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SMALLEST EIGENVALUES FOR FRACTIONAL BOUNDARY VALUE
PROBLEMS WITH A FRACTIONAL BOUNDARY CONDITION
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Abstract. Let n ∈ N, n ≥ 2. For n−1 < α ≤ n, we use the theory of u0-positive operators to show the existence

of and then compare smallest eigenvalues of the fractional boundary value problems Dα

0+u+λ1 p(t)u = 0, Dα

0+u+

λ2q(t)u = 0, 0 < t < 1, satisfying boundary conditions u(i)(0) = 0, i = 0,1, . . . ,n−2, Dβ

0+u(1) = 0, 0≤ β ≤ n−1,

where p and q are nonnegative continuous functions on [0,1] which do not vanish identically on any nondegenerate

compact subinterval of [0,1]. The cases where β = 0 and β > 0 are treated separately and then compared.

Keywords. Fractional boundary value problem; u0-positive operator; Smallest eigenvalue.

2010 Mathematics Subject Classification. 34B09, 34L15.

1. Introduction

Let n∈N, n≥ 2, and n−1 < α ≤ n. In this paper, we will consider boundary value problems

consisting of fractional differential equations

(1) Dα
0+u+λ1 p(t)u = 0, 0 < t < 1,

(2) Dα
0+u+λ2q(t)u = 0, 0 < t < 1,

which satisfy the boundary conditions

(3β ) u(i)(0) = 0, i = 0,1, . . . ,n−2, Dβ

0+u(1) = 0,
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0≤ β ≤ n−1, where Dα

0+ and Dβ

0+ are the standard Riemann-Liouville derivatives. Here p and

q are continuous nonnegative functions on [0,1] that do not vanish identically on any nondegen-

erate compact subinterval of [0,1]. The real numbers λ1 and λ2 such that these boundary value

problems yield a nontrivial solution are called eigenvalues.

The purpose of this paper is to show the existence of smallest eigenvalues by using the theory

of u0-positive operators with respect to a cone in a Banach space. Then, a comparison of

those eigenvalues can be made. The technique for showing the existence and then comparing

these smallest eigenvalues involve the application of sign properties of the Green’s function for

the specified boundary value problem, followed by the application of u0-positive operators with

respect to a cone in a Banach space. These applications are presented in books by Krasnosel’skii

[14] and by Krein and Rutman [15].

These cone theoretic techniques have been used by many authors to study the existence of

smallest eigenvalues of ordinary boundary value problems, difference equations, and dynamic

equations on time scales. See [1, 2, 3, 4, 5, 6, 7, 16, 17] and the references therein for some

examples. Recently, Eloe and Neugebauer [9] showed the existence of and compared smallest

eigenvalues for fractional boundary value problems with Dirichlet boundary conditions. These

results have been used and extended in [10, 11, 12, 18]. Here, we look to extend the results

to a fractional boundary value problem with fractional boundary conditions. The cases when

0 < β ≤ n−1 and when β = 0 are treated separately.

We point out that the Banach space used in this paper differs from the space used when

working with ordinary boundary value problems, even if α and β are integers. This method

has is benefits. Many times, when working with higher order problems, the problem needs to

be reduced to a lower order problem and then an appropriate Banach space, cone and interior

of the cone are chosen. See, for example, [16]. However, with this method, there is no need to

reduce the higher order problem to a lower order problem. The boundary conditions here cover

many problems that have not been dealt with before.

2. Preliminaries
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For completeness, we first introduce the definition of the Riemann-Liouville fractional de-

rivative. For n ∈ N and n−1 < α ≤ n, the α-th Riemann-Liouville fractional derivative of the

function u : [0,1]→ R, denoted Dα
0+u, is defined as

Dα
0+u(t) =

1
Γ(n−α)

dn

dtn

∫ t

0
(t− s)n−α−1u(s)ds,

provided the right-hand side exists.

Let B be a Banach space over R. A closed nonempty subset P of B is said to be a cone

provided the following:

(i) αu+βv ∈P , for all u,v ∈P and all α,β ≥ 0, and

(ii) u ∈P and −u ∈P implies u = 0.

A cone P is solid if the interior, P◦, of P , is nonempty. A cone P is reproducing if B =

P−P; i.e., given w ∈B, there exist u,v ∈P such that w = u−v. Krasnosel’skii [14] proved

that every solid cone is reproducing.

Cones generate a natural partial ordering on a Banach space. Let P be a cone in a real

Banach space B. If u,v ∈B, u≤ v with respect to P if v−u ∈P . If both M,N : B→B are

bounded linear operators, M ≤ N with respect to P if Mu≤ Nu for all u ∈P .

A bounded linear operator M : B→B is u0-positive with respect to P if there exists u0 ∈

P\{0} such that for each u ∈P\{0}, there exist k1(u) > 0 and k2(u) > 0 such that k1u0 ≤

Mu≤ k2u0 with respect to P .

The following two results are fundamental to our existence and comparison results and are

attributed to Krasnosel’skii [14]. The proof of Theorem 2.1 can be found in [14], and the proof

of Theorem 2.2 is provided by Keener and Travis [13] as an extension of Krasonel’skii’s results.

Theorem 2.1. Let B be a real Banach space and let P ⊂ B be a reproducing cone. Let

L : B→B be a compact, u0-positive, linear operator. Then L has an essentially unique eigen-

vector in P , and the corresponding eigenvalue is simple, positive and larger than the absolute

value of any other eigenvalue.

Theorem 2.2. Let B be a real Banach space and P ⊂B be a cone. Let both M,N : B→B

be bounded, linear operators and assume that at least one of the operators is u0-positive. If
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M ≤ N, Mu1 ≥ λ1u1 for some u1 ∈P and some λ1 > 0, and Nu2 ≤ λ2u2 for some u2 ∈P and

some λ2 > 0, then λ1 ≤ λ2. Furthermore, λ1 = λ2 implies u1 is a scalar multiple of u2.

3. The case when 0 < β ≤ n−1

First, we consider the case where β > 0. We derive existence and comparison results by

applying the two previous theorems. To do this, we will define integral operators whose kernels

are the Green’s function for −Dα
0+u = 0, (3β ), which is given by (see [8])

G(β ; t,s) =


tα−1(1−s)α−1−β−(t−s)α−1

Γ(α) , 0≤ s≤ t ≤ 1,
tα−1(1−s)α−1−β

Γ(α) , 0≤ t ≤ s < 1.

So u solves (1), (3β ) if and only if

u(t) = λ1

∫ 1

0
G(β ; t,s)p(s)u(s)ds.

Similarly, u solves (2), (3β ) if and only if

u(t) = λ2

∫ 1

0
G(β ; t,s)q(s)u(s)ds.

Notice that G(β ; t,s)≥ 0 for (t,s) ∈ [0,1]× [0,1) and G(β ; t,s)> 0 for (t,s) ∈ (0,1]× [0,1).

Now, define the Banach Space

B = {u : u = tα−1v, v ∈C[0,1]},

with the norm

‖u‖= |v|0,

where |v|0 = sup
t∈[0,1]

|v(t)| denotes the usual supremum norm. Notice that for u ∈B,

|u|0 = |tα−1v|0 ≤ tα−1‖u‖,

implying

|u|0 ≤ ‖u‖.

Define the linear operators

(3) Mu(t) =
∫ 1

0
G(β ; t,s)p(s)u(s)ds,
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and

(4) Nu(t) =
∫ 1

0
G(β ; t,s)q(s)u(s)ds.

Now,

Mu(t) =
∫ 1

0

tα−1(1− s)α−1−β

Γ(α)
p(s)u(s)ds−

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

= tα−1

(∫ 1

0

(1− s)α−1−β

Γ(α)
p(s)u(s)ds− t1−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

)
.

Notice that since n−1 < α ≤ n and 0 < β < n−1,

∣∣∣∣∣
∫ 1

0

(1− s)α−1−β

Γ(α)
p(s)u(s)ds

∣∣∣∣∣≤ |p|0|v|0Γ(α)

∣∣∣∣∫ 1

0
sα−1(1− s)α−1−β ds

∣∣∣∣
=
|p|0|v|0
Γ(α)

|B(α,α−β )|

=
|p|0|v|0
Γ(α)

∣∣∣∣Γ(α)Γ(α−β )

Γ(α +β )

∣∣∣∣
=
|p|0|v|0Γ(α−β )

Γ(α +β )

< ∞.

Therefore, the first term inside the parentheses is well-defined.

Set

g(t) =

 0, t = 0,

t1−α
∫ t

0
(t−s)α−1

Γ(α) p(s)u(s)ds, 0 < t ≤ 1.

Then, for |p0|= P, ‖u‖= L,
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|g(t)|=
∣∣∣∣t1−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

∣∣∣∣
=

∣∣∣∣t1−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)sα−1v(s)ds

∣∣∣∣
≤ PLt1−α

∫ t

0
(t− s)α−1sα−1ds

≤ PLt1−αtα−1
∫ t

0
(t− s)α−1ds

=
PLtα

α
,

where
PL
α
≥ 0. So, lim

t→0+
g(t) = g(0) = 0. Thus, g ∈C[0,1]. Therefore, M : B→B.

A similar argument to the argument made in [9] shows that M is compact. This can also be

applied to N to show that N : B→B is compact, which gives the following theorem.

Theorem 3.1. The operators M,N : B→B are compact.

Next, we define the cone

P = {u ∈B : u(t)≥ 0 for t ∈ [0,1]}.

Lemma 3.2. The cone P is solid in B and hence reproducing.

Proof. Define

(5) Ω := {u = tα−1v ∈B : u(t)> 0 for t ∈ (0,1], v(0)> 0}

We will show that Ω⊂P◦. Since v(0)> 0, there exists an ε1 > 0 such that v(0)−ε1 > 0. Since

v ∈C[0,1], there exists an a ∈ (0,1) such that v(t)> ε1 for all t ∈ (0,a). So u(t) = tα−1v(t)>

ε1tα−1 for all t ∈ (0,a). Now, on the interval [a,1], u(t) > 0. Thus there exists an ε2 > 0 with

u(t)− ε2 > 0 for all t ∈ [a,1].

Let ε = min{ ε1
2 ,

ε2
2 }. Define Bε(u) = {û ∈B : ‖u− û‖ < ε}. Let û ∈ Bε(u). So û = tα−1v̂,

where v̂ ∈ C[0,1]. Now |û(t)− u(t)| ≤ tα−1‖û− u‖ < εtα−1. So for t ∈ (0,a), û(t) > u(t)−

tα−1ε > tα−1ε1− tα−1ε1/2 = tα−1ε1/2. So û(t) > 0 for t ∈ (0,a). Also, |û(t)− u(t)| ≤ ‖û−

u‖< ε . So for t ∈ [a,1], û(t)> u(t)−ε > ε2−ε2/2 > 0. So û(t)> 0 for all t ∈ [a,1]. So û∈P

and thus Bε(u)⊂P . So Ω⊂P◦ and the proof is complete.
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Lemma 3.3. The bounded linear operators M and N are u0-positive with respect to P .

Proof. First, we show M : P\{0} → Ω ⊂P◦. Let u ∈P . So u(t) ≥ 0 on [0,1]. Then since

G(β ; t,s)≥ 0 on [0,1]× [0,1), and p(t)≥ 0 on [0,1],

Mu(t) =
∫ 1

0
G(β ; t,s)p(s)u(s)ds≥ 0,

for 0≤ t ≤ 1. So M : P →P .

Now, let u ∈P\{0}. So there exists a compact interval [a,b]⊂ [0,1] such that u(t)> 0 and

p(t)> 0 for all t ∈ [a,b]. Then, since G(β ; t,s)> 0 on (0,1]× (0,1),

Mu(t) =
∫ 1

0
G(β ; t,s)p(s)u(s)ds

≥
∫ b

a
G(β ; t,s)p(s)u(s)ds

> 0,

for 0 < t ≤ 1.

Now,

Mu(t) = tα−1

(∫ 1

0

(1− s)α−1−β

Γ(α)
p(s)u(s)ds− t1−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

)
.

Let

v(t) =
∫ 1

0

(1− s)α−1−β

Γ(α)
p(s)u(s)ds− t1−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds.

Thus, v(0) =
∫ 1

0

(1− s)α−1−β

Γ(α)
p(s)u(s)ds > 0. So M : P\{0}→Ω⊂P◦.

Now, choose u0 ∈P\{0}, and let u∈P\{0}. So Mu∈Ω⊂P◦. Choose k1 > 0 sufficiently

small and k2 sufficiently large so that Mu− k1u0 ∈P◦ and u0− 1
k2

Mu ∈P◦. So k1u0 ≤ Mu

with respect to P and Mu ≤ k2u0 with respect to P . Thus k1u0 ≤Mu ≤ k2u0 with respect to

P and so M is u0-positive with respect to P. A similar argument shows N is u0-positive. This

completes the proof.

Theorem 3.4. Let B, P , M, and N be defined as earlier. Then M (and N) has an eigenvalue

that is simple, positive, and larger than the absolute value of any other eigenvalue, with an

essentially unique eigenvector that can be chosen to be in P◦.
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Proof. Since M is a compact linear operator that is u0-positive with respect to P , by Theorem

2.1, M has an essentially unique eigenvector, say u ∈P , and eigenvalue Λ with the above

properties. Since u 6= 0, Mu ∈Ω⊂P◦ and u = M
( 1

Λ
u
)
∈P◦.

Theorem 3.5. Let B, P , M, and N be defined as earlier. Let p(t) ≤ q(t) on [0,1]. Let Λ1

and Λ2 be the eigenvalues defined in Theorem 3.4 associated with M and N, respectively, with

the essentially unique eigenvectors u1 and u2 ∈P◦. Then Λ1 ≤ Λ2, and Λ1 = Λ2 if and only if

p(t) = q(t) on [0,1].

Proof. Let p(t)≤ q(t) on [0,1]. So for any u ∈P and t ∈ [0,1],

(Nu−Mu)(t) =
∫ 1

0
G(β ; t,s)(q(s)− p(s))u(s)ds≥ 0.

So Nu−Mu ∈P for all u ∈P , or M ≤ N with respect to P . Then, by Theorem 2.2, Λ1 ≤ Λ2.

If p(t) = q(t), then Λ1 = Λ2. Now suppose p(t) 6= q(t). So p(t)< q(t) on some subinterval

[a,b]⊂ [0,1], which implies (N−M)u1(t)> 0 for t ∈ (0,1]. Let (N−M)u1(t) = tα−1v(t). So

v(t) =
∫ 1

0

(1− s)α−1−β

Γ(α)
(q(s)− p(s))u1(s)ds− t1−α

∫ t

0

(t− s)α−1

Γ(α)
(q(s)− p(s))u1(s)ds.

Since p(t) < q(t) on [a,b] ⊂ [0,1], then v(0) > 0. So, (N−M)u1 ∈ Ω ⊂P◦. So there exists

ε > 0 such that (N−M)u1− εu1 ∈P . So Λ1u1 + εu1 = Mu1 + εu1 ≤ Nu1, implying Nu1 ≥

(Λ1 + ε)u1. Since N ≤ N and Nu2 = Λ2u2, by Theorem 2.2, Λ1 + ε ≤ Λ2, or Λ1 < Λ2.

Lemma 3.6. The eigenvalues of (1), (3β ) are reciprocals of eigenvalues of M, and conversely.

Similarly, eigenvalues of (2), (3β ) are reciprocals of eigenvalues of N, and conversely.

Proof. Let Λ be an eigenvalue of M with corresponding eigenvector u(t). Notice that

Λu(t) = Mu(t) =
∫ 1

0
G(β ; t,s)p(s)u(s)ds,

if and only if

u(t) =
1
Λ

∫ 1

0
G(β ; t,s)p(s)u(s)ds,

if and only if

Dα
0+u(t)+

1
Λ

p(t)u(t) = 0, 0 < t < 1,

with

u(i)(0) = 0, i = 0,1, . . . ,n−2, Dβ

0+u(1) = 0.
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So
1
Λ

is an eigenvalue of (1), (3β ), if and only if Λ is an eigenvalue of M. A similar argument

can be made that the reciprocals of eigenvalues of N are eigenvalues of (2), (3β ) and vice versa,

which completes the proof.

Since the eigenvalues of (1), (3β ) are reciprocals of eigenvalues of M and conversely, and

the eigenvalues of (2), (3β ) are reciprocals of eigenvalues of N and conversely, the following

theorem is an immediate consequence of Theorems 3.4 and 3.5.

Theorem 3.7. Assume the hypotheses of Theorem 3.5. Then there exists smallest positive

eigenvalues λ1 and λ2 of (1), (3β ) and (2), (3β ), respectively, each of which is simple, positive,

and less than the absolute value of any other eigenvalue of the corresponding problems. Also,

eigenfunctions corresponding to λ1 and λ2 may be chosen to belong to P◦. Finally, λ1 ≥ λ2,

and λ1 = λ2 if and only if p(t) = q(t) for all t ∈ [0,1].

4. The case when β = 0

Next, we consider the case where β = 0. Again, we will define integral operators whose

kernels are the Green’s function for −Dα
0+u = 0, (30), which is given by

(6) G(t,s) =


tα−1(1−s)α−1−(t−s)α−1

Γ(α) , 0≤ s≤ t ≤ 1,
tα−1(1−s)α−1

Γ(α) , 0≤ t ≤ s < 1.

Therefore, u(t) = λ1
∫ 1

0 G(t,s)p(s)u(s)ds if and only if u solves (1), (30). Similarly, u(t) =

λ2
∫ 1

0 G(t,s)q(s)u(s)ds if u solves (2), (30). Notice that G(t,s)≥ 0 on [0,1]× [0,1) and G(t,s)>

0 on (0,1)× (0,1). We point out that G(1,s) = 0, so the Banach space B and the interior of the

cone Ω used in the previous section are not appropriate for this problem.

Define the Banach Space

B = {u : u = tα−1v, v ∈C(1)[0,1], v(1) = 0},

with the norm

‖u‖= |v′|0.

Notice that,

|v(t)|= |v(t)− v(1)|=
∣∣∣∣∫ t

1
v′(s)ds

∣∣∣∣≤ (1− t)|v′|0 ≤ ‖u‖.
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Therefore, |v|0 ≤ ‖u‖= |v′|0 and

|u|0 = |tα−1v|0 ≤ tα−1‖u‖,

implying

|u|0 ≤ ‖u‖.

Define the linear operators

(7) Mu(t) =
∫ 1

0
G(t,s)p(s)u(s)ds,

and

(8) Nu(t) =
∫ 1

0
G(t,s)q(s)u(s)ds.

Theorem 4.1. The operators M,N : B→B are compact.

Proof. First, we show M : B→B. Let u ∈B. So there is a v ∈C(1)[0,1] such that u = tα−1v.

Since v ∈C(1)[0,1] and p ∈C[0,1], let L = |v|0 and P = |p|0. Now,

Mu(t) =
∫ 1

0

tα−1(1− s)α−1

Γ(α)
p(s)u(s)ds−

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

= tα−1
(∫ 1

0

(1− s)α−1

Γ(α)
p(s)u(s)ds− t1−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

)
.

Define

g(t) =

 0, t = 0,

t1−α
∫ t

0
(t−s)α−1

Γ(α) p(s)u(s)ds, 0 < t ≤ 1.

Notice g ∈C(1)(0,1]. Now,

|g(t)|=
∣∣∣∣t1−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

∣∣∣∣
=

∣∣∣∣t1−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)sα−1v(s)ds

∣∣∣∣
≤ PLt1−α

∫ t

0
(t− s)α−1sα−1ds

≤ PLt1−αtα−1
∫ t

0
(t− s)α−1ds

=
PLtα

α
,
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where
PL
α
≥ 0. Thus, lim

t→0+
g(t) = g(0) = 0 and g ∈C[0,1]. Also, for t > 0,

|g′(t)|=
∣∣∣∣(1−α)t−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds+(α−1)t1−α

∫ t

0

(t− s)α−2

Γ(α)
p(s)u(s)ds

∣∣∣∣
≤
∣∣∣∣(1−α)t−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)sα−1v(s)ds

∣∣∣∣
+

∣∣∣∣(α−1)t1−α

∫ t

0

(t− s)α−2

Γ(α)
p(s)sα−1v(s)(s)ds

∣∣∣∣
≤ (α−1)PLt−αtα−1

∫ t

0
(t− s)α−1ds+(α−1)PLt1−αtα−1

∫ t

0
(t− s)α−2ds

= (α−1)PL
(

t−1
∫ t

0
(t− s)α−1ds+

∫ t

0
(t− s)α−2ds

)
= (α−1)PL

(
tα−1

α
+

tα−1

α−1

)
=

(
α−1

α
+1
)

PLtα−1.

So, lim
t→0+

g′(t) = 0. Moreover, using the definition of derivative and L’Hôpital’s rule,

g′(0) = lim
t→0+

g(t)−g(0)
t

= lim
t→0+

g(t)
t

= lim
t
→ 0+g′(t) = 0.

So g′ ∈C[0,1].

Now let

v̂(t) =
∫ t

0

(1− s)α−1

Γ(α)
p(s)u(s)ds− t1−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds.

Then, v̂(1) = 0. Thus, Mu ∈ B. So, M : B → B. A similar argument can be made that

N : B→B. An argument similar to the one made in [9] shows M and N are compact.

Next, we define the cone

P = {u ∈B : u(t)≥ 0 for t ∈ [0,1]}.

Lemma 4.2. The cone P is solid in B and hence reproducing.

Proof. Define

(9) Ω := {u = tα−1v ∈B : u(t)> 0, for t ∈ (0,1), v(0)> 0, v′(1)< 0}
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We will show Ω⊂P◦. Let u∈Ω. Since v(0)> 0, there exists an ε1 > 0 such that v(0)−ε1 > 0.

Since v ∈ C[0,1], there exists an a ∈ (0,1) such that v(t) > ε1 for all t ∈ (0,a). Thus, u(t) =

tα−1v(t)> ε1tα−1 for all t ∈ (0,a). Now, since v′(1)< 0, there exists an ε2 > 0 such that v′(1)+

ε2 < 0, implying that−v′(1)> ε2. Then, by the definition of derivative, lim
t→1−

−v(t)+ v(1)
t−1

> ε2.

Since v(1) = 0, lim
t→1−

v(t)
1− t

> ε2. Thus, there exists a b∈ (a,1) such that for t ∈ (b,1), v(t)
1− t

> ε2.

This implies v(t) > (1− t)ε2. Therefore, u(t) > bα−1(1− t)ε2 for all t ∈ (b,1). Also, since

u(t)> 0 on [a,b], there exists an ε3 > 0 such that u(t)− ε3 > 0 for all t ∈ [a,b].

Let ε = min
{

ε1

2
,
bα−1ε2

2
,
ε3

2

}
. Define Bε(u) = {û∈B : ‖u− û‖< ε}. Let û∈ Bε(u). Thus,

û = tα−1v̂, where v̂ ∈C(1)[0,1] with v̂(1) = 0. Now

|û(t)−u(t)| ≤ tα−1‖û−u‖< εtα−1.

So, for t ∈ (0,a), û(t) > u(t)− tα−1ε > tα−1ε1− tα−1ε1/2 = tα−1ε1/2. So, û(t) > 0 for t ∈

(0,a). By the Mean Value Theorem, there exists c ∈ (t,1) such that

v̂(1)− v(1)− v̂(t)+ v(t)
1− t

= v̂′(c)− v′(c).

Since v̂(1) = 0 and v(1) = 0, then∣∣∣∣v(t)− v̂(t)
1− t

∣∣∣∣= ∣∣v̂′(c)− v′(c)
∣∣≤ ∣∣v̂′− v′

∣∣
0 .

However, ∣∣∣∣u(t)− û(t)
1− t

∣∣∣∣≤ ∣∣∣∣v(t)− v̂(t)
1− t

∣∣∣∣ .
So, |u(t)− û(t)| ≤ (1− t)‖û−u‖< (1− t)ε , for t ∈ (b,1). Thus, for t ∈ (b,1)

û(t)> u(t)− (1− t)ε > bα−1(1− t)ε2− (1− t)bα−1
ε−2/2 = (1− t)bα−1 > 0.

Therefore, for t ∈ (b,1), û(t) > 0. Also, |û(t)− u(t)| ≤ ||û− u|| < ε . So for t ∈ [a,b], û(t) >

u(t)− ε > ε3− ε3/2 > 0. So, û(t) > 0 for all t ∈ [a,b]. So, û ∈P and therefore Bε(u) ⊂P .

Thus, Ω⊂P◦, completing the proof.

Lemma 4.3. The bounded linear operators M and N are u0-positive with respect to P .
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Proof. First, we show M : P\{0} → Ω ⊂P◦. Let u ∈P . So u(t) ≥ 0 on [0,1]. Then since

G(t,s)≥ 0 on [0,1]× [0,1) and p(t)≥ 0 on [0,1],

Mu(t) =
∫ 1

0
G(t,s)p(s)u(s)ds≥ 0,

for 0≤ t ≤ 1. So M : P →P .

Now, let u ∈P\{0}. So there exists a compact interval [a,b]⊂ [0,1] such that u(t)> 0 and

p(t)> 0 for all t ∈ [a,b]. Then, since G(t,s)> 0 on (0,1)× (0,1),

Mu(t) =
∫ 1

0
G(t,s)p(s)u(s)ds

≥
∫ b

a
G(t,s)p(s)u(s)ds

> 0,

for 0 < t < 1. Now,

Mu(t) = tα−1
(∫ 1

0

(1− s)α−1

Γ(α)
p(s)u(s)ds− t1−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

)
.

Let

v(t) =
∫ 1

0

(1− s)α−1

Γ(α)
p(s)u(s)ds− t1−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds.

Thus, v(0) =
∫ 1

0

(1− s)α−1

Γ(α)
p(s)u(s)ds > 0 and

v′(1) = (1−α)

(∫ 1

0

(1− s)α−2

Γ(α)
p(s)u(s)ds−

∫ t

0

(1− s)α−1

Γ(α)
p(s)u(s)ds

)
= (1−α)

∫ 1

0

(1− s)α−2

Γ(α)
p(s)u(s)(1− (1− s))ds

< 0.

So M : P\{0}→Ω⊂P◦.

Now, choose u0 ∈P\{0}, and let u∈P\{0}. So Mu∈Ω⊂P◦. Choose k1 > 0 sufficiently

small and k2 sufficiently large so that Mu− k1u0 ∈P◦ and u0− 1
k2

Mu ∈P◦. So k1u0 ≤ Mu

with respect to P and Mu ≤ k2u0 with respect to P . Thus k1u0 ≤Mu ≤ k2u0 with respect to

P and so M is u0-positive with respect to P. A similar argument shows N is u0-positive.
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Theorem 4.4. Let B, P , M, and N be defined as earlier. Then M (and N) has an eigenvalue

that is simple, positive, and larger than the absolute value of any other eigenvalue, with an

essentially unique eigenvector that can be chosen to be in P◦.

Proof. Since M is a compact linear operator that is u0-positive with respect to P , by Theorem

2.1, M has an essentially unique eigenvector, say u ∈P , and eigenvalue Λ with the above

properties. Since u 6= 0, Mu ∈Ω⊂P◦ and u = M
( 1

Λ
u
)
∈P◦.

Theorem 4.5. Let B, P , M, and N be defined as earlier. Let p(t) ≤ q(t) on [0,1]. Let Λ1

and Λ2 be the eigenvalues defined in Theorem 3.4 associated with M and N, respectively, with

the essentially unique eigenvectors u1 and u2 ∈P◦. Then Λ1 ≤ Λ2, and Λ1 = Λ2 if and only if

p(t) = q(t) on [0,1].

Proof. Let p(t)≤ q(t) on [0,1]. So for any u ∈P and t ∈ [0,1],

(Nu−Mu)(t) =
∫ 1

0
G(t,s)(q(s)− p(s))u(s)ds≥ 0.

So Nu−Mu ∈P for all u ∈P , or M ≤ N with respect to P . Then, by Theorem 2.2, Λ1 ≤ Λ2.

If p(t) = q(t), then Λ1 = Λ2. Now suppose p(t) 6= q(t). So p(t)< q(t) on some subinterval

of [0,1]. So (N−M)u1(t)> 0 for t ∈ (0,1). Let (N−M)u1(t) = tα−1v(t). Thus

v(t) =
∫ 1

0

(1− s)α−1

Γ(α)
(q(s)− p(s))u1(s)ds− t1−α

∫ t

0

(t− s)α−1

Γ(α)
(q(s)− p(s))u1(s)ds.

Then, v(0)> 0 and

v′(1) = (1−α)
∫ 1

0

(1− s)α−2

Γ(α)
(q(s)− p(s))u1(s)ds−

∫ 1

0

(1− s)α−1

Γ(α)
< 0.

So, (N −M)u1 ∈ Ω ⊆P◦. Then there exists ε > 0 such that (N −M)u1− εu1 ∈P . So

Λ1u1 + εu1 = Mu1 + εu1 ≤ Nu1, implying Nu1 ≥ (Λ1 + ε)u1. Since N ≤ N and Nu2 = Λ2u2,

by Theorem 2.2, Λ1 + ε ≤ Λ2, or Λ1 < Λ2, which completes the proof.

The proof of the following lemma is similar to that of Lemma 3.6, and is therefore omitted.

Lemma 4.6. The eigenvalues of (1), (30) are reciprocals of eigenvalues of M, and conversely.

Similarly, eigenvalues of (2), (30) are reciprocals of eigenvalues of N, and conversely.



SMALLEST EIGENVALUES FOR A FRACTIONAL BOUNDARY VALUE PROBLEMS 15

Again, since the eigenvalues of (1), (30) are reciprocals of eigenvalues of M and conversely,

and the eigenvalues of (2), (30) are reciprocals of eigenvalues of N and conversely, the following

theorem is an immediate consequence of Theorems 4.4 and 4.5.

Theorem 4.7 Assume the hypotheses of Theorem 3.5. Then there exists smallest positive eigen-

values λ1 and λ2 of (1), (30) and (2), (30), respectively, each of which is simple, positive,

and less than the absolute value of any other eigenvalue of the corresponding problems. Also,

eigenfunctions corresponding to λ1 and λ2 may be chosen to belong to P◦. Finally, λ1 ≥ λ2,

and λ1 = λ2 if and only if p(t) = q(t) for all t ∈ [0,1].

REFERENCES

[1] C.J. Chyan, J.M. Davis, J. Henderson and W.K.C. Yin, Eigenvalue comparisons for differential equations on

a measure chain, Electron. J. Differential Equations 1998 (1998), 1–7.

[2] J.M. Davis, P.W. Eloe and J. Henderson, Comparison of eigenvalues for discrete Lidstone boundary value

problems, Dyn. Sys. Appl. 8 (1999), 381–388.

[3] P.W. Eloe and J. Henderson, Comparison of eigenvalues for a class of two-point boundary value problems,

Appl. Anal. 34 (1989), 25–34.

[4] P.W. Eloe and J. Henderson, Comparison of eigenvalues for a class of multipoint boundary value problems,

Recent Trends in Ordinary Differential Equations, World Sci. Ser. Appl. Anal. 1 (1992), 179–188.

[5] R.D. Gentry and C.C. Travis Comparison of eigenvalues associated with linear differential equations of arbi-

trary order, Trans. Amer. Math. Soc. 223 (1967), 167–179.

[6] D. Hankerson and A. Peterson, Comparison of eigenvalues for focal point problems for nth order difference

equations, Differential Integral Egns. 3 (1990), 363–380.

[7] J. Hoffacker, Green’s functions and eigenvalue comparisons for a focal problem on time scales, Comput.

Math. Appl. 45 (2003), 1339–1368.

[8] P.W. Eloe, J.W. Lyons and J.T. Neugebauer, An ordering on Green’s functions for a family of two-point

boundary value problems for fractional differential equations, Commun. Appl. Anal. 19 (2015), 453–462.

[9] P.W. Eloe and J.T. Neugebauer, Existence and comparison of smallest eigenvalues for a fractional boundary

value problem. Electron. J. Differential Equations 2014, (2014), 1–10.

[10] P.W. Eloe and J.T. Neugebauer, Conjugate points for a fractional differential equation, Fract. Calc. Appl.

Anal. 17 (2014), 855–871.

[11] P.W. Eloe and J.T. Neugebauer, Smallest eigenvalues for a right focal boundary value problem, Fract. Calc.

Appl. Anal. 19 (2016), 11–18.



16 A.M. KOESTER, J.T. NEUGEBAUER

[12] J. Henderson and N. Kosmatov, Eigenvalue comparison for fractional boundary value problems with the

Caputo derivative, Fract. Calc. Appl. Anal. 17 (2014), 872–880.

[13] M. Keener and C. C. Travis, Positive cones and focal points for a class of nth order differential equations,

Trans. Amer. Math. Soc. 237 (1978), 331–351.

[14] M. Krasnoselskii, Positive Solutions of Operator Equations, Fizmatgiz, Moscow, 1962; English Translation

P. Noordhoff Ltd. Gronigen, The Netherlands, 1964.

[15] M.G. Krein and M.A. Rutman, Linear operators leaving a cone invariant in a Banach space, Translations

Amer. Math. Soc. Series 1, Volume 10, 199–325, American Mathematical Society, Providence, RI, 1962.

[16] J.T. Neugebauer, Methods of extending lower order problems to higher order problems in the context of

smallest eigenvalue comparisons, Electron. J. Qual. Theory Differ. Equ. 2011 (2011), 1–16.

[17] C.C. Travis; Comparison of eigenvalues for linear differential equations, Proc. Amer. Math. Soc. 96 (1986),

437–442.

[18] A. Yang, J. Henderson, C. Nelms, Extremal points for a higher-order fractional boundary value problem,

Electron. J. Differential Equations 2015 (2015), 1–12.


