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ON A BOUNDARY BLOW-UP PROBLEM FOR THE MONGE-AMPÈRE
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Abstract. We consider boundary blow-up solutions to the Monge-Ampère equation detD2u = p(x)eq(x)u in bound-

ed, smooth and strictly convex domain in RN . Our main concern is the effect of the non-constant weight function

q(x) on solvability of the problem. Existence and non-existence results are obtained through sub-super solution

method and comparison principle.
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1. Introduction

Let us consider the Monge-Ampère equation
det D2u = p(x)eq(x)u, x ∈Ω,

u(x)→+∞, x→ ∂Ω,

(1.1)

where Ω is a bounded smooth and strictly convex domain in RN , N ≥ 2, and p(x) is a positive

smooth function on Ω. Problem (1.1) has a singular boundary condition, and it is usually called

boundary blow-up problem in literature. Such problem was first studied by Bieberbach [1] for

the equation ∆u = eu in a smooth bounded domain in R2. In recent years, there are extensive

works studying boundary blow-up problems. We refer the reader to [2, 3, 4, 5, 6, 7], which

focus on such problems governed by the Monge-Ampère operator.
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Recall that when q(x) ≡ 1, problem (1.1) was studied in [4] by Lazer and Mckenna as a

generalized Bieberbach problem, and they established the following result.

Theorem A (see Theorem 2.3 in [4]) Let Ω be a smooth, bounded strictly convex domain in

RN , N ≥ 2. If p ∈C∞(Ω) and p(x)> 0 for all x ∈Ω, then there exists a unique u ∈C∞(Ω) such

that 
det D2u = p(x)eu(x), x ∈Ω,

u(x)→+∞, x→ ∂Ω.

(1.2)

In this paper, we introduce a weight function in the nonlinearity, as described by (1.1), and

study its effect on existence and nonexistence of boundary blow-up solutions. This is motivated

by the recent work [8], where the authors introduced new weight functions when dealing with

boundary blow-up problems governed by the Laplace operator. As the authors of [8] found,

introducing certain weight functions in the nonlinearity may make it more difficult to study

problems such as existence, nonexistence, uniqueness and blow-up rates of solutions. For re-

lated works we refer the reader to [9, 10] and the pioneering paper [11]. None of these nor any

other articles, however, consider equations governed by the Monge-Ampère operator as we do

here.

Note that a natural question for problem (1.2) is whether it can admit classical solutions with

e replaced by other positive constants, written
det D2u = p(x)au, x ∈Ω,

u(x)→+∞, x→ ∂Ω.

(1.3)

More generally, assume a is replaced by a positive function, say a(x) in (1.3), since one can

write a(x) = eq(x) for some q(x), the question arises: How does the behavior of q(x) affect the

solvability of (1.1).

Our results concerning these questions can be summarized as follows. Firstly, (1.3) has a

solution(which is unique) for a > 1 and it admits no solution for 0 < a < 1, as indicated by

Lemma 3.1 and Theorem 3.3 in Section 3. Secondly, our Theorem 3.2, which is obtained by

sub-sup solution method, asserts that (1.1) has a classical solution if q(x)∈C∞(Ω) is positive in

Ω. We also obtain a nonexistence result in Theorem 3.3, as a counterpart of Theorem 3.2. That
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is, once q(x) is non-positive in B(x0,δ )∩Ω for some x0 ∈ ∂Ω and δ > 0, no solution for (1.1)

would exist.

2. Preliminaries

In this section, we list out some known facts for the reader’s convenience, and give some

remarks on the part of them, which is prepared for proving our results in Section 3.

First, we recall the following two comparison lemmas. The first is the Comparison Prin-

ciple for the Monge-Ampère equation, see Theorem 1.4.6 in [12]. We write it out in a form

concerning smooth functions.

Lemma 2.1. Let Ω be a bounded domain in RN . If u, v∈C2(Ω)∩C(Ω) are two convex functions

satisfying  det D2u≥ det D2v, x ∈Ω;

u(x)≤ v(x), x ∈ ∂Ω,

then u(x)≤ v(x) for any x ∈Ω.

The second one is taken from Lemma 2.1 in [4].

Lemma 2.2. Let Ω be a bounded domain in RN , N ≥ 2, and let uk ∈C2(Ω)∩C(Ω) for k = 1,2.

Let f (x,ξ ) be defined for x ∈Ω and ξ in some interval containing the ranges of u1 and u2 and

assume that f (x,ξ ) is strictly increasing in ξ for all x ∈Ω. If

(i): the Hessian matrix D2u1 is positive definite in Ω,

(ii): det D2u1 ≥ f (x,u1(x)), ∀x ∈Ω,

(iii): det D2u2 ≤ f (x,u2(x)), ∀x ∈Ω,

(iv): u1(x)≤ u2(x), ∀x ∈ ∂Ω,

then we have

u1(x)≤ u2(x), ∀x ∈Ω.

Remark 2.3. In the statement of lemma 2.2, if u2 ∈C2(Ω)∩C(Ω) is replaced by ũ2 ∈C2(Ω)

with ũ2(x)→ +∞ as x→ ∂Ω(such that condition (iv) is automatically valid in more general

sense), then it holds u1(x) ≤ ũ2(x), ∀x ∈ Ω. Indeed, if u1(x0) > ũ2(x0) for some x0 ∈ Ω, there
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will be a compact sub-domain Ω′ of Ω such that x0 ∈ Ω′, u1(x) > ũ2(x) in Ω′, and u1(x) =

ũ2(x) for x ∈ ∂Ω′. However, one can use Lemma 2.2 in Ω′ to deduce u1(x) ≤ ũ2(x) in Ω′, a

contradiction. Similarly, one deduce that, the function v in Lemma 2.1 can be replaced by a

function ṽ ∈C2(Ω) which may take infinite values on part or whole of ∂Ω.

We end this section with a known regularity result concerning Monge-Ampère equations. A

slight adjustment of Lemma 2.2 in [4] will yield the following lemma, whose proof can be given

in a similar way, using Proposition 2.4 (ii) of [13].

Lemma 2.4. Let Ω be a bounded smooth domain in RN , N ≥ 2. Let f ∈ C∞(Ω×R) with

f (x,ξ )> 0 for (x,ξ ) ∈Ω×R. Let u ∈C∞(Ω) be a solution of the Dirichlet problem det D2u = f (x,u), x ∈Ω,

u(x) = c = constant, x ∈ ∂Ω,

with u(x) < c in Ω. Let Ω′ be a compact sub-domain of Ω and assume that a ≤ u(x) ≤ b for

x ∈ Ω′ and let k ≥ 1 be an integer. There exists a constant C∗ which depends only on k, a, b,

bounds for the derivatives of f (x,ξ ) for (x,ξ ) ∈Ω′× [a,b], and dist(Ω′,∂Ω) such that

‖u‖Ck(Ω′) ≤C∗.

3. Existence and nonexistence results

First of all, we show that (1.3) has a unique solution for a > 1. Indeed, denote a = eq, we

have the following.

Lemma 3.1. Let Ω be a bounded smooth and strictly convex domain in RN , N ≥ 2, and let

p(x) ∈ C∞(Ω) be a positive function on Ω. If q > 0 is a constant then there exists a unique

u ∈C∞(Ω) such that 
det D2u = p(x)equ, x ∈Ω,

u(x)→+∞, x→ ∂Ω.

(3.1)
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Proof. Direct calculation shows (3.1) can be transformed to
det D2v = qN p(x)ev, x ∈Ω,

v(x)→+∞, x→ ∂Ω

(3.2)

by letting v(x) = qu(x). Thus the unique solvability of (3.2) (see Theorem 2.3 in [4]) implies

the unique solvability of (3.1).

The main result of this paper is contained in the following two theorems. Since we cannot

find explicit sub-sup solutions as in [4], our proof for the existence result is not straight forward.

The idea comes from [8]. We first establish the following theorem.

Theorem 3.2. Let Ω be a bounded smooth and strictly convex domain in RN , N ≥ 2. Let

p(x)∈C∞(Ω), p(x)> 0 on Ω and q(x)∈C∞(Ω) with q(x)> 0 in Ω. Then there exists u∈C∞(Ω)

that solves problem (1.1).

Proof. Consider the following problem
det D2u = p(x)eq(x)u, x ∈Ω,

u(x) = n, x ∈ ∂Ω,

(3.3)

where n is a positive integer. By Theorem 1.1 in [14], there exists a unique strictly convex

un ∈C∞(Ω) that solves  det D2u = p(x)enq(x), x ∈Ω,

u(x) = n, x ∈ ∂Ω,

and it is a sub-solution of (3.3) in the sense that det D2un ≥ p(x)eq(x)un, x ∈Ω,

un(x) = n, x ∈ ∂Ω.

By Theorem 7.1 in [14], (3.3) admits a unique strictly convex solution un ∈C∞(Ω) with un ≥ un

on Ω. From Lemma 2.2, we infer un2 ≥ un1 if n2 ≥ n1 . So un(x) is increasing in n for each

x ∈Ω.

Claim. {un(x)}∞
n=1 is uniformly bounded from above in any compact sub-domain of Ω.

Let D be an arbitrary compact sub-domain of Ω. Since u1(x) = 1 for x ∈ ∂Ω, we can choose

a small δ0 > 0 such that u1(x) ≥ 0 in Ωδ0 := {x ∈ Ω : dist(x,∂Ω) < δ0}, and thus un(x) ≥ 0
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in Ωδ0 for each n ∈ N. Then there exists a δ1 with 0 < δ1 < δ0 such that D ⊂ Ω′ := {x ∈ Ω :

dist(x,∂Ω) > δ1}. Let x0 ∈ ∂Ω′, because q(x0) > 0 and q(x) is continuous, there exists ε > 0

such that B(x0,ε) ⊂ Ωδ0 and q(x) ≥ q0 := 1
2q(x0) > 0 in B(x0,ε). Obviously, un(x) ≥ 0 in

B(x0,ε) for each n ∈ N. Thus we have

det D2un = p(x)eq(x)un ≥ p(x)eq0un, ∀x ∈ B(x0,ε).

By Lemma 3.1, there exists a unique v ∈C∞(B(x0,ε)) such that det D2v = p(x)eq0v, x ∈ B(x0,ε),

v(x)→+∞, x→ ∂B(x0,ε).

Now Lemma 2.2 and Remark 2.3 give the comparison that un ≤ v in B(x0,ε) for all n ∈ N. So

{un(x)}∞
n=1 is uniformly bounded from above in B(x0,

1
2ε). Since x0 ∈ ∂Ω′ is arbitrarily chosen,

there exists a small ball centered at each point of ∂Ω′ in which {un(x)}∞
n=1 has a uniformly upper

bound, which yield an uniformly upper bound of {un(x)}∞
n=1 on ∂Ω′. Notice that un ∈C∞(Ω)

is strictly convex, so the Hessian matrix of un is positively definite on Ω′ and its eigenvalues are

all positive on Ω′. We have ∆u > 0 in Ω′, which implies un(x)|Ω′ attains its maximum on ∂Ω′

by the maximum principle ([15]). Hence {un(x)}∞
n=1 is uniformly bounded from above on Ω′,

and our claim holds.

Now we can define a real valued function u(x) := lim
n→∞

un(x) for each x ∈ Ω. What’s more,

let f (x,ξ ) := p(x)eq(x)ξ , Ω′ be a compact sub-domain of Ω, and k ≥ 1 a positive integer, then

Lemma 2.4 shows there exists a constant C∗ which depends only on k, a := min
x∈Ω′

u1(x), b := the

uniformly upper bound of {un(x)}∞
n=1 on Ω′, bounds for the derivatives of f (x,ξ ) for (x,ξ ) ∈

Ω′× [a,b], and dist(Ω′,∂Ω) such that

‖u‖Ck(Ω′) ≤C∗.

A compactness argument similar to the one used in the proof of Theorem 2.1 in [4] shows u(x)

belongs to C∞(Ω′) thus C∞(Ω), and it satisfies

det D2u = p(x)eq(x)u, x ∈Ω.

Finally, let us prove the function u(x) is such that u(x)→ +∞ as x→ ∂Ω. For arbitrarily

fixed M > 0, consider the function u[M]+1 which satisfies
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u[M]+1(x) = [M]+1, x ∈ ∂Ω.

Set

ΩM,ε = {x ∈Ω|u[M]+1(x)≤ [M]+1− ε},

where ε is a small positive number such that [M]+1− ε > M and

min
x∈Ω

u[M]+1(x)< [M]+1− ε.

It is easy to see that ΩM,ε is a nonempty compact subset of RN . Thus there exist x1 ∈ ∂Ω and

x2 ∈ΩM,ε such that

dist(x1,x2) = dist(∂Ω,ΩM,ε) =: δM,ε .

Moreover, δM,ε > 0 because ∂Ω∩ΩM,ε = /0. Now, for each x ∈Ω such that dist(x,∂Ω)<
δM,ε

2

we have

u[M]+1(x)> [M]+1− ε > M,

which completes the proof because u(x) = lim
n→∞

un(x) ≥ u[M]+1(x) > M for each x ∈ Ω with

dist(x,∂Ω)<
δM,ε

2 .

Theorem 3.3. Let Ω be a bounded smooth and strictly convex domain in RN , N ≥ 2. Let

p(x) ∈ C∞(Ω), p(x) > 0 on Ω and q(x) ∈ C∞(Ω). If q(x) ≤ 0 in a ball relative to Ω, say

B(x0,δ )∩Ω for some x0 ∈ ∂Ω and δ > 0, then problem (1.1) admits no classical solution.

Proof. We argue by contradiction. Suppose u is a classical solution of (1.1). Without loss of

generality we can assume δ < diam(Ω) is small, such that u(x) > 0 in B(x0,δ )∩Ω due to the

singular boundary condition. Let D be a smooth strictly convex sub-domain of Ω such that

D⊂ B(x0,δ )∩Ω, and ∂Ω∩∂D contains B(x0,
2
3δ )∩∂Ω. Let ϕ be a smooth function supported

on ∂D satisfying 0≤ ϕ ≤ 1, ϕ = 1 on B(x0,
1
3δ )∩∂Ω and ϕ = 0 on ∂D\ (B(x0,

2
3δ )∩∂Ω). By

Theorem 1.1 in [14], the problem det D2z = nN , x ∈ D,

z = nϕ, x ∈ ∂D

with n ∈ N has a unique smooth strictly convex solution zn. We can choose n large such that

det D2zn = nN ≥max
x∈Ω

p(x)≥ det D2u, x ∈ D.
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By Lemma 2.1 and Remark 2.3, for large n, zn ≤ u in D because zn ≤ u on ∂D. However,

wn := 1
nzn satisfies  det D2wn = 1, x ∈ D,

wn = ϕ, x ∈ ∂D.

Hence zn = nw0, where w0 is the unique smooth strictly convex solution of det D2w = 1, x ∈ D,

w = ϕ, x ∈ ∂D.

Notice w0(x0) = 1, so there exists a ε > 0 small such that (B(x0,ε)∩Ω) ⊂ D and w0(x) ≥ 1
2

in B(x0,ε)∩Ω. From above we know for large n, 1
2n≤ u in B(x0,ε)∩Ω, which is impossible.

This completes the proof.

Acknowledgment

This work was supported by the Research Fund for the Doctoral Program of Henan Normal

University under Grant 5101019170149.

REFERENCES

[1] L. Bieberbach, ∆u = eu und die automorphen Funktionen, Math. Ann. 77 (1916), 173-212.

[2] F.C. Cirstea, C. Trombetti, On the Monge-Ampère equation with boundary blow-up: existence, uniqueness

and asymptotics, Calc. Var. Partial Differential Equations. 31 (2008), 167-186.

[3] B. Guan, H.Y. Jian, On the Monge-Ampère equation with infinite boundary value, Pac. J. Math. 216 (2004),

77-94.

[4] A.C. Lazer, P.J. McKenna, On sigular boundary value problems for the Monge-Ampère operator, J. Math.

Anal. Appl. 197 (1996), 341-362.

[5] J. Matero, The Bieberbach-Rademacher problem for the Monge-Ampère operator, Manuscripta Math. 91

(1996), 379-391.

[6] A. Mohammed, On the existence of solutions to the Monge-Ampère equation with infinite boundary values,

Proc. Amer. Math. Soc. 135 (2007), 141-149.

[7] H.T. Yang, Y.B Chang, On the blow-up boundary solutions of the Monge-Ampère equation with singular

weights, Comm. Pure Appl. Anal. 11 (2012), 697-708.

[8] J. Garcı́a-Melián, J. Rossi, J.C. Sabina de Lis, Large solutions for the Laplacian with a power nonlinearity

given by a variable exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire. 26 (2009), 889-902.
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[13] K. Tso, On a real Monge-Ampère functional, Invent. Math. 101 (1990), 425-448.

[14] L. Caffarelli, L. Nirenberg, J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations I.

Monge-Ampère equations, Comm. Pure Appl. Math. 37 (1984), 369-402.

[15] D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin,

Heidelberg, 2001.


