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ON THE GAUSS-NEWTON METHOD FOR CONVEX OPTIMIZATION
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Abstract. Using our new idea of restricted convergence domain, we present a semi-local conver-

gence analysis of the Gauss-Newton method for solving convex composite optimization problem-

s [11,13,17,18,22,23,25]. The convergence analysis is based on a combination of a center-majorant

and majorant function. The new approach has the advantage of larger convergence domain, tighter

error bounds on the distances involved and the information on the location of the solution is at least

as precise.
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1. Introduction

It is well known (see, e.g., [8, 11, 12, 14, 17, 20, 25, 27]) that a lot of problems in

Mathematical Programming such as convex inclusion, minimax problems, penal-

ization methods, goal programming, constrained optimization and other problems

can be formulated like composite optimization problem.

In this study, using the idea of restricted domain, we present a semi-local con-

vergence analysis with tighter error estimates on the distances involved and the
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information on the location of the solution is at least as precise. These advantages

were obtained (under the same computational cost) using same or weaker sufficient

convergence hypotheses.

The study is organized as follows: Section 2 contains the definition of Gauss-

Newton Algorithm(GNA) and the semi-local convergence analysis of GNA. Nu-

merical examples and applications of our theoretical results and favorable compar-

isons to earlier studies (see, e.g., [13, 17, 19, 22, 23]) are presented in Section 2.3.

2. The Gauss-Newton algorithm, regularity and majorant condi-

tion

2.1. Gauss-Newton algorithm. Let h : Rm −→ R is convex, F : Rn −→ Rm is

Fréchet-differentiable operator and m,n ∈ N?. We consider the convex composite

optimization problem

(2.1) min
x∈Rn

P(x) := h(F(x)).

The problem (2.1) is very important because the study of (2.1) provides a uni-

fied framework for the development and analysis of algorithmic method and it is

a powerfull tool for the study of first and second-order optimality conditions in

constrained optimization (see, e.g., [2, 11, 13, 20, 22, 23, 25, 27]). We assume that

the minimum hmin of the function h is attained. Problem (2.1) is related to

(2.2) F(x) ∈ C ,

where

(2.3) C = argminh

is the set of all minimum points of h.

Let ξ ∈ [1,∞), ∆ ∈ (0,∞] and for each x ∈ Rn, define D∆(x) by

(2.4)
D∆(x) = {d ∈ Rn :‖ d ‖≤ ∆, h(F(x)+F ′(x)d)≤ h(F(x)+F ′(x)d′)

for all d′ ∈ Rn with ‖ d′ ‖≤ ∆}.



ON THE GAUSS-NEWTON METHOD FOR CONVEX OPTIMIZATION 3

Let x0 ∈ Rn be an initial point. The Gauss-Newton algorithm (GNA) associated

with (ξ ,∆,x0) as defined in [13] (see also [11, 17]) is as follows:

Algorithm GNA : (ξ ,∆,x0)

INICIALIZATION. Take ξ ∈ [1,∞), ∆ ∈ (0,∞] and x0 ∈ Rn, set k = 0.

STOP CRITERION. Compute D∆(xk). If 0 ∈D∆(xk), STOP. Otherwise.

ITERATIVE STEP. Compute dk satisfying dk ∈ D∆(xk), ‖dk‖ ≤ ξ d(0,D∆(xk)),

Then, set xk+1 = xk +dk, k = k+1 and GO TO STOP CRITERION.

Here, d(x,W ) denotes the distance from x to W in the finite dimensional Banach

space containing W . Note that the set D∆(x) (x∈Rn) is nonempty and is the solution

of the following convex optimization problem

(2.5) min
d∈Rn,‖d‖≤∆

h(F(x)+F ′(x)d),

which can be solved by well known methods such as the subgradient or cutting

plane or bundle methods (see, e.g., [13, 20, 25–27]).

Let U(x,r) denote the open ball in Rn (or Rm) centered at x and of radius r > 0.

By U(x,r) we denote its closure. Let W be a closed convex subset of Rn (or Rm).

The negative polar of W denoted by W� is defined as

(2.6) W� = {z :< z,w >≤ 0 for each w ∈W}.

2.2. Regularity. In order for us to make the study as self contained as possible,

we mention some concepts and results on regularities which can be found in [12]

(see also, e.g., [11, 17, 22, 23, 25]). For a set-valued mapping T : Rn⇒ Rm and for

a set A in Rn or Rm, we denote by

(2.7) D(T ) = {x ∈ Rn : T x 6= /0}, R(T ) =
⋃

x∈D(T )

T x,

T−1y = {x ∈ Rn : y ∈ T x} and ‖ A ‖= inf
a∈A
‖ a ‖ .

Consider the inclusion

(2.8) F(x) ∈C,
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where C is a closed convex set in Rm. Let x ∈ Rn and

(2.9) D(x) = {d ∈ Rn : F(x)+F ′(x)d ∈C}.

Definition 2.1. Let x0 ∈ Rn.

(a) x0 is quasi-regular point of (2.8) if there exist R∈ (0,+∞) and an increasing

positive function β on [0,R) such that

(2.10) D(x) 6= /0 and d(0,D(x))≤ β (‖ x− x0 ‖)d(F(x),C) for all x ∈U(x0,R).

β (‖ x− x0 ‖) is an "error bound" in determining how for the origin is away

from the solution set of (2.8).

(b) x0 is a regular point of (2.8) if

(2.11) ker(F ′(x0)
T )∩ (C−F(x0))

� = {0}.

Proposition 2.2. (see, e.g., [13,17,22,25]) Let x0 be a regular point of (2.8). Then,

there are constants R > 0 and β > 0 such that (2.10) holds for R and β (·) = β .

Therefore, x0 is a quasi-regular point with the quasi-regular radius Rx0 ≥ R and the

quasi-regular bound function βx0 ≤ β on [0,R].

Remark 2.3. (a) D(x) can be considered as the solution set of the linearized

problem associated to (2.8)

(2.12) F(x)+F ′(x)d ∈C.

(b) If C defined in (2.8) is the set of all minimum points of h and if there exists

d0 ∈ D(x) with ‖ d0 ‖≤ ∆, then d0 ∈ D∆(x) and for each d ∈ Rn, we have

the following equivalence

(2.13) d ∈D∆(x)⇐⇒ d ∈D(x)⇐⇒ d ∈D∞(x).

(c) Let Rx0 denote the supremum of R such that (2.10) holds for some function

β defined in Definition 2.1. Let R ∈ [0,Rx0] and BR(x0) denotes the set of

function β defined on [0,R) such that (2.10) holds. Define

(2.14) βx0(t) = inf{β (t) : β ∈BRx0
(x0)} for each t ∈ [0,Rx0).
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All function β ∈BR(x0) with lim
t→R−

β (t) < +∞ can be extended to an ele-

ment of BRx0
(x0) and we have that

(2.15) βx0(t) = inf{β (t) : β ∈BR(x0)} for each t ∈ [0,R).

Rx0 and βx0 are called the quasi-regular radius and the quasi-regular function

of the quasi-regular point x0, respectively.

We denote by rx0 the supremum of r such that (2.10) holds for some increasing

positive valued function β on [0,r). That is,

(2.16) rx0 := sup{r : ∃β : [0,r)→ (0,∞) satisfing (2.10)}.

Definition 2.4. ( [11,13,17,25]) Let C⊂Rm be non-empty, closed and convex cone,

F : Rn → Rm be continuously differentiable and x ∈ Rn. Define the multifunction

Tx : Rn→ P(Rm) by

Txd = F ′(x)d−C.

The domain, norm and inverse of Tx are defined, respectively, by

D(Tx) := {d ∈ Rn : Txd 6= /0},

‖Tx‖ := sup{‖Txd‖ : x ∈ D(Tx),‖d‖< 1},

T−1
x y := {d ∈ Rn : F ′(x)d ∈ y+C}, y ∈ Rm,

where ‖Txd‖ := inf{‖v‖ : v ∈ Txd}. Then, the point x0 ∈ Rn satisfies the Robinson

condition if the multifunction Tx0 carries Rn onto Rm. That is, for each y∈Rm there

exist d ∈ Rn, c ∈C such that y = F ′(x0)d−C.

We need the following Banach-type perturbation result.

Lemma 2.5. ( [2, 11, 17, 21, 25]) Let F : Rn → Rm be continuously differentiable

and C a nonempty closed convex cone. Suppose that x0 ∈ R satisfies the Robinson

condition. Then

‖T−1
x0
‖< ∞.
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Moreover, if S is a linear transformation from Rn to Rm such that ‖T−1
x0
‖‖S‖ < 1,

then the convex process T̄ , defined by T̄ := Tx0 +S, carries Rn onto Rm, ‖T−1
x0
‖< ∞

and

‖T̄−1‖ ≤
‖T−1

x0
‖

1−‖T−1
x0 ‖‖S‖

.

2.3. Majorant Condition. We need the definition of the majorant function and

the definition of the center-majorant function for F in order to study the semi-local

convergence of GNA.

Definition 2.6. Let R > 0, x0 ∈ Rn and F : Rn → Rm be continuously Fréchet-

differentiable. A twice-differentiable function f0 : [0,R)→ R is called a center-

majorant function for F on U(x0,R), if for each x ∈U(x0,R),

(h0
0): ‖F ′(x)−F ′(x0)‖ ≤ f ′0 (‖x− x0‖)− f ′0(0);

(h0
1): f0(0) = 0, f ′0(0) =−1;

and

(h0
2): f ′0 is convex and strictly increasing.

(h3): f0(t)≤ f (t) for each t ∈ [0,R0).

Suppose that R0 < R. If R0 ≥ R, we do not need to introduce Definition 2.7.

Definition 2.7. [6, 9, 11, 17] Let x0 ∈ Rn and F : Rn → Rm be continuously d-

ifferentiable. Let R0 = sup{t ∈ [0,R) : f ′0(t) < 0}. A twice-differentiable func-

tion f : [0,R0)→ R is called a majorant function for F on U(x0,R0), if for each

x,y ∈U(x0,R0), ‖x− x0‖+‖y− x‖< R0,

(h0): ‖F ′(y)−F ′(x)‖ ≤ f ′ (‖y− x‖+‖x− x0‖)− f ′ (‖x− x0‖);

(h1): f (0) = 0, f ′(0) =−1;

and

(h2): f ′ is convex and strictly increasing.

In Section 4, we present examples where hypotheses (h3) is satisfied. Let ξ > 0

and α > 0 be fixed and define auxiliary functions ϕ : [0,R0)→ R by

(2.17) ϕ(t) = ξ +(α−1)t +α f (t).
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We shall use the following hypotheses:

(h4): there exists s∗ ∈ (0,R0) such that for each t ∈ (0,s∗), ϕ(t) > 0 and

ϕ(s∗) = 0;

(h5): ϕ(t∗)< 0.

From now on we assume the hypotheses (h0)− (h4) and (h0
0)− (h0

2) which will

be called the hypotheses (H). Hypothesis (h5) shall be considered to hold only

when explicitly stated.

3. Semi-local convergence

We present the semi-local convergence of (GNA) in this section. First, we need an

auxiliary result.

Lemma 3.1. [11] Let F : Rn→Rm be continuously differentiable and let h : Rm→

R be real-valued and convex with a nonempty minimizer C. Suppose that x0 ∈ Rn

satisfies the Robinson condition. Then, x0 is a regular point of the inclusion F(x) ∈

C. In particular, x0 is a quasi-regular point of the inclusion F(x) ∈ C. Moreover,

suppose C is a cone, R0 > 0 and f0 : [0,R0)→ R is a center majorant function for

F on U(x0,R). Let ξ > 0, β0 = ‖T−1
x0
‖, the auxiliary function f0,ξ ,β0

: [0,R0)→ R

defined by

f0,ξ ,β0
(t) := ξ +(β0−1)t +β0 f0(t)

and

rβ0 := sup{t ∈ [0,R0) : f ′0,ξ ,β0
(t)< 0}.

If rx0 is the quasi-regular radius and βx0(.) is the quasi-regular bound function for

the quasi-regular point x0, then

rx0 ≥ rβ0 and βx0(t)≤
β0

1−β0(1+ f ′0(t))
for each t ∈ [0,rβ0).

Remark 3.2. If f0 = f , then Lemma 3.1 reduces to the corresponding one in [17,

Lemma 25]. Otherwise, i.e., if f ′0(t)< f ′(t) for each t ∈ [0,R0), then our result con-

stitutes an improvement obtained under less computational cost, since in practice
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the computation of function f requires the computation of f0 as a special case. Let

fξ ,β0
: [0,R0)→ R be defined by

fξ ,β0
(t) := ξ +(β0−1)t +β0 f (t) for each t ∈ [0,R0)

r̄β0 := sup{t ∈ [0,R0) : f ′
ξ ,β0

(t)< 0}

and let β̄x0(.) be the quasi-regular bound function for the quasi-regular point x0.

Then, we have that

f0,ξ ,β0
(t)< fξ ,β0

(t)

rβ0 ≤ r̄β0

and

βx0(t)≤ β̄x0(t) for each t ∈ [0,rβ0).

Hence, our result is an improvement (under less computational cost). We need a

semi-local convergence result for GNA.

Theorem 3.3. [11,17, Theorem 23] Let F :Rn→Rm be continuously differentiable.

Suppose that R > 0, x0 ∈ Rn and f : [0,R0)→ R is a majorant function for F on

U(x0,R0). Take the constant α > 0 and ξ > 0 and consider the auxiliary function

fξ ,α : [0,R0)→ R,

fξ ,α(t) = ξ +(α−1)t +α f (t).

If t∗ is the smallest zero of fξ ,α , then the sequence generated by Newton’s Method

for solving fξ ,α(t) = 0, with initial point t0 = 0,

tk+1 = tk− f ′
ξ ,α(tk)

−1 fξ ,α(tk), k = 0,1, · · · ,

is well defined, {tk} is strictly increasing, remains in [0, t∗), and converges Q−linearly

to t∗. Let η ∈ [1,∞), ∆ ∈ (0,∞] and h : Rm → R be real-valued and convex with

a nonempty minimizer set C. Suppose that C is a cone and x0 ∈ Rn satisfies the

Robinson condition. Let β0 = ‖T−1
x0
‖. If d(F(x0),C) > 0, t∗ ≤ rβ0 := {t ∈ [0,R) :

β0−1+β0 f ′(t)< 0},

∆≥ ξ ≥ ηβ0d(F(x0),C), α ≥ ηβ0

1+(η−1)β0[ f ′(ξ )+1]
,
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then sequence {xk} generated by GNA remains in U(x0, t∗), satisfies the inequality

‖xk+1− xk‖ ≤ tk+1− tk,

for k = 0,1, · · · , converging to a point x∗ ∈U(x0, t∗) such that F(x∗) ∈C,

‖x∗− xk‖ ≤ t∗− tk, k = 0,1, · · ·

and the convergence is R−linear. If, additionally, fξ ,α satisfies (h4) then the se-

quences {tk} and {xk} converge Q−quadratically and R− quadratically to t∗ and

x∗, respectively.

It is convenient for the semi-local convergence analysis that follows to introduce

scalar sequences {rk}, {sk} by

r0 = 0, r1 = ξ , r2 = r1−
f0,ξ ,α(r1)− f0,ξ ,α(r0)− f ′0,ξ ,α(r0)(r1− r0)

f ′0,ξ ,α(r1)

rk+2 = rk+1−
fξ ,α(rk+1)− fξ ,α(rk)− f ′

ξ ,α(rk)(rk+1− rk)

f ′0,ξ ,α(rk+1)
for each k = 1,2, · · ·

and

s0 = 0, s1 = ξ ,

sk+2 = sk+1−
fξ ,α(sk+1)− fξ ,α(sk)− f ′

ξ ,α(sk)(sk+1− sk)

f ′0,ξ ,α(sk+1)
for each k = 0,1,2, · · ·

Notice also that by the definition of Newton’s sequence {tk} we have that this se-

quence can be written as

t0 = 0, t1 = ξ ,

tk+2 = tk+1−
fξ ,α(tk+1)− fξ ,α(tk)− f ′

ξ ,α(tk)(tk+1− tk)

f ′
ξ ,α

(tk+1)
for each k = 0,1,2, · · ·

Next, we compare scalar sequences {rk}, {sk}, {tk}.

Lemma 3.4. Suppose that

(3.1)

−
( f ′

ξ ,α(u+θ(v−u))− f ′
ξ ,α(u))(v−u)

f0,ξ ,α(v)
≤−

( f ′
ξ ,α(ū+θ(v̄− ū))− f ′

ξ ,α(ū))(v̄− ū)

fξ ,α(v̄)
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for each u,v, ū, v̄ ∈ [0,R0), θ ∈ [0,1] with u ≤ v, v ≤ v̄, u ≤ ū and ū ≤ v̄. Then, se-

quences {rk}, {sk}, {tk} are increasingly convergent to their unique least upper

bounds denoted by r∗, s∗ and t∗, respectively. Moreover, the following estimates

hold

rk ≤ sk ≤ tk(3.2)

rk+1− rk ≤ sk+1− sk ≤ tk+1− tk(3.3)

and

(3.4) r∗ ≤ s∗ ≤ t∗.

Moreover, if (3.1) is a strict inequality, then (3.2) is a strict inequality for k =

2,3, · · · and (3.3) is a strict inequality for k = 1,2, · · · .

Proof. The monotonicity of sequence {tk} is shown in [17, Corollary 8]. Similarly

the monotonicity of sequences {rk}, {sk} is shown. Then, using a simple inductive

argument, the definition of sequences {rk}, {sk} and {tk} and (3.1), we show (3.2)

and (3.3). Finally (3.4) follows from (3.2).

�

If one simply follows the proof of Theorem 2.3 in [17] (i.e. essentially the proof

of Theorem 12 in [17]) it is straight forward to show that {rk} and {sk} can replace

{tk} in the proof of this theorems.

Notice also that in the computation of the upper bound on ‖x2− x1‖ only the

center-majorant function f0 can be used. That justifies the definition of sequence

{rk}. If the less precise majorant function f is used for the computation of the upper

bound on ‖x2−x1‖, then one can obtain the definition of sequence {sk}. Sequences

{rk}, {sk}, {tk} converge in general under different convergence criteria (see next

section). However, in the next result we show that {rk} and {sk} are majorizing

sequences for {xk} that converge under the same convergence criteria as {tk}.

Theorem 3.5. Let F : Rn→ Rm be continuously differentiable. Suppose that R >

0, x0 ∈ Rn, f0 : [0,R0)→ R is a center-majorant function for F on [0,R0) and f :
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[0,R0)→ R is a majorant function for F on [0,R0). Let α > 0 and ξ > 0. Define

auxiliary functions

f0,ξ ,α : [0,R0)→ R

fξ ,α : [0,R0)→ R

by

f0,ξ ,α(t) := ξ +(α−1)t + f0(t)

and

fξ ,α(t) := ξ +(α−1)t + f (t).

If t∗ is the smallest zero of fξ ,α , then sequences {rk}, {sk}, {tk} are increasingly

convergent to r∗, s∗, t∗, and converge Q−linearly provided that (3.1) holds.

Let η ∈ [1,∞), ∆ ∈ (0,∞) and h : Rm → R be real-valued convex function with

a nonempty minimizer set C. Suppose that C is a cone and x0 ∈ Rn satisfies the

Robinson condition. Let β0 = ‖T−1
x0
‖. Suppose that d(F(x0),C)> 0,

t∗ ≤ rβ0 := {t ∈ [0,R) : β0−1+β0 f ′0(t)< 0},

∆≥ ξ ≥ ηβ0d(F(x0),C),

α ≥ ηβ0

1+(η−1)β0(1+ f ′0(ξ ))
.

Then, sequence {xk} generated by (GNA) is well defined, remains in U(x0,r∗),

F(xk)+F ′(xk)(xk+1− xk) ∈C for each k = 0,1, · · ·

and converges to some x∗ ∈U(x0,r∗) such that F(x∗) ∈C. Moreover, the following

estimates hold for each k = 0,1, · · ·

‖xk+1− xk‖ ≤ rk+1− rk ≤ sk+1− sk ≤ tk+1− tk,

‖xk− x∗‖ ≤ r∗− rk,

‖xk− x∗‖ ≤ s∗− sk

and

‖xk− x∗‖ ≤ t∗− tk.
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If, additionally, fξ ,α satisfies (h4), then sequences {rk}, {sk}, {tk}, {xk} converge

Q−quadratically and R−quadratically to r∗, s∗, t∗, x∗, respectively.

Proof. The point x0 ∈ Rn satisfies the Robinson condition. We have by Lemma

3.1 that x0 is a quasi-regular point of the inclusion F(x) ∈C with the quasi-regular

radius rx0 ≥ rβ0. Then, using the assumption t∗ ≤ rβ0 we have that

t∗ < rx0.

Moreover, Lemma 3.1 also implies that the quasi-regular bound function βx0(.)

satisfies

(3.5) βx0(t)≤
β0

1−β0[ f ′0(t)+1]
, for each t ∈ [0,rβ0).

In view of ∆≥ ξ ≥ηβ0d(F(x0),C) and the preceding inequality implies that βx0(0)≤

β0, we get that

∆≥ ξ ≥ ηβx0(0)d(F(x0),C).

Using 0< ξ and t∗≤ rβ0 with the first statement in [17, Proposition 10] we conclude

that 0 < ξ < t∗ ≤ rβ0. So, using (3.5), f ′0(0) = −1, f ′0 as strictly increasing and

η ≥ 1; after simple algebraic manipulation we obtain

(3.6) η [ f ′0(t)+1]+
1

βx0(t)
≥ 1

β0
+(η−1)[ f ′0(t)+1]≥ 1

β0
+(η−1)[ f ′0(ξ )+1].

It follows from (3.6) that

ηβ0

1+(η−1)β0[ f ′0(ξ )+1]
≥ ηβx0(t)

ηβx0(t)[ f
′
0(t)+1]+1

for each t ∈ [ξ , t∗).

Hence, the assumption α ≥ ηβ0/[1+(η−1)β0( f ′0(ξ )+1)] and the last inequality

imply that

α ≥ sup
{

ηβx0(t)
ηβx0(t)[ f

′
0(t)+1]+1

: ξ ≤ t ≤ t∗
}
.

The result now follows from Lemma 3.1, Theorem 3.3 and Lemma 3.4.

�
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Remark 3.6. If f0 = f then tk = sk = rk and Theorem 3.5 reduces to Theorem

12 in [17]. Otherwise, (i.e., if f ′0(t) < f ′(t) for each t ∈ [0,R0)) it constitutes an

improvement (see also Remark 3.2). So, far these improvement were obtained under

the same sufficient convergence conditions. At this point, we are wondering if even

the sufficient convergence conditions can be weakened. We present such cases in

the next section.

4. Special cases and applications

We present different sufficient convergence conditions for sequences {rk}, {sk}, {tk}

(i.e., of {xk}) in some interesting cases. We shall set

f0(t) =
αL0

2
t2− t and f (t) =

αL
2

t2− t

for some L0 > 0 and L > 0.

Next, we present the following specialization of Theorem 3.5 under the Robinson

condition.

Theorem 4.1. Let F : U(x0,R) → Rm be continuously differentiable. Suppose:

there exist positive constants L0 and L such that

‖F ′(x)−F ′(x0)‖ ≤ L0‖x− x0‖ for each x ∈U(x0,R)

‖F ′(x)−F ′(y)‖ ≤ L‖x− y‖ for each x,y ∈U(x0,R0)

(4.1) δ0 = αl0ξ ≤ 1
2

and

α ≥ ηβ0

1+(η−1)L0β0ξ

where l0 = 1
8(4L+

√
L0L+8L2 +

√
L0L). Then
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(a) Scalar sequence {rk} defined by

r0 = 0, r1 = ξ ,r2 = r1−
αL0(r1− r0)

2

2(1−αL0r1)

rk+1 = rk−
αL(rk− rk−1)

2

2(1−αL0rk)
for each k = 2,3, · · ·

is increasingly convergent to its unique least upper bound r∗.

(b) Sequence {xk} generated by (GNA) is well defined, remains in U(x0,r∗) for

each k = 0,1,2 · · · and converges to a limit point x∗ ∈U(x0,r∗) satisfying

F(x∗) ∈C. Moreover, the following estimates hold for each k = 0,1, · · ·

‖xk+1− xk‖ ≤ rk+1− rk

and

‖xk− x∗‖ ≤ r∗− rk.

Notice that the convergence condition (4.1) was given by us in [9].

Remark 4.2. (a) In particular, if C = {0} and n=m, the Robinson condition is

equivalent to the condition that F ′(x0)
−1 is non-singular. Hence, for η = 1

we obtain the semi-local convergence for Newton’s method defined by

xk+1 = xk−F ′(xk)
−1F(xk) for each k = 0,1, · · ·

under the Lipschitz condition [5, 11, 27]. However, the convergence condi-

tion in [3], [14]- [18], [20]- [24] is given by

(4.2) δ = αLξ ≤ 1
2
.

Notice again that

l0 ≤ L

holds in general and L
l0

can be arbitrarily large [9]. Moreover, the corre-

sponding majorizing sequence sequence {tk} is defined by

t0 = 0, t1 = ξ , tk+1 = tk−
αL(tk− tk−1)

2

2(1−αLtk)
for each k = 1,2, · · · .



ON THE GAUSS-NEWTON METHOD FOR CONVEX OPTIMIZATION 15

Then, we have for l0 < L (i.e., L0 < L) that

rk < tk for each k = 1,2, · · ·

rk+1− rk < tk+1− tk for each k = 1,2, · · ·

and

r∗ ≤ t∗.

Moreover, notice that

(4.3) δ ≤ 1
2
⇒ δ0 ≤

1
2

(but not necessarily vice versa unless if L0 = L).

(b) If n 6= m, notice also that if L0 < L the α given in the preceding result

is larger than the old one using L instead of L0. Clearly, the rest of the

advantages stated in (a) also hold in this setting.

(c) If we consider the sequence {sk}, we have that

s0 = 0, s1 = ξ , s2 = s1−
L0(s1− s0)

2

2(1−L0s1)
,

sk+2 = sk+1−
L1(sk+1− sk)

2

2(1−L0sk+1)
for each k = 0,1,2, . . . ,

where L1 is the Lipschitz constant on U(x0,R). Notice that U(x0,R0) ⊆

U(x0,R), so L≤ L1. The sufficient convergence condition given by us in [11]

is

(4.4) δ1 = αl1ξ ≤ 1
2
,

where l1 = 1
8(4L1 +L0 +

√
L2

1 +8L0L1). Notice again that

δ ≤ 1
2
⇒ δ1 ≤

1
2

and

δ1 ≤
1
2
⇒ δ0 ≤

1
2

but not vice versa unless if L0 = L1.
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Finally, f0 and f as defined above Theorem 4.1 are center-majorant and

majorant functions for F, respectively. Then, with the above choices es-

timate (3.1) is satisfied. Therefore, the conclusions of Lemma 3.4 for se-

quences {rk}, {sk}, {tk} hold. Hence, the applicability of the Newton’s

method or (GNA) under the Robinson condition is expanded under the same

computational cost, since in practice the computation of constant L requires

the computation of L0 as a special case.

5. Numerical examples

We present a numerical example for α = 1, f0(t) =
L0
2 t2− t, f (t) = L

2 t2− t, using

Newton’s method f1(t) =
L1
2 t2− t in this section to show that our results can apply

to solve equations in cases the ones in [15] cannot.

EXAMPLE 5.1. Let B1 = B2 = R,x0 = 1,D =U(1,1−q), q ∈ [0, 1
2) and define

function F on D by

(5.1) F(x) = x3−q.

Then, we have that β = 1
3(1−q),L0 = 3−q,L1 = 2(2−q) and L = 2(1+ 1

K0
). The

Newton-Kantorovich condition (4.2) is not satisfied, since

(5.2) δ >
1
2

for each q ∈ [0,
1
2
).

Hence, there is no guarantee by the Newton-Kantorovich Theorem that Newton’s

method (2.1) converges to a zero of operator F. Let us see what old condition (4.4)

[11] gives:

(5.3) δ0 ≤
1
2
, if 0.429999999 < q <

1
2

Theorem 4.1(i.e., (4.1)) gives:

(5.4) δ0 ≤
1
2
, if 0.40783335 < q <

1
2
.
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Hence, we have demonstrated the improvements of Theorem 4.1 using this example.

6. Conclusion

We expanded the applicability of (GNA) under the Robinson condition in order to

approximate a solution of a convex composite optimization problem. The advan-

tages denoted by (A ) of our analysis over earlier works such as [11, 17, 19, 22, 23,

25] are also shown under the same computational cost.
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