Obviously, when q = 0 and q = 1, there has

φ(x, t;0) = u0(x, t), φ(x, t;1) = u(x, t),

Thus, we obtain the m-th order deformation equation

L(um(x, t)−χmum−1(x, t)) = h̄qRm(~um−1).(11)

Operating the inverse Laplace transform on both sides in equation (11), we obtain

um(x, t) = χmum−1(x, t)+ h̄qL−1(Rm(~um−1)
)
,
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where

Rm(~um−1)

= L(um−1(x, t))+(1−χm)
k
s

tanh(
kx
2
)+ s−αL

(
3a

m−1

∑
j=0

(u j)x(x, t)(um−1− j)x(x, t)

+3a
m−1

∑
j=0

(u j)x(x, t)
(m−1− j

∑
k=0

uk(x, t)um−1− j−k(x, t)
)
+3a

m−1

∑
j=0

u j(x, t)(um−1− j)xx(x, t)

+a(um−1)xxx(x, t)
)
, m≥ 1.

And so, we have the solution of m-th order deformation equation (11)

um(x, t)

= (χm + h̄)um−1(x, t)+(1−χm)h̄k tanh(
kx
2
)+ h̄qL−1

(
s−αL

(
3a

m−1

∑
j=0

(u j)x(x, t)(um−1− j)x(x, t)

+3a
m−1

∑
j=0

(u j)x(x, t)
(m−1− j

∑
k=0

uk(x, t)um−1− j−k(x, t)
)
+3a

m−1

∑
j=0

u j(x, t)(um−1− j)xx(x, t)

+a(um−1)xxx(x, t)
))

.

(12)

The zero order solitary wave solution can be taken as the initial value of the state variable,

which is taken in this case as u0(x, t) = u(x,0) = −k tanh(kx
2 ), substituting this zero order as

approximate solitary wave solution into (12), using the Definitions 2.5 and 2.6, it leads to the

first order approximate solitary wave solution

u1(x, t) =
ah̄qk4tα

2Γ(α +1)

(
9tanh4(

kx
2
)−11tanh2(

kx
2
)+2

)
.

Substituting first order approximate solitary wave solution into (12), using the Definitions 2.5

and 2.6 then leads to the second order approximate solitary wave solution in the following

expression

u2(x, t) =
ah̄(1+ h̄)qk4tα

2Γ(α +1)

(
9tanh4(

kx
2
)−11tanh2(

kx
2
)+2

)
+

a2h̄2q2k7t2α

4Γ(2α +1)

(
−837tanh7(

kx
2
)+1791tanh5(

kx
2
)−1169tanh3(

kx
2
)+215tanh(

kx
2
)
)
.
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Making use of the Maple package or other software, substituting m− 1-th order approximate

solitary wave solution into (12), we obtain um(x, t), there leads to the m-th order approximate

solitary wave solution. Now, we have

u(x, t)

= u0(x, t)+u1(x, t)+u2(x, t)+ · · ·

=−k tanh(
kx
2
)+

ah̄qk4tα

2Γ(α +1)

(
9tanh4(

kx
2
)−11tanh2(

kx
2
)+2

)
+

ah̄(1+ h̄)qk4tα

2Γ(α +1)

(
9tanh4(

kx
2
)−11tanh2(

kx
2
)+2

)
+

a2h̄2q2k7t2α

4Γ(2α +1)

(
−837tanh7(

kx
2
)+1791tanh5(

kx
2
)−1169tanh3(

kx
2
)+215tanh(

kx
2
)
)

+ · · · .

In view of the Theorem 3.1, as m tends to infinity, the iteration series leads to the exact solitary

wave solution of the time-fractional STO equation

u(x, t) =−k tanh
(k

2
(
x− ak2

Γ(1+α)
tα
))

,

which is the same exact solution in [22] via the simplest equation method.

5. Discussion

The aim of present work is to develop an effective and new coupling method of homotopy

analysis method and Laplace transform method for the time-fractional STO equation. Taking

a = 1, k = 2, h̄ =−1.5, 3-dimensional surface representation of the approximate solution u(x, t)

for the time-fractional STO equation with space x and time t for different values of the order

α is presented respectively in Figure 1, the solution u is still a single soliton wave solution for

all values of the order α . It shows that the balancing scenario between nonlinearity and disper-

sion is still valid. Figure 2 presents the solitary wave solution of the order at α = 1, this figure

shows that the good agreement with the approximate solution and solitary wave solution. By

computing the absolute error |u(x, t)−U3(x, t)|, Figure 3 the curves depicted the behavior of

the approximate solution u(x, t) due to the variation of the order α . This behavior indicates that



APPROXIMATE SOLUTIONS OF TIME-FRACTIONAL SHARMA-TASSO-OLEVER EQUATIONS 11

−4
−2

0
2

4

0

0.5

1

1.5

2
−2

−1

0

1

2

x

(a1) α=0.95

t

u(
x,

t)

−4
−2

0
2

4

0

0.5

1

1.5

2
−2

−1

0

1

2

x

(a2) α=0.8

t

u(
x,

t)

−4
−2

0
2

4

0

0.5

1

1.5

2
−2

−1

0

1

2

x

(a3) α=0.5

t

u(
x,

t)

−4
−2

0
2

4

0

0.5

1

1.5

2
−2

−1

0

1

2

x

(a4) α=0.2

t

u(
x,

t)

Figure 1 The surfaces of the approximate solutions u(x, t)
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Figure 2 The surfaces of the exact solution u(x, t)

the increasing of the value t and x, increases u(1, t) of the solitary wave solution and decreases

u(x,0.5) of the solitary wave solution, respectively. That is, the order α can be used to modify

the shape of the solitary wave without change of the nonlinearity and the dispersion effects in



12 YOUWEI ZHANG

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

u(
1,

t)

 

 

α=0.95

α=0.8

α=0.5

α=0.2

−1 −0.5 0 0.5 1
1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

x

u(
x,

0.
5)

 

 

α=0.95

α=0.8

α=0.5

α=0.2

Figure 3 The curves of the approximate solution u(x, t) at x = 1 and at t = 0.5, respectively

−2.5 −2 −1.5 −1 −0.5 0
−2

−1.95

−1.9

−1.85

−1.8

−1.75

−1.7

−1.65

−1.6

−1.55

−1.5

h̄

u(
1,

0.
5)

 

 

α=1

α=0.95

α=0.8

α=0.5

α=0.2

Figure 4 The curves of h̄ for different value of α at point (1,0.5)

the medium. Figure 4 shows the h̄-curve obtained from the 3th-order homotopy analysis trans-

form method approximate solution of time-fractional STO equation at x = 1, t = 0.5. In our

study, it is obvious that the acceptable range of auxiliary parameter is h̄ < −1. We still have

freedom to choose the auxiliary parameter according to h̄ curve. The valid regions of conver-

gence correspond to the line segments nearly parallel to the horizontal axis. Table 1 shows that

the new coupling method of homotopy analysis method and Laplace transform method obtained

nearly identical to the known exact solution and the approximate analytical solution obtained

increases very rapidly with the increases in x and t by proposed method. Meanwhile, the homo-

topy analysis transform method is capable of reducing the volume of the computational work as

compared to the classical methods with high accuracy of the numerical result and will consider-

ably benefit mathematicians and scientists working in the field of partial differential equations.

Different from the other numerical methods are given low degree of accuracy for large values
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TABLE 1. Absolute error in different value α at t = 0.5

x
h̄ =−1.5

α = 1 α = 0.95 α = 0.8 α = 0.5 |u−U3| (α = 0.5)

12.0 -1.9999999917 -1.9999999896 -1.9999999790 -1.9999999106 8.11121299e-08

10.0 -1.9999995498 -1.9999994356 -1.9999988553 -1.9999951212 4.42856616e-06

8.0 -1.9999754233 -1.9999691886 -1.9999375049 -1.9997336490 2.41774255e-04

6.0 -1.9986585994 -1.9983184517 -1.9965907420 -1.9855094471 1.31491523e-02

4.0 -1.9280551601 -1.9102136391 -1.8219926388 -1.3374816304 5.90573529e-01

2.0 0.0000000000 0.2251276590 0.8709753567 1.6621106564 1.66211066e-00

0.0 1.9280551601 1.9424035993 1.9713951856 1.9932517402 6.51965800e-02

-2.0 1.9986585994 1.9989299597 1.9994723805 1.9998761962 1.21759679e-03

-4.0 1.9999754233 1.9999803963 1.9999903350 1.9999977323 2.23090851e-05

-6.0 1.9999995498 1.9999996409 1.9999998229 1.9999999584 4.08607840e-07

-8.0 1.9999999917 1.9999999934 1.9999999967 1.9999999992 7.48391015e-09

-10.0 1.9999999998 1.9999999998 1.9999999999 1.9999999999 1.37080125e-10

of x and t. Therefore, the homotopy analysis transform method better handle with the nonlinear

problems without any assumption and restriction.
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