

Journal of Nonlinear Functional Analysis

Available online at http://jnfa.mathres.org

NONNEGATIVE SOLUTIONS TO SOME SINGULAR SEMILINEAR ELLIPTIC PROBLEMS

TOMÁS GODOY*, ALFREDO GUERIN

FAMAF, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina

Abstract. We prove the existence of a nonnegative weak solution $0 \not\equiv u \in H_0^1(\Omega)$ to the singular semilinear elliptic problem $-\Delta u = \chi_{\{u>0\}} a u^{-\alpha} + f(.,u)$ in Ω , u = 0 on $\partial \Omega$, where Ω is a bounded domain in \mathbb{R}^n , $0 < \alpha < 3$, $a \in L^{\infty}(\Omega)$, $0 \not\equiv a \geq 0$, and $f: \Omega \times [0,\infty) \to \mathbb{R}$ is a Carathéodory function which satisfies some suitable hypothesis. We also obtain results about the problem with a parameter $-\Delta u = \chi_{\{u>0\}} a u^{-\alpha} + \lambda f(.,u)$ in Ω , $u \geq 0$ in Ω , u = 0 on $\partial \Omega$.

Keywords. Singular elliptic problem; Variational technique; Nonnegative solution; Bifurcation problem. **2010 Mathematics Subject Classification.** 35J20, 35J60, 35J75.

1. Introduction

Let us consider the singular semilinear elliptic problem:

(1.1)
$$\begin{cases}
-\Delta u = \chi_{\{u>0\}} a u^{-\alpha} + f(x, u) \text{ in } \Omega, \\
u = 0 \text{ on } \partial \Omega, \\
u \ge 0 \text{ in } \Omega, \ u \not\equiv 0 \text{ in } \Omega.
\end{cases}$$

E-mail addresses: tomasgodo@gmail.com (T. Godoy), guerin.alfredojose@gmail.com (A. Guerin).

Received July 30, 2016; Accepted December 5, 2016.

^{*}Corresponding author.

and the related problem with a parameter λ :

(1.2)
$$\begin{cases}
-\Delta u = \chi_{\{u>0\}} a u^{-\alpha} + \lambda f(x, u) \text{ in } \Omega, \\
u = 0 \text{ on } \partial \Omega, \\
u \ge 0 \text{ in } \Omega, u \not\equiv 0 \text{ in } \Omega.
\end{cases}$$

where Ω is a bounded domain in \mathbb{R}^n with $C^{1,1}$ boundary, $0 < \alpha < 3$, $\lambda \in \mathbb{R}$, a, f are functions defined on Ω and $\Omega \times [0,\infty)$ respectively; and where $\chi_{\{u>0\}} au^{-\alpha}$ stands for the function defined by $\chi_{\{u>0\}} au^{-\alpha}(x) := a(x)u(x)^{-\alpha}$ if $u(x) \neq 0$, and $\chi_{\{u>0\}} au^{-\alpha}(x) := 0$ if u(x) = 0.

These problems have received considerable interest in the literature and appear in applications to chemical catalysts process, non-Newtonian fluids, and in models for the temperature of electrical conductors (see e.g., [6], [4], [12], [15] and the references therein). The existence of positive solutions (i.e. such that u(x) > 0 for all $x \in \Omega$) to problem (1.1) was proved, for the case f = 0, and under various assumptions on a, in [15], [12], [7], [21], [10] and [3]. Existence theorems for positive classical solutions to problem (1.2) were obtained by Shi and Yao in [24], when Ω and a are regular enough, with a non necessarily nonnegative, $f(x,s) = s^p$ and $0 < \alpha, p < 1$. The free boundary singular elliptic bifurcation problem $-\Delta u = \chi_{\{u>0\}}(-u^{-\alpha} + \lambda f(.,u))$ in Ω , u = 0 on $\partial \Omega$, $u \geq 0$ in Ω , $u \not\equiv 0$ (that is: $|\{x \in \Omega : u(x) > 0\}| > 0$) was studied by Dávila and Montenegro in [9], under the assumptions that $0 < \alpha < 1$, $\lambda > 0$, $f : \Omega \times \mathbb{R} \to \mathbb{R}$ is a nonnegative Carathéodory function, f(x,s) is nondecreasing and concave in s, and $\lim_{s\to\infty} f(x,s) = 0$ uniformly on $x \in \Omega$.

Bifurcation problems of the form $-\Delta u = g(x,u) + f(x,\lambda u)$ in Ω , u = 0 on $\partial\Omega$, u > 0 in Ω , were studied by Coclite and Palmieri [5]. It was proved there that, if $g(x,u) = au^{-\alpha}$, $a \in C^1\left(\overline{\Omega}\right)$, a > 0 in $\overline{\Omega}$, and $f \in C^1\left(\overline{\Omega} \times [0,\infty)\right)$, then there exists $\lambda^* > 0$ such that, for any $\lambda \in [0,\lambda^*)$, (1.2) has a positive classical solution $u \in C^2\left(\Omega\right) \cap C\left(\overline{\Omega}\right)$. Furthermore; for any $\lambda \geq 0$, a positive classical solution exists if, in addition, $\overline{\lim}_{s \to \infty} \frac{f(x,s)}{s} \leq 0$ uniformly on $x \in \overline{\Omega}$ (see [5], Theorem 1).

Multi-parameter singular bifurcation problems of the form $-\Delta u = g(u) + \lambda |\nabla u|^p + \mu f(.,u)$ in Ω , u = 0 on $\partial \Omega$, u > 0 in Ω were studied, by Ghergu and Rădulescu in [18]. Dupaigne, Ghergu and Rădulescu [14] obtained existence and nonexistence theorems for Lane–Emden–Fowler equations with convection and singular potential. Rădulescu [23] stated existence, nonexistence, and uniqueness theorems for blow-up boundary solutions of logistic equations, and for Lane-Emden-Fowler equations, with singular nonlinearities and

subquadratic convection term. Existence and nonexistence results for positive solutions to the inequality $Lu \geq K(x)u^p$ on the punctured ball $\Omega = B_r(0) \setminus \{0\}$ were obtained by Ghergu, Liskevich and Sobol [16] for second order linear elliptic operators L without zero order term, and $K \in L^{\infty}_{loc}(\Omega)$ such that $0 < ess \inf K$. A Liouville comparison principle for entire weak solutions of quasilinear singular parabolic second-order partial differential inequalities was obtained in [20] by Kurta and existence and uniqueness results were obtained by Bougherara and Giacomoni [1] for mild solutions to singular initial value parabolic problems involving the p-Laplacian. Singularly perturbed elliptic problems on an annulus whose solutions concentrate in a circle were studied by Manna and Srikanth [22].

The following problem

(1.3)
$$\begin{cases}
-\Delta u = ag(u) + \lambda f(u) \text{ in } \Omega, \\
u = 0 \text{ on } \partial \Omega, \\
u > 0 \text{ in } \Omega.
\end{cases}$$

was considered by Cîrstea, Ghergu and Rădulescu [8] under the following assumptions: Ω is a regular enough bounded domain in \mathbb{R}^n , $0 \leq a \in C^{\beta}(\overline{\Omega})$, $0 < f \in C^{0,\beta}[0,\infty)$ for some $\beta \in (0,1)$, f is nondecreasing on $[0,\infty)$, f(s)/s is nonincreasing for s>0, g is nonincreasing on $(0,\infty)$, $\lim_{s\to 0^+} g(s) = +\infty$; and there exist $\alpha \in (0,1)$, $\sigma_0>0$, and c>0, such that $g(s) \leq cs^{-\alpha}$ for $s \in (0,\sigma_0)$. Under these hypothesis, and defining $\mu:=\lim_{s\to\infty} f(s)/s$, $\lambda^*:=\lambda_1/\mu$ (where λ_1 stands for the first Dirichlet eigenvalue of $-\Delta$ in Ω), and $\mathscr{E}:=\left\{u\in C^2(\Omega)\cap C^{1,1-\alpha}(\overline{\Omega}):\Delta u\in L^1(\Omega)\right\}$, the following results were proved:

([8], Theorem 1): If $\mu = 0$ and $\min_{\overline{\Omega}} a > 0$ (respectively $\min_{\overline{\Omega}} a = 0$), then, for all $\lambda \in \mathbb{R}$ (resp. $\lambda \geq 0$), problem (1.3) has a unique solution $u_{\lambda} \in \mathcal{E}$, the map $\lambda \to u_{\lambda}$ is strictly increasing, and each u_{λ} satisfies $c_1 d_{\Omega} \leq u_{\lambda} \leq c_2 d_{\Omega}$ for some positive constants c_1 and c_2 , where $d_{\Omega} := dist(.,\partial\Omega)$

([8], Theorem 2): If $\mu > 0$ and $\lambda \ge \lambda^*$, then (1.3) has no solutions in $\mathscr E$. Furthermore, if $\mu > 0$ and $\min_{\overline{\Omega}} a > 0$ (respectively $\min_{\overline{\Omega}} a = 0$), then (1.3) has a unique solution $u_{\lambda} \in \mathscr E$ for any $\lambda < \lambda^*$ (resp. $0 \le \lambda < \lambda^*$) and, again, the map $\lambda \to u_{\lambda}$ is strictly increasing; and each u_{λ} satisfies $c_1 d_{\Omega} \le u_{\lambda} \le c_2 d_{\Omega}$ for some positive constants c_1 and c_2 . Moreover, $\lim_{\lambda \to (\lambda^*)^-} u_{\lambda} = +\infty$ uniformly on compact subsets of Ω .

Finally, let us mention that in [19], the authors proved the existence of nonnegative solutions for a restricted version of problem (1.1), namely when HI) holds, $0 < \alpha < 1$, and $f(.,u) = -bu^p$, with $0 , and <math>0 \le b \in L^r(\Omega)$ for suitable values of r.

Additional references, and a comprehensive treatment of the subject, can be found in [17], [23], see also [11].

The aim of this work is to prove, under suitable hypothesis on a and f, existence results for nonnegative weak solutions to problems (1.1) and (1.2). By a weak solution we mean a solution in the sense of the following.

Definition 1.1. We say that $u : \Omega \to \mathbb{R}$ is a weak solution of problem (1.1) if $u \in H_0^1(\Omega)$, $u \ge 0$, $\chi_{\{u>0\}} au^{-\alpha} \varphi \in L^1(\Omega)$ and

(1.4)
$$\int_{\Omega} \langle \nabla u, \nabla \varphi \rangle = \int_{\Omega} \chi_{\{u > 0\}} a u^{-\alpha} \varphi + \int_{\Omega} f(x, u) \varphi.$$

for all φ in $H_0^1(\Omega) \cap L^{\infty}(\Omega)$.

For $b \in L^{\infty}(\Omega)$ such that $b^+ \not\equiv 0$, we will write $\lambda_1(b)$ for the positive principal eigenvalue for $-\Delta$ on Ω , with homogeneous Dirichlet boundary condition and weight function b. With this notation, our first result reads as follows.

Theorem 1.2. Let $\alpha \in (0,3)$ and assume the following conditions:

$$H1$$
) $a \in L^{\infty}(\Omega)$, $a \geq 0$, and $a \not\equiv 0$,

H2) $f: \Omega \times [0,\infty) \to \mathbb{R}$ is a Carathéodory function on $\Omega \times [0,\infty)$, i.e., f(.,s) is measurable for any $s \in [0,\infty)$, and f(x,.) is continuous a.e. $x \in \Omega$,

H3)
$$\sup_{0 \le s \le M} |f(.,s)| \in L^{1}(\Omega)$$
 for any $M > 0$,

H4) One of the two following conditions holds:

H4') $\sup_{s>0} \frac{f(\cdot,s)}{s} \le b$ for some $b \in L^{\infty}(\Omega)$ such that $b^+ \not\equiv 0$, and $\lambda_1(b) > m$ for some integer $m \ge \max\{2, 1+\alpha\}$,

H4") $f \in L^{\infty}(\Omega \times (0,\sigma))$ for all $\sigma > 0$, and $\overline{\lim}_{s \to \infty} \frac{f(\cdot,s)}{s} \le 0$ uniformly on Ω , i.e., for any $\varepsilon > 0$ there exists $s_0 > 0$ such that $\sup_{s \ge s_0} \frac{f(\cdot,s)}{s} \le \varepsilon$, a.e. in Ω ,

$$H5) f(.,0) \ge 0.$$

Under these hypothesis, (1.1) has a weak solution u (in the sense of Definition 1.1), that belongs to $H_0^1(\Omega) \cap L^{\infty}(\Omega)$; and satisfies:

i) u > 0 a.e. in $\{a > 0\}$. In particular, $\chi_{\{u > 0\}} a u^{-\alpha} \not\equiv 0$ and, if a > 0 a.e. in Ω , then u > 0 a.e. in Ω .

ii) If
$$f(.,0) > 0$$
 a.e. in Ω , then $u > 0$ a.e. in Ω .

Note that, if $f \ge 0$ in $\Omega \times [0, \infty)$ then, by the maximum principle, the solutions to problem (1.1) that satisfy $\chi_{\{u>0\}} au^{-\alpha} \not\equiv 0$ are positive a.e. in Ω . Example 3.7 in [19] shows that conditions like the ones stated above are needed in order to ensure the existence of a strictly positive weak solution.

Concerning problem (1.2) our results are the following.

Theorem 1.3. Let $\alpha \in (0,3)$, and assume that H1)-H3), H4") and H5) hold. Then, for all $\lambda \geq 0$, (1.2) has a weak solution u_{λ} (in the sense of Definition 1.1); this solution u_{λ} is in $H_0^1(\Omega) \cap L^{\infty}(\Omega)$, satisfies $\chi_{\{u>0\}} a u_{\lambda}^{-\alpha} \not\equiv 0$ and $u_{\lambda} > 0$ a.e. in $\{a>0\}$. These results remain valid for any negative λ if, in addition, f(.,0) = 0 and $\lim_{s\to\infty} \frac{f(.,s)}{s} = 0$ uniformly on Ω .

Moreover, for $\lambda \geq 0,$ if $\mathit{f}(.,0) > 0$ a.e. in $\Omega,$ then $u_{\lambda} > 0$ a.e. in Ω .

Theorem 1.4. Let $\alpha \in (0,3)$; assume H1)-H3), H5), and that one of the two following conditions holds:

H6)
$$\underset{(x,s)\in\Omega\times(0,\infty)}{ess \sup} \frac{f(x,s)}{s} < \infty,$$

H7) $f \in L^{\infty}(\Omega\times(0,\sigma))$ for all $\sigma > 0$.

Then there exists $\lambda^* > 0$ such that, for any nonnegative $\lambda < \lambda^*$, (1.2) has a weak solution (in the sense of Definition 1.1) $u_{\lambda} \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ that satisfies $\chi_{\{u_{\lambda}>0\}} a u_{\lambda}^{-\alpha} \not\equiv 0$ and $u_{\lambda} > 0$ a.e. in $\{a > 0\}$.

Theorems 1.3 and 1.4, can be viewed as partial generalizations of the already mentioned existence results contained in [8]. Let us briefly compare those results with ours: On the one hand, our assumptions on a and f are weaker than those imposed in [8]: we allow that $|\{x \in \Omega : a(x) = 0\}| > 0$; and we do not require f > 0. Notice also that we allow f to depend on (x,u); and that we do not require monotonicity, either on f, or on f or on f or on f our range of values of f is wider than the range allowed in [8]. On the other hand, we cannot guarantee that the solutions that we found are strictly positive in f. Moreover, we obtain neither the uniqueness, nor the monotonicity obtained in [8]. Finally, our f does not have the optimality property of its counterpart in ([8], Theorem 2).

Our approach to study problem (1.1) is variational, and adapted from the one followed in [19]. Note that problem (1.1) has additional challenges with respect to the one considered in [19]: not only the nonlinearity is more general, but a further obstacle is posed by the fact that,

when $\alpha \geq 1$, the domain of the corresponding energy functional J is not an open subset of $H_0^1(\Omega)$. In order to circumvent this obstacle we will consider, for any M > 0, the functional J on the set D_M^{α} formed by the nonnegative functions $u \in H_0^1(\Omega)$ that are bounded by M, and such that J(u) is well defined and finite. In Section 2 we prove that, on D_M^{α} , J has a nonnegative minimizer $u_M \not\equiv 0$; and that $||u_M||_{\infty} \leq \mathcal{M}$, with \mathcal{M} constant and independent of M. From these facts, and some auxiliary lemmas, Theorem 1.2 is proved in Section 3 by showing that, for M large enough, u_M is a weak solution of (1.1) (in spite of the possible lack of differentiability of J at u_M). Finally, at the end of Section 3, we use Theorem 1.2 to obtain Theorems 1.3 and 1.4.

2. Preliminaries

Let us recall that $\lambda \in \mathbb{R}$ is called a principal eigenvalue for $-\Delta$ in Ω , with homogeneous Dirichlet boundary condition and weight function b, if the problem $-\Delta u = \lambda bu$ in Ω , u = 0 on $\partial \Omega$ has a solution ϕ such that $\phi > 0$ in Ω .

Remark 2.1. The following facts are well known (see e.g., [13]). If Ω is a $C^{1,1}$ domain in \mathbb{R}^n , $b \in L^{\infty}(\Omega)$ and $b^+ \not\equiv 0$ then:

- i) There exists a unique positive principal eigenvalue $\lambda_1(b)$, its eigenspace is one dimensional, and is included in $C^1(\overline{\Omega})$. Moreover, for each positive eigenfunction ϕ , there are positive constants c_1 , c_2 such that $c_1d_{\Omega} \leq \phi \leq c_2d_{\Omega}$ in Ω . In particular, for $\gamma \in \mathbb{R}$, ϕ^{γ} is integrable if, and only if, $\gamma > -1$.
- ii) If $0 < \lambda < \lambda_1(b)$ and $h \in L^{\infty}(\Omega)$, the problem $-\Delta u = \lambda b u + h$ in Ω , u = 0 on $\partial \Omega$, has a unique solution $u \in \cap_{1 \leq p < \infty} W^{2,p}(\Omega)$, and the corresponding solution operator $(-\Delta \lambda b)^{-1} : L^{\infty}(\Omega) \to C_0^1(\overline{\Omega})$ is bounded and strongly positive, i.e., if $h \in L^{\infty}(\Omega)$ and $0 \leq h \not\equiv 0$ then u belongs to the interior of the positive cone of $C_0^1(\overline{\Omega})$ where $C_0^1(\overline{\Omega}) := \{v \in C^1(\overline{\Omega}) : v = 0 \text{ on } \partial \Omega\}$.

iii) If
$$b^{*} \in L^{\infty}(\Omega)$$
 and $b \leq b^{*}$ then $\lambda_{1}\left(b^{*}\right) \leq \lambda_{1}\left(b\right)$.

For M > 0 and $0 < \alpha < 3$, let $D_M^{\alpha} \subset H_0^1(\Omega)$ be defined by

$$D_M^{\alpha} := \left\{ u \in H_0^1(\Omega) : 0 \le u \le M \right\} \text{ if } 0 < \alpha < 1,$$

$$D_{M}^{\alpha}:=\left\{u\in H_{0}^{1}\left(\Omega\right):0\leq u\leq M\text{ and }\int_{\left\{a>0\right\}}a\left|\ln u\right|<\infty\right\}\text{ if }\alpha=1,$$

$$D_M^{\alpha} := \left\{ u \in H_0^1(\Omega) : 0 \le u \le M \text{ and } \int_{\{a > 0\}} au^{1-\alpha} < \infty \right\} \text{ if } 1 < \alpha < 3.$$

Lemma 2.2. Assume H1). Then $D_M^{\alpha} \neq \emptyset$ for any M > 0 and $\alpha \in (0,3)$.

Proof. The lemma is immediate when $0<\alpha<1$. For $1<\alpha<3$, we can proceed as follows: Let ϕ be a positive principal eigenfunction for $-\Delta$ in Ω with homogeneous Dirichlet boundary condition, with weight function 1, and normalized such that $\|\phi\|_{\infty}=M^{\frac{1+\alpha}{2}}$. Note that $\left|\nabla\left(\phi^{\frac{2}{1+\alpha}}\right)\right|^2=\left(\frac{2}{1+\alpha}\right)^2\phi^{\frac{2(1-\alpha)}{1+\alpha}}|\nabla\phi|^2$ and that, since $\alpha<3$, we have $\frac{2(1-\alpha)}{1+\alpha}>-1$. Thus $\left|\nabla\left(\phi^{\frac{2}{1+\alpha}}\right)\right|\in L^2(\Omega)$. Clearly $\phi^{\frac{2}{1+\alpha}}\in L^2(\Omega)$ and $a\phi^{\frac{2(1-\alpha)}{1+\alpha}}\in L^1(\Omega)$, and then $\phi^{\frac{2}{1+\alpha}}\in D_M^\alpha$.

Consider now the case $\alpha=1$. Let $\delta\in(0,1)$ and let $\beta=1+\delta$. Thus $1<\beta<3$. Since $\lim_{s\to 0^+} s^\delta |\ln(s)| = 0$, and $|\ln(s)| < s$ for s>1, there is a positive constant c such that $|\ln(s)| \le c\left(s^{-\delta}+s\right)$ for any s>0. Let ϕ be a principal eigenfunction as above, but normalized now by $\|\phi\|_{\infty}=M^{\frac{1+\beta}{2}}$. As before, we have $\phi^{\frac{2}{1+\beta}}\in H^1_0(\Omega)$. Also, $\left|\ln\left(\phi^{\frac{2}{1+\beta}}\right)\right| \le c\left(\phi^{-\frac{2\delta}{1+\beta}}+\phi^{\frac{2}{1+\beta}}\right)=c\left(\phi^{\frac{2(1-\beta)}{1+\beta}}+\phi^{\frac{2}{1+\beta}}\right)$. Since $\phi^{\frac{2(1-\beta)}{1+\beta}}$ and $\phi^{\frac{2}{1+\beta}}$ belong to $L^1(\Omega)$, it follows that $\int_{\Omega} a\left|\ln\left(\phi^{\frac{2}{1+\beta}}\right)\right|<\infty$, and so $\phi^{\frac{2}{1+\beta}}\in D^1_M$.

For $0 < \alpha < 3$, let $J : \bigcup_{M>0} D_M^{\alpha} \to \mathbb{R}$ be defined by

(2.1)
$$J(u) := \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \frac{1}{1 - \alpha} \int_{\{a > 0\}} a u^{1 - \alpha} - \int_{\Omega} F(., u) \text{ if } \alpha \neq 1,$$
$$J(u) := \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \int_{\{a > 0\}} a \ln(u) - \int_{\Omega} F(., u) \text{ if } \alpha = 1,$$

where $F(x,s) := \int_0^s f(x,\sigma) d\sigma$.

Lemma 2.3. i) Assume H2) and H3). Let M > 0, and let $\{u_j\}_{j \in \mathbb{N}}$ be a sequence of measurable functions on Ω such that $0 \le u_j \le M$ for all $j \in \mathbb{N}$, and $\lim_{j \to \infty} u_j = u$ a.e. in Ω for some $u : \Omega \to \mathbb{R}$. Then $\lim_{j \to \infty} \int_{\Omega} F(., u_j) = \int_{\Omega} F(., u)$.

ii) If H2) and H3) hold, and if u,v are nonnegative functions in $L^{\infty}(\Omega)$, then

(2.2)
$$\lim_{t \to 0^{+}} \frac{1}{t} \int_{\Omega} (F(., u + tv) - F(., u)) = \int_{\Omega} v f(., u) \text{ and }$$

(2.3)
$$\lim_{t \to 0^{+}} \int_{\Omega} (F(., u + tv) - F(., u)) = 0.$$

If, in addition, $u - \varepsilon_0 v \ge 0$ *for some* $\varepsilon_0 > 0$ *. then*

(2.4)
$$\lim_{t \to 0^{-}} \frac{1}{t} \int_{\Omega} (F(., u + tv) - F(., u)) = \int_{\Omega} v f(., u) \text{ and }$$

(2.5)
$$\lim_{t \to 0^{-}} \int_{\Omega} (F(., u + tv) - F(., u)) = 0.$$

Proof. i) follows easily from *H2*) and *H3*) applying Lebesgue's dominated convergence theorem.

To see ii) note that, for 0 < t < 1, by the mean value theorem,

(2.6)
$$F(.,u+tv) - F(.,u) = tvf(.,u+\eta_t)$$

in $\{v > 0\}$; where $\eta_t : \{v > 0\} \to \mathbb{R}$ depends on u, v, t, and satisfies $0 \le \eta_t \le t \|v\|_{\infty}$. We define $\eta_t = 0$ in $\{v = 0\}$, so that (2.6) holds in Ω . Now,

$$\left| \frac{1}{t} \int_{\Omega} \left(F(., u + tv) - F(., u) \right) - \int_{\Omega} v f(., u) \right|$$

$$= \left| \int_{\Omega} v \left(f(., u + \eta_t) - f(., u) \right) \right| \le \int_{\Omega} v \left| f(., u + \eta_t) - f(., u) \right|.$$

By *H*2), $\lim_{t\to 0^+} v |f(., u + \eta_t) - f(., u)| = 0$ *a.e.* in Ω; and, by *H*3),

$$v\left|f\left(.,u+\eta_{t}\right)-f\left(.,u\right)\right|\leq2M\sup_{0\leq s\leq2M}\left|f\left(.,s\right)\right|\in L^{1}\left(\Omega\right),$$

where $M := ||u||_{\infty} + ||v||_{\infty}$. Then, by Lebesgue's dominated convergence theorem,

$$\lim_{t\to 0^{+}} \int_{\Omega} v |f(., u + \eta_{t}) - f(., u)| = 0.$$

Thus (2.2) (and so also (2.3)) holds. The proofs of (2.4) and (2.5) are similar.

Lemma 2.4. Assume H1)-H3), and let M > 0, $\alpha \in (0,3)$. Then

- i) J is coercive on D_M^{α} with respect to the topology of $H_0^1(\Omega)$; i.e., $J(u) \to \infty$ when $u \in D_M^{\alpha}$, and $\|\nabla u\|_2 \to \infty$.
 - ii) $\inf_{u \in D_M^{\alpha}} J(u)$ is achieved at some $u \in D_M^{\alpha}$.

Proof. For $u \in D_M^{\alpha}$ we have $|\int_{\Omega} F(.,u)| \leq MB_M$, where $B_M := \int_{\Omega} \sup_{0 \leq s \leq M} |f(.,s)|$. Note that, by H3), $B_M < \infty$.

If $1 < \alpha < 3$, we have $-\frac{1}{1-\alpha} \int_{\Omega} a u^{1-\alpha} \ge 0$, then $J(u) \ge \frac{1}{2} \int_{\Omega} |\nabla u|^2 - MB_M$, which implies i). If $0 < \alpha < 1$, from Hölder's and Poincaré's inequalities we get $\frac{1}{1-\alpha} \int_{\Omega} a u^{1-\alpha} \le c \|\nabla u\|_2^{1-\alpha}$ for some positive constant c independent of u. Thus $J(u) \ge \frac{1}{2} \|\nabla u\|_2^2 - c \|\nabla u\|_2^{1-\alpha} - MB_M$; therefore

i) holds also in this case.

If $\alpha = 1$, using Poincaré's inequality, and that $\ln s \le s$ for s > 0, for some positive constant c independent of u we get

$$-\int_{\{a>0\}} a \ln u \ge -\int_{\{a>0\} \cap \{u\ge 1\}} a \ln u \ge -\int_{\{a>0\} \cap \{u\ge 1\}} a u \ge -\int_{\Omega} a u \ge -c \|\nabla u\|_2$$

and then $J(u) \ge \frac{1}{2} \|\nabla u\|_2^2 - c \|\nabla u\|_2 - B_M$; consequently i) holds when $\alpha = 1$.

To prove ii), let $\beta:=\inf_{u\in D_M^\alpha}J(u)$. Since $D_M^\alpha\neq\varnothing$, we have $\beta<\infty$. Consider a sequence $\{u_j\}_{j\in \mathbf{N}}\subset D_M^\alpha$ such that $\lim_{j\to\infty}J\left(u_j\right)=\beta$; it follows from i) that $\{u_j\}_{j\in \mathbf{N}}$ is bounded in $H_0^1(\Omega)$. Since the inclusion $H_0^1(\Omega)\hookrightarrow L^2(\Omega)$ is compact, there exist $u\in H_0^1(\Omega)$, and a subsequence $\{u_{j_k}\}_{k\in \mathbf{N}}$ such that $\{u_{j_k}\}_{k\in \mathbf{N}}$ converges strongly in $L^2(\Omega)$, and such that $\{\nabla u_{j_k}\}_{k\in \mathbf{N}}$ converges weakly to ∇u in $L^2(\Omega,\mathbf{R}^n)$. Taking a subsequence if necessary, we can assume that $\{u_{j_k}\}_{k\in \mathbf{N}}$ converges to u a.e. in Ω . Thus

Note that $u \in D_M^{\alpha}$. Indeed, since $0 \le u_{j_k} \le M$ for all k, we have $0 \le u \le M$, and so $u \in D_M^{\alpha}$ when $0 < \alpha < 1$. If $1 < \alpha < 3$, by Fatou's lemma,

$$-\frac{1}{1-\alpha} \int_{\Omega} au^{1-\alpha} \leq \underline{\lim}_{k \to \infty} \int_{\Omega} \frac{-1}{1-\alpha} au_{j_{k}}^{1-\alpha}$$

$$= \underline{\lim}_{k \to \infty} \left(J\left(u_{j_{k}}\right) - \frac{1}{2} \int_{\Omega} \left|\nabla u_{j_{k}}\right|^{2} + \int_{\Omega} F\left(., u_{j_{k}}\right) \right)$$

$$\leq \underline{\lim}_{k \to \infty} J\left(u_{j_{k}}\right) + MB_{M} < \infty$$

and then $u \in D_M^{\alpha}$ when $1 < \alpha < 3$. If $\alpha = 1$, again by Fatou's Lemma,

$$\begin{split} \int_{\{a>0\}} a \left| \ln u \right| &= \int_{\{a>0\}} \underline{\lim}_{k \to \infty} a \left| \ln u_{j_k} \right| \\ &\leq \underline{\lim}_{k \to \infty} \left(- \int_{\{a>0\} \cap \left\{ u_{j_k} \le 1 \right\}} a \ln u_{j_k} + \int_{\{a>0\} \cap \left\{ u_{j_k} > 1 \right\}} a \ln u_{j_k} \right) \\ &= \underline{\lim}_{k \to \infty} \left(- \int_{\{a>0\}} a \ln u_{j_k} + 2 \int_{\{a>0\} \cap \left\{ u_{j_k} > 1 \right\}} a \ln u_{j_k} \right) \\ &\leq \underline{\lim}_{k \to \infty} \left(- \int_{\{a>0\}} a \ln u_{j_k} + 2 \int_{\{a>0\}} a u_{j_k} \right) \end{split}$$

and, since $\{au_{j_k}\}_{k\in\mathbb{N}}$ converges to au in the $L^1(\Omega)$ norm,

$$\underline{\lim}_{k\to\infty} \left(-\int_{\{a>0\}} a \ln u_{j_k} + 2 \int_{\{a>0\}} a u_{j_k} \right)$$

$$= \underline{\lim}_{k\to\infty} \left(-\int_{\{a>0\}} a \ln u_{j_k} \right) + 2 \int_{\{a>0\}} a u$$

$$= \underline{\lim}_{k\to\infty} \left(J\left(u_{j_k}\right) - \frac{1}{2} \int_{\Omega} \left| \nabla u_{j_k} \right|^2 + \int_{\Omega} F\left(., u_{j_k}\right) \right) + 2 \int_{\{a>0\}} a u$$

$$\leq \underline{\lim}_{k\to\infty} J\left(u_{j_k}\right) + MB_M + 2 \int_{\{a>0\}} a u < \infty.$$

Then $u \in D_M^{\alpha}$ also when $\alpha = 1$. Since $u \in D_M^{\alpha}$, we have $J(u) \ge \beta$; therefore, to prove ii), it remains to show that $J(u) \le \beta$. To do this observe that, by Lemma 2.3 i),

(2.8)
$$\lim_{k\to\infty} \int_{\Omega} F\left(., u_{j_k}\right) = \int_{\Omega} F\left(., u\right).$$

If $1 < \alpha < 3$, from (2.7), (2.8) and Fatou's lemma, we get

$$(2.9) J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \frac{1}{1-\alpha} \int_{\{a>0\}} au^{1-\alpha} - \int_{\Omega} F(.,u)$$

$$\leq \underline{\lim}_{k\to\infty} \left(\frac{1}{2} \int_{\Omega} |\nabla u_{j_k}|^2\right) + \underline{\lim}_{k\to\infty} \left(-\frac{1}{1-\alpha} \int_{\{a>0\}} au_{j_k}^{1-\alpha}\right)$$

$$+ \lim_{k\to\infty} \int_{\Omega} F(.,u_{j_k})$$

$$\leq \underline{\lim}_{k\to\infty} \left(\frac{1}{2} \int_{\Omega} |\nabla u_{j_k}|^2 - \frac{1}{1-\alpha} \int_{\{a>0\}} au^{1-\alpha} - \int_{\Omega} F(.,u_{j_k})\right)$$

$$= \underline{\lim}_{k\to\infty} J(u_{j_k}) = \beta.$$

Then $J(u) \leq \beta$ when $1 < \alpha < 3$. Consider now the case $0 < \alpha < 1$: since $0 \leq u_{j_k} \leq M$ for all k, Lebesgue's dominated convergence theorem gives $\lim_{k \to \infty} \frac{1}{1-\alpha} \int_{\{a>0\}} a u_{j_k}^{1-\alpha} = \frac{1}{1-\alpha} \int_{\{a>0\}} a u^{1-\alpha}$, and then, as in (2.9), we get $J(u) \leq \beta$.

Finally suppose $\alpha = 1$: Since $u_{j_k} \in D_M^{\alpha}$ we have $a \ln (M/u_{j_k}) \ge 0$, and then Fatou's lemma gives

$$\begin{split} -\int_{\{a>0\}} a \ln u &= \int_{\{a>0\}} a \ln \left(\frac{M}{u}\right) - \int_{\{a>0\}} a \ln M \\ &= \int_{\{a>0\}} \underline{\lim}_{k\to\infty} a \ln \left(\frac{M}{u_{j_k}}\right) - \int_{\{a>0\}} a \ln M \\ &\leq \underline{\lim}_{k\to\infty} \int_{\{a>0\}} a \ln \left(\frac{M}{u_{j_k}}\right) - \int_{\{a>0\}} a \ln M \\ &= \underline{\lim}_{k\to\infty} \left(\int_{\{a>0\}} a \ln M - \int_{\{a>0\}} a \ln u_{j_k}\right) - \int_{\{a>0\}} a \ln M \\ &= \underline{\lim}_{k\to\infty} \left(-\int_{\{a>0\}} a \ln u_{j_k}\right). \end{split}$$

Now, we proceed as in (2.9), replacing there $-\frac{1}{1-\alpha}\int_{\{a>0\}}au_{j_k}^{1-\alpha}$ by $-\int_{\{a>0\}}a\ln u_{j_k}$, and $-\frac{1}{1-\alpha}\int_{\{a>0\}}au^{1-\alpha}$ by $-\int_{\{a>0\}}a\ln u$, to conclude that $J(u) \leq \beta$ also for $\alpha = 1$.

Lemma 2.5. Assume H1)-H3), and let M > 0, $\alpha \in (0,3)$. Then

(2.10)
$$\int_{\Omega} \langle \nabla u, \nabla (u\varphi) \rangle \leq \int_{\Omega} \chi_{\{u>0\}} a u^{1-\alpha} \varphi + \int_{\Omega} f(.,u) u\varphi$$

for any minimizer u for J on D_M^{α} , and for any nonnegative $\varphi \in H^1(\Omega) \cap L^{\infty}(\Omega)$.

Proof. Let u be a minimizer for J on D_M^{α} , $\tau \in (-1,0)$; and let φ be a nonnegative function in $H^1(\Omega) \cap L^{\infty}(\Omega)$ that, in addition, satisfies $\|\varphi\|_{\infty} \leq \frac{1}{2}$.

Note that $u + \tau u \varphi \in D_M^{\alpha}$. Indeed, $0 \le u + \tau u \varphi \le M$ and (since $u \in L^{\infty}(\Omega)$) $u + \tau u \varphi \in H_0^1(\Omega)$. In particular, this gives $u + \tau u \varphi \in D_M^{\alpha}$ when $0 < \alpha < 1$.

If $1 < \alpha < 3$ we have also $\left| a \left(u + \tau u \varphi \right)^{1-\alpha} \right| \le \frac{1}{2^{1-\alpha}} a u^{1-\alpha} \in L^1 \left(\{ a > 0 \} \right)$, and so $u + \tau u \varphi \in D_M^{\alpha}$.

If $\alpha=1$ then $|a\ln(u+\tau u\varphi)|=a\left|\ln u+\ln\left(1+\tau\varphi\right)\right|\leq a\left|\ln u\right|+a\left|\ln\left(1+\tau\varphi\right)\right|\in L^1\left(\{a>0\}\right)$ and so, again in this case, $u+\tau u\varphi\in D_M^\alpha$.

To prove (2.10) we consider first the case where $\alpha \neq 1$. Since $J(u) \leq J(u + \tau u \varphi)$, a computation gives

and a Taylor expansion gives

$$(1 + \tau \varphi)^{1-\alpha} - 1 = (1 - \alpha) \tau \varphi + \frac{\tau^2}{2} (1 - \alpha) \alpha (1 + \zeta)^{-\alpha - 1} \varphi^2$$

for some measurable function ζ such that $-\frac{1}{2} \leq \tau \varphi \leq \zeta \leq 0$. Since $au^{1-\alpha} \in L^1\left(\{a>0\}\right)$, and $1+\zeta \geq \frac{1}{2}$, we have $\left|\int_{\{a>0\}} au^{1-\alpha} \left(1+\zeta\right)^{-\alpha-1} \varphi^2\right| \leq c$ where c is a positive constant independent of τ ; and so,

(2.12)
$$\lim_{\tau \to 0^{-}} \frac{1}{(1-\alpha)\tau} \int_{\{a>0\}} au^{1-\alpha} \left((1+\tau\varphi)^{1-\alpha} - 1 \right) = \int_{\{a>0\}} au^{1-\alpha} \varphi.$$

Also, by Lemma 2.3 ii) we have

(2.13)
$$\lim_{\tau \to 0^{-}} \frac{1}{\tau} \int_{\Omega} \left(F\left(., u + \tau \varphi u\right) - F\left(., u\right) \right) = \int_{\Omega} \varphi u f\left(., u\right).$$

Dividing by τ the inequality (2.11), letting $\tau \to 0^-$, and using (2.12) and (2.13), we get

(2.14)
$$\int_{\Omega} \langle \nabla u, \nabla (u\varphi) \rangle \leq \int_{\{a>0\}} au^{1-\alpha} \varphi + \int_{\Omega} f(.,u) u\varphi.$$

Note that $au^{1-\alpha}\varphi = \chi_{\{u>0\}}au^{1-\alpha}\varphi$ (this clearly holds when $0 < \alpha < 1$; and when $1 \le \alpha < 3$ the equality follows from the fact that u > 0 a.e. in $\{a > 0\}$). Thus (2.14) gives (2.10) and,

since both sides in (2.10) are linear on φ , our additional assumption $\|\varphi\|_{\infty} \leq \frac{1}{2}$ can be removed. Thus the lemma holds when $\alpha \neq 1$.

If $\alpha=1$ we have, as before, (2.11), with the term $\frac{1}{1-\alpha}\int_{\{a>0\}}au^{1-\alpha}\left((1+\tau\varphi)^{1-\alpha}-1\right)$ replaced by $\int_{\{a>0\}}a\left(\ln\left(u(1+\tau\varphi)\right)-\ln u\right)=\int_{\{a>0\}}a\ln\left(1+\tau\varphi\right)$; and a Taylor expansion gives $\ln\left(1+\tau\varphi\right)=\tau\varphi-\left(1+\zeta_{\tau}\right)^{-2}\tau^{2}\varphi^{2}$ for some measurable function $\zeta_{\tau}:\Omega\to\mathbb{R}$ satisfying $-\frac{1}{2}\leq \tau\varphi\leq \zeta_{\tau}\leq 0$. Then

$$\lim_{\tau \to 0^{-}} \frac{1}{\tau} \int_{\{a > 0\}} a \left(\ln \left(u \left(1 + \tau \varphi \right) \right) - \ln u \right) = \int_{\{a > 0\}} a u \varphi$$

and so, proceeding as in the previous case, we conclude that (2.10) holds when $\|\varphi\|_{\infty} \leq \frac{1}{2}$; and, as before, this additional assumption on φ can be removed.

Lemma 2.6. Assume H1)-H3). Let M > 0, $\alpha \in (0,3)$. Let m be an integer such that $m \ge \max\{2, 1 + \alpha\}$, and let u be a minimizer for J on D_M^{α} . Then, for any nonnegative $\varphi \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$,

$$\int_{\Omega} \langle \nabla (u^{m}), \nabla (\varphi) \rangle \leq m \int_{\Omega} \left(a u^{m-1-\alpha} + u^{m-1} f(., u) \right) \varphi$$

Proof. u is bounded, therefore $u^m \in H^1_0(\Omega)$ and $\nabla(u^m) = mu^{m-1}\nabla u$. Also $u^{m-2}\varphi \in H^1_0(\Omega) \cap L^\infty(\Omega)$ for any nonnegative $\varphi \in H^1_0(\Omega) \cap L^\infty(\Omega)$. Then

(2.15)
$$\int_{\Omega} \langle \nabla (u^{m}), \nabla \varphi \rangle$$

$$= m \int_{\Omega} u^{m-1} \langle \nabla u, \nabla \varphi \rangle$$

$$= m \int_{\Omega} \langle \nabla u, \nabla (u^{m-1} \varphi) \rangle - m(m-1) \int_{\Omega} u^{m-2} \varphi |\nabla u|^{2}$$

$$\leq m \int_{\Omega} (\chi_{\{u>0\}} a u^{m-1-\alpha} + u^{m-1} f(., u)) \varphi,$$

the last inequality by Lemma 2.5. Since $\chi_{\{u>0\}}au^{m-1-\alpha}=au^{m-1-\alpha}$, the lemma follows.

Remark 2.7. Let $u \in L^1_{loc}(\Omega)$ such that $\nabla u \in L^2(\Omega)$, and let $w \in L^{\infty}(\Omega)$. If $\int_{\Omega} \langle \nabla u, \nabla \varphi \rangle \leq \int_{\Omega} w \varphi$ (respectively $\int_{\Omega} \langle \nabla u, \nabla \varphi \rangle \geq \int_{\Omega} w \varphi$) for every nonnegative $\varphi \in H^1_0(\Omega) \cap L^{\infty}(\Omega)$ then the corresponding inequality holds for all nonnegative $\varphi \in H^1_0(\Omega)$ (by using a density argument with the truncations $\varphi_j(x) := \min \{ \varphi(x), j \}, j \in \mathbb{N} \}$).

Lemma 2.8. Assume H1)-H4), and $\alpha \in (0,3)$. Then there exists a positive number \mathcal{M} such that, for any M > 0, and any minimizer u for J on D_M^{α} , $||u||_{\infty} \leq \mathcal{M}$.

Proof. Let M > 0, and let u be a minimizer for J on D_M^{α} . Assume first that H4') holds, and let m and b be as there. By Lemma 2.6, for $0 \le \varphi \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$,

$$\int_{\Omega} \langle \nabla (u^{m}), \nabla (\varphi) \rangle \leq m \int_{\Omega} (\chi_{\{u>0\}} a u^{m-1-\alpha} + u^{m-1} f(., u)) \varphi$$
$$\leq m \int_{\Omega} (\chi_{\{u>0\}} a u^{m-1-\alpha} + b u^{m}) \varphi$$

and so, by Remark 2.7, the same inequalities hold for all nonnegative $\varphi \in H_0^1(\Omega)$, i.e.,

$$(-\Delta - mb)(u^m) \le m\chi_{\{u>0\}} au^{m-1-\alpha} = mau^{m-1-\alpha} \text{ in } \left(H_0^1(\Omega)\right)'.$$

Since $0 < m < \lambda_1(b)$, the operator $(-\Delta - mb)^{-1} : L^{\infty}(\Omega) \to H_0^1(\Omega) \subset L^{\infty}(\Omega)$ is well defined, bounded and positive. Let $v := (-\Delta - mb)^{-1} \left(mau^{m-1-\alpha} \right)$. Then

$$||u||_{\infty}^{m} \le ||v||_{\infty} \le ||(-\Delta - mb)^{-1}||_{\infty} ||mau^{m-1-\alpha}||_{\infty} = c ||u||_{\infty}^{m-1-\alpha}$$

for some positive constant c independent of M and u; therefore the lemma holds with $\mathcal{M} = c^{\frac{1}{1+\alpha}}$.

Assume now that H4") holds. Let m be an integer such that $m \ge \max\{2, 1 + \alpha\}$, let $\lambda_1 := \lambda_1(\mathbf{1})$, let $\varepsilon \in \left(0, \frac{\lambda_1}{m}\right)$, and let $s_0 > 0$ be such that $\sup_{s \ge s_0} \frac{f(.,s)}{s} \le \varepsilon$. From Lemma 2.6 we have, for $0 \le \varphi \in H_0^1(\Omega) \cap L^\infty(\Omega)$, that

$$(2.16) \qquad \int_{\Omega} \langle \nabla (u^{m}), \nabla (\varphi) \rangle$$

$$\leq m \int_{\Omega} \chi_{\{u>0\}} a u^{m-1-\alpha} \varphi + m \int_{\{u

$$\leq m \int_{\Omega} \chi_{\{u>0\}} a u^{m-1-\alpha} \varphi + m s_{0}^{m-1} \int_{\{u

$$\leq m \int_{\Omega} \left(a u^{m-1-\alpha} + A + m \varepsilon u^{m} \right) \varphi,$$$$$$

where

$$A := ms_0^{m-1} \sup_{(x,s)\in\overline{\Omega}\times[0,s_0]} |f(x,s)|$$

is a constant independent of M and u. Thus, by Remark 2.7,

$$(2.17) -\Delta(u^m) \le ma(u^m)^{\frac{m-1-\alpha}{m}} + m\varepsilon u^m + A \text{ in } (H_0^1(\Omega))'.$$

Since $m\varepsilon < \lambda_1(\mathbf{1})$ we have that $(-\Delta - m\varepsilon\mathbf{1})^{-1}$ is a bounded and positive operator on $L^{\infty}(\Omega)$; and so, from (2.17), $u^m \leq (-\Delta - m\varepsilon\mathbf{1})^{-1} \left(ma(u^m)^{\frac{m-1-\alpha}{m}} + A\right)$; which gives

$$||u^m||_{\infty} \le c' ||u^m||_{\infty}^{\frac{m-1-\alpha}{m}} + c'$$

for some c' independent of M and u. Since $0 < \frac{m-1-\alpha}{m} < 1$, the lemma follows.

Remark 2.9. Let $w \in L^1(\Omega)$ such that $|\{w>0\}| > 0$, and let $\beta \in [0,1)$. Then there exists a nonnegative $\Phi \in C_c^{\infty}(\Omega)$ such that $\int w\Phi^{1-\beta} > 0$. Indeed, consider a nonnegative radial function $h \in C_c^{\infty}(\mathbb{R}^n)$ with support in the unit ball $B = \{x \in \mathbb{R}^n : |x| < 1\}$ and such that $\int_B h = 1$. For $\varepsilon > 0$ let $h_{\varepsilon}(x) := \frac{1}{\varepsilon^n} h\left(\frac{x}{\varepsilon}\right)$ and for $\delta > 0$ let $\Omega_{\delta} := \{x \in \Omega : dist(x, \partial\Omega) > \delta\}$. Then $|\{w>0\} \cap \Omega_{\delta}| > 0$ for δ positive and small enough. Fix such a δ and define $E = \{x \in \Omega : w(x) > 0\} \cap \Omega_{\delta}$. For $\varepsilon > 0$ define $\Phi_{\varepsilon} := h_{\varepsilon} * \chi_E$. Then $\Phi_{\varepsilon} \in C_c^{\infty}(\mathbb{R}^n)$ and $\sup p(\Phi_{\varepsilon}) \subset \Omega$ for $\varepsilon < \delta$. Also, $\lim_{\varepsilon \to 0^+} \Phi_{\varepsilon} = \chi_E$ with convergence in $L^1(\Omega)$ (see e.g., [2], Theorem 4.22), and so $\lim_{j \to \infty} \Phi_{\varepsilon_j} = \chi_E$ a.e. in Ω for some sequence $\{\varepsilon_j\}_{j \in \mathbb{N}}$ such that $\lim_{j \to \infty} \varepsilon_j = 0$. Then, by Fatou's Lemma, $0 < \int_{\Omega} w\chi_E \le \underline{\lim}_{j \to \infty} \int_{\Omega} w\Phi_{\varepsilon_j}^{1-\beta}$. Thus $\int_{\Omega} w\Phi_{\varepsilon_j}^{1-\beta} > 0$ for j large enough.

Lemma 2.10. Let $\alpha \in (0,3)$. Assume H1)-H4). Let \mathscr{M} be as in Lemma 2.8, and let $M > \mathscr{M}$. If u is a minimizer for J on D_M^{α} , then $\chi_{\{u>0\}}au^{-\alpha} \not\equiv 0$. In particular, $u \not\equiv 0$.

Proof. If $1 \leq \alpha < 3$, $u \in D_M^{\alpha}$ implies u > 0 a.e. in $\{a > 0\}$, and so $\chi_{\{u > 0\}}au^{-\alpha} \not\equiv 0$. To prove the lemma when $0 < \alpha < 1$ we proceed by contradiction. Suppose that u is a minimizer for J on D_M^{α} and that $\chi_{\{u > 0\}}au^{-\alpha} = 0$. Let $\Phi \in C_c^{\infty}(\Omega)$ such that $\Phi \geq 0$ and $\int a\Phi^{1-\alpha} > 0$. By Lemma 2.8, $u \leq \mathscr{M} < M$; thus $u + t\Phi \in D_M^{\alpha}$ for t positive and small enough, and so $J(u) \leq J(u + t\Phi)$. Also, $\chi_{\{u > 0\}}au^{-\alpha} = 0$ implies that u = 0 a.e. in $\{a > 0\}$. Then $\int_{\Omega}au^{1-\alpha} = 0$, and $\int_{\Omega}a(u + t\Phi)^{1-\alpha} = \int_{\Omega}a(t\Phi)^{1-\alpha}$. Thus the inequality $J(u) \leq J(u + t\Phi)$ can be written as

$$0 \le t \int_{\Omega} \langle \nabla u, \nabla \Phi \rangle + \frac{t^2}{2} \int_{\Omega} |\nabla \Phi|^2 - \frac{t^{1-\alpha}}{1-\alpha} \int_{\{a>0\}} a\Phi^{1-\alpha} - \int_{\Omega} \left(F\left(., u + t\Phi\right) - F\left(., u\right) \right).$$

From this inequality, dividing by $t^{1-\alpha}$, taking the limit as $t \to 0^+$, using that, by Lemma 2.3 ii), $\lim_{t\to 0^+} \frac{1}{t} \int_{\Omega} \left(F\left(., u + t\Phi\right) - F\left(., u\right) \right) = \int_{\Omega} \Phi f\left(., u\right)$, and recalling that $\int_{\{a>0\}} a\Phi^{1-\alpha} > 0$, we obtain a contradiction.

In order to emphasize the dependence on f, we will sometimes write J_f for the functional J.

Lemma 2.11. Let $\alpha \in (0,3)$. Assume H1)-H3), H5), and that either H6) or H7) holds. When H7) holds assume also that there exists $s_0 > 0$ such that $\underset{(x,s) \in \Omega \times (s_0,\infty)}{\operatorname{ess\,sup}} \frac{f(x,s)}{s} < \infty$ Then there exists $\lambda^* > 0$ such that, for any $\lambda \in (0,\lambda^*)$, there exists $\mathcal{M}_{\lambda} > 0$ such that $\|u_{\lambda}\|_{\infty} \leq \mathcal{M}_{\lambda}$ for any M > 0, and any minimizer u_{λ} for $J_{\lambda f}$ on D_{M}^{α} . If, in addition, $f \leq 0$ in $\Omega \times (0,\infty)$, then $\lambda^* = \infty$.

Proof. Consider the case when H7) holds. Let M>0 and let u be a minimizer for $J_{\lambda f}$ on D_M^{α} . Let m be an integer such that $m\geq \max\left\{2,1+\alpha\right\}$ and let $k>\max\left\{0,\underset{x\in\Omega\times(s_0,\infty)}{ess}\sup\frac{f(x,s)}{s}\right\}$. For $\lambda>0$ we can repeat the computations performed in (2.16), with λf and λmk in place of f and $m\varepsilon$ respectively, to obtain, for $0\leq \varphi\in H_0^1(\Omega)\cap L^\infty(\Omega)$, that

$$(2.20) \qquad \int_{\Omega} \langle \nabla (u^{m}), \nabla (\varphi) \rangle \leq m \int_{\Omega} a u^{m-1-\alpha} \varphi + A \int_{\Omega} \varphi + \int_{\Omega \cap \{u > s_{0}\}} m \lambda u^{m} \frac{f(x, u)}{u} \varphi$$
$$\leq m \int_{\Omega} a u^{m-1-\alpha} \varphi + A \int_{\Omega} \varphi + \delta \int_{\Omega} m \lambda k u^{m} \varphi,$$

where $\delta := 0$ if $f \le 0$ in $\Omega \times [0, \infty)$, and $\delta := 1$ otherwise; and where

$$A := m\lambda s_0^{m-1} \| f_{|\Omega \times (0,s_0)} \|_{L^{\infty}(\Omega \times (0,s_0))}$$

is a constant independent of M and u. Then, as in Lemma 2.8, we arrive to

$$(2.21) -\Delta(u^m) \le ma(u^m)^{\frac{m-1-\alpha}{m}} + \delta m\lambda ku^m + A \text{ in } (H_0^1(\Omega))'.$$

If $\delta = 1$ and $0 < \lambda < \frac{\lambda_1(1)}{mk}$, then $\lambda_1(\lambda \delta m k \mathbf{1}) = \frac{\lambda_1(1)}{\lambda mk} > 1$; and so, from (2.21),

$$u^{m} \leq \left(-\Delta - \lambda m k\right)^{-1} \left(m a \left(u^{m}\right)^{\frac{m-1-\alpha}{m}} + A\right),\,$$

which implies (2.18) for some positive constant c' independent of M and u; therefore the lemma holds with $\lambda^* = \frac{\lambda_1(1)}{m}$. If $\delta = 0$ (i.e., if $f \leq 0$), (2.21) gives $u^m \leq (-\Delta)^{-1} \left(ma \left(u^m \right)^{\frac{m-1-\alpha}{m}} + A \right)$, which implies that (2.18) holds for all $\lambda \geq 0$; therefore, in this case, the lemma holds with $\lambda^* = \infty$.

When *H6*) holds the proof is similar: let $k > \max \left\{ 0, \underset{x \in \Omega \times (0,\infty)}{ess \sup} \frac{f(x,s)}{s} \right\}$. Instead of (2.20) we now have

$$\int_{\Omega} \langle \nabla (u^{m}), \nabla (\varphi) \rangle \leq m \int_{\Omega} a u^{m-1-\alpha} \varphi + \delta \int_{\Omega \cap \{u>0\}} m \lambda u^{m} \frac{f(x,u)}{u} \varphi
\leq m \int_{\Omega} a u^{m-1-\alpha} \varphi + \delta \int_{\Omega} m \lambda k u^{m} \varphi,$$

with δ as before. Thus (2.21) holds with A=0, and the proof ends as in the previous case.

3. Proofs of the main results

Proof of Theorem 1.2. Let \mathcal{M} be as given in Lemma 2.8. Let $M=\mathcal{M}+1$, and let u be a minimizer for J on D_M^{α} . Thus, by Lemma 2.10, $\chi_{\{u>0\}}au^{-\alpha} \not\equiv 0$ (and so $u\not\equiv 0$). Let ψ be

a nonnegative function in $H^1_0(\Omega) \cap L^{\infty}(\Omega)$, and let $\varepsilon > 0$. Thus $\frac{\psi}{u+\varepsilon} \in H^1(\Omega) \cap L^{\infty}(\Omega)$, and $\nabla \left(u \frac{\psi}{u+\varepsilon}\right) = \varepsilon \frac{\nabla u}{(u+\varepsilon)^2} \psi + \frac{u}{u+\varepsilon} \nabla \psi$. Then Lemma 2.5 gives

(3.1)
$$\varepsilon \int_{\Omega} \psi \frac{|\nabla u|^{2}}{(u+\varepsilon)^{2}} + \int_{\Omega} \frac{u}{u+\varepsilon} \langle \nabla u, \nabla \psi \rangle$$
$$\leq \int_{\Omega} \chi_{\{a>0\}} a u^{1-\alpha} \frac{\psi}{u+\varepsilon} + \int_{\Omega} f(.,u) u \frac{\psi}{u+\varepsilon}.$$

Since $\nabla u = 0$ a.e. in $\{u = 0\}$, (3.1) can be written as

(3.2)
$$\varepsilon \int_{\{u>0\}} \psi \frac{|\nabla u|^2}{(u+\varepsilon)^2} + \int_{\{u>0\}} \frac{u}{u+\varepsilon} \langle \nabla u, \nabla \psi \rangle$$
$$- \int_{\{u>0\}} f(.,u) \frac{u}{u+\varepsilon} \psi \leq \int_{\{u>0\}} au^{-\alpha} \frac{u}{u+\varepsilon} \psi.$$

Also $\lim_{\varepsilon \to 0^+} \frac{u}{u+\varepsilon} \langle \nabla u, \nabla \psi \rangle = \chi_{\{u>0\}} \langle \nabla u, \nabla \psi \rangle = \langle \nabla u, \nabla \psi \rangle$ *a.e.* in Ω , and $\left| \frac{u}{u+\varepsilon} \langle \nabla u, \nabla \psi \rangle \right| \le |\langle \nabla u, \nabla \psi \rangle| \in L^1(\Omega)$, and so Lebesgue's dominated convergence theorem gives

(3.3)
$$\lim_{\varepsilon \to 0^+} \int_{\{u > 0\}} \frac{u}{u + \varepsilon} \langle \nabla u, \nabla \psi \rangle = \int_{\Omega} \langle \nabla u, \nabla \psi \rangle.$$

Since $\lim_{\varepsilon \to 0^+} au^{-\alpha} \frac{u}{u+\varepsilon} \psi = au^{-\alpha} \psi$ a.e. in $\{u > 0\}$, and $au^{-\alpha} \frac{u}{u+\varepsilon} \psi$ is nonincreasing in ε , the monotone convergence theorem gives

(3.4)
$$\lim_{\varepsilon \to 0^+} \int_{\{u > 0\}} au^{-\alpha} \frac{u}{u + \varepsilon} \psi = \int_{\{u > 0\}} au^{-\alpha} \psi = \int_{\Omega} \chi_{\{u > 0\}} au^{-\alpha} \psi$$

Also, $\left|\frac{u}{u+\varepsilon}f(.,u)\psi\right| \leq \sup_{0\leq s\leq M}|f(.,s)|\psi\in L^1(\Omega)$ and then, by Lebesgue's dominated convergence theorem,

(3.5)
$$\lim_{\varepsilon \to 0^{+}} \int_{\{u > 0\}} f(.,u) \frac{u}{u + \varepsilon} \psi = \int_{\Omega} \chi_{\{u > 0\}} f(.,u) \psi \le \int_{\Omega} f(.,u) \psi,$$

the last equality because, by H5), $f(.,0) \ge 0$. Then, from (3.2), (3.3), (3.4) and (3.5), we have

$$(3.6) \qquad \int_{\Omega} \langle \nabla u, \nabla \psi \rangle - \int_{\Omega} f(.,u) \psi$$

$$\leq \int_{\Omega} \langle \nabla u, \nabla \psi \rangle - \int_{\Omega} \chi_{\{u > 0\}} f(.,u) \psi$$

$$\leq \lim_{\varepsilon \to 0^{+}} \left(\int_{\{u > 0\}} \frac{u}{u + \varepsilon} \langle \nabla u, \nabla \psi \rangle - \int_{\{u > 0\}} f(.,u) \frac{u}{u + \varepsilon} \psi \right)$$

$$\leq \overline{\lim}_{\varepsilon \to 0^{+}} \left(\int_{\{u > 0\}} \frac{\varepsilon \psi |\nabla u|^{2}}{(u + \varepsilon)^{2}} + \int_{\{u > 0\}} \frac{u}{u + \varepsilon} \langle \nabla u, \nabla \psi \rangle - \int_{\{u > 0\}} f(.,u) \frac{u}{u + \varepsilon} \psi \right)$$

$$\leq \overline{\lim}_{\varepsilon \to 0^{+}} \int_{\{u > 0\}} au^{-\alpha} \frac{u}{u + \varepsilon} \psi = \int_{\Omega} \chi_{\{u > 0\}} au^{-\alpha} \psi.$$

Thus $\int_{\Omega} \langle \nabla u, \nabla \psi \rangle - \int_{\Omega} f(.,u) \psi \leq \int_{\Omega} \chi_{\{u>0\}} a u^{-\alpha} \psi$. To prove the existence assertion of the theorem it remains to see that $\chi_{\{u>0\}} a u^{-\alpha} \psi \in L^1(\Omega)$, and that

(3.7)
$$\int_{\Omega} \langle \nabla u, \nabla \psi \rangle - \int_{\Omega} f(., u) \psi \ge \int_{\Omega} \chi_{\{u > 0\}} a u^{-\alpha} \psi$$

for any nonnegative $\psi \in H_0^1(\Omega) \cap L^\infty(\Omega)$. Assume temporarily that ψ satisfies the additional condition $\|\psi\|_\infty \leq \frac{1}{2}$, and let $t \in (0,1)$. Note that $u+t\psi \in D_M^\alpha$. Indeed, by Lemma 2.8 we have $u \leq \mathcal{M}$, and so $0 \leq u+t\psi \leq \mathcal{M}+1 \leq M$. Also $u+t\psi \in H_0^1(\Omega)$. Thus $u+t\psi \in D_M^\alpha$ when $0 < \alpha < 1$.

If
$$1 < \alpha < 3$$
, then $0 \le a(u+t\psi)^{1-\alpha} \le au^{1-\alpha} \in L^1(\{a>0\})$, and so $u+t\psi \in D_M^{\alpha}$.

If $\alpha = 1$, we have $a |\ln(u + t\psi)| \le a(u + t\psi)$ in $\{a > 0\} \cap \{u + t\psi \ge 1\}$, and $a |\ln(u + t\psi)| \le a |\ln(u)|$ in $\{a > 0\} \cap \{u + t\psi < 1\}$. Thus $a |\ln(u + t\psi)| \in L^1(\{a > 0\})$, which implies that $u + t\psi \in D_M^{\alpha}$.

To prove (3.7) we consider first the case $\alpha \neq 1$: Using $J(u) \leq J(u+t\psi)$ we obtain

$$(3.8) 0 \leq \frac{1}{t} \left(J(u+t\psi) - J(u) \right)$$

$$= \int_{\Omega} \langle \nabla u, \nabla \psi \rangle + \frac{t}{2} \int_{\Omega} |\nabla \psi|^{2} - \int_{\{a>0\}} \frac{1}{(1-\alpha)t} a \left((u+t\psi)^{1-\alpha} - u^{1-\alpha} \right)$$

$$- \frac{1}{t} \int_{\Omega} \left(F(., u+t\psi) - F(., u) \right).$$

If $1 < \alpha < 3$ we have u > 0 *a.e.* in $\{a > 0\}$, and so

(3.9)
$$\int_{\{a>0\}} \frac{1}{(1-\alpha)t} a\left((u+t\psi)^{1-\alpha} - u^{1-\alpha}\right)$$

$$= \int_{\{a>0\}\cap\{u>0\}} \frac{1}{(1-\alpha)t} a\left((u+t\psi)^{1-\alpha} - u^{1-\alpha}\right)$$

$$= \int_{\{a>0\}\cap\{u>0\}\cap\{\psi>0\}} \frac{1}{(1-\alpha)t} a\left((u+t\psi)^{1-\alpha} - u^{1-\alpha}\right).$$

By the mean value theorem $(u+t\psi)^{1-\alpha} - u^{1-\alpha} = (1-\alpha)(u+\sigma_t)^{-\alpha} \psi$ holds a.e. on $\{u>0\} \cap \{\psi>0\}$, where σ_t is a measurable function (that depends on t,u and ψ) such that $0<\sigma_t< t\psi$. Thus

(3.10)
$$\frac{1}{(1-\alpha)t} \int_{\{a>0\} \cap \{u>0\} \cap \{\psi>0\}} a\left((u+t\psi)^{1-\alpha} - u^{1-\alpha}\right)$$
$$= \int_{\{a>0\} \cap \{u>0\} \cap \{\psi>0\}} a\left(u+\sigma_t\right)^{-\alpha} \psi.$$

Note that $a(u+\sigma_t)^{-\alpha}\psi \ge 0$ and $\lim_{t\to 0^+} a(u+\sigma_t)^{-\alpha}\psi = au^{-\alpha}\psi$ hold a.e. on the set where a>0, u>0, and $\psi>0$; therefore, from (3.9), (3.10) and Fatou's Lemma, we get

(3.11)
$$\underline{\lim}_{t\to 0^{+}} \int_{\{a>0\}} \frac{1}{(1-\alpha)t} a\left((u+t\psi)^{1-\alpha} - u^{1-\alpha}\right)$$

$$\geq \int_{\{a>0\}\cap\{u>0\}\cap\{\psi>0\}} \underline{\lim}_{t\to 0^{+}} a\left(u+\sigma_{t}\right)^{-\alpha} \psi$$

$$= \int_{\{a>0\}\cap\{u>0\}\cap\{\psi>0\}} au^{-\alpha} \psi = \int_{\Omega} \chi_{\{u>0\}} au^{-\alpha} \psi.$$

Consider now the case $0 < \alpha < 1$: we again apply the mean value theorem to get a measurable function $\sigma_t : \{\psi > 0\} \to \mathbb{R}$ (which depends on t, u and ψ) that satisfies $0 < \sigma_t < t\psi$, and

$$\underline{\lim}_{t \to 0^{+}} \int_{\{a > 0\}} \frac{1}{(1 - \alpha)t} a \left((u + t \psi)^{1 - \alpha} - u^{1 - \alpha} \right)
= \underline{\lim}_{t \to 0^{+}} \int_{\{a > 0\} \cap \{\psi > 0\}} \frac{1}{(1 - \alpha)t} a \left((u + t \psi)^{1 - \alpha} - u^{1 - \alpha} \right)
\ge \int_{\{a > 0\} \cap \{\psi > 0\}} \underline{\lim}_{t \to 0^{+}} \left(a (u + \sigma_{t})^{-\alpha} \psi \right)
= \int_{\{a > 0\} \cap \{\psi > 0\}} a u^{-\alpha} \psi,$$

where $(au^{-\alpha}\psi)(x) := \infty$ if a(x) > 0, $\psi(x) > 0$, and u(x) = 0. Thus, for $\alpha \in (0,1) \cup (1,3)$, we have

(3.12)
$$\underline{\lim}_{t\to 0^+} \frac{1}{(1-\alpha)t} \int_{\{a>0\}} a\left((u+t\psi)^{1-\alpha} - u^{1-\alpha}\right) \ge \int_{\Omega} \chi_{\{u>0\}} au^{-\alpha} \psi.$$

Also, by Lemma 2.3 ii), we have

(3.13)
$$\lim_{t\to 0^+} \frac{1}{t} \int_{\Omega} \left(F\left(., u + t\psi\right) - F\left(., u\right) \right) = \int_{\Omega} f\left(., u\right) \psi.$$

Now, from (3.8),

$$(3.14) \qquad \frac{1}{(1-\alpha)t} \int_{\{a>0\} \cap \{u>0\} \cap \{\psi>0\}} a\left((u+t\psi)^{1-\alpha} - u^{1-\alpha}\right)$$

$$\leq \int_{\Omega} \langle \nabla u, \nabla \psi \rangle - \frac{1}{t} \int_{\Omega} \left(F\left(., u+t\psi\right) - F\left(., u\right)\right) + \frac{t}{2} \int_{\Omega} |\nabla \psi|^{2}$$

and so, for $1 < \alpha < 3$, taking $\underline{\lim}_{t \to 0^+}$ in (3.14), and using (3.11), (3.12), and (3.13), we get

(3.15)
$$\int_{\Omega} \langle \nabla u, \nabla \psi \rangle - \int_{\Omega} f(.,u) \psi \ge \int_{\Omega} \chi_{\{u>0\}} a u^{-\alpha} \psi \text{ if } 1 < \alpha < 3,$$

which, in particular, gives $\chi_{\{u>0\}}au^{-\alpha}\psi\in L^1\left(\Omega\right)$. Since both sides in (3.15) are linear on ψ , the additional assumption $\|\psi\|_{\infty}\leq \frac{1}{2}$ can be removed. Then u is a solution to (1.1) when $1<\alpha<3$; and since $u\in D_M^{\alpha}$, it satisfies u>0 a.e. in $\{a>0\}$.

Similarly, if $0 < \alpha < 1$, taking $\underline{\lim}_{t \to 0^+}$ in (3.14), and using (3.11), (3.12) and (3.13), we get

(3.16)
$$\int_{\Omega} \langle \nabla u, \nabla \psi \rangle - \int_{\Omega} f(.,u) \psi \ge \int_{\{a>0\} \cap \{\psi>0\}} au^{-\alpha} \psi \text{ if } 0 < \alpha < 1,$$

for any nonnegative $\psi \in H_0^1(\Omega) \cap L^\infty(\Omega)$. In particular (3.16) gives that u > 0 a.e. in $\{a > 0\} \cap \{\psi > 0\}$. From this fact, we conclude (using Remark 2.9 applied with $w = a\chi_{\{u=0\}}$) that u > 0 a.e. in $\{a > 0\}$. Then $\int_{\{a > 0\} \cap \{\psi > 0\}} au^{-\alpha}\psi = \int_{\Omega} \chi_{\{u > 0\}} au^{-\alpha}\psi$; and so, if $0 < \alpha < 1$, (3.16) becomes

(3.17)
$$\int_{\Omega} \langle \nabla u, \nabla \psi \rangle - \int_{\Omega} f(.,u) \psi \ge \int_{\Omega} \chi_{\{u>0\}} a u^{-\alpha} \psi,$$

which, in particular, gives $\chi_{\{u>0\}}au^{-\alpha}\psi\in L^1(\Omega)$. Summing up, when $\alpha\neq 1, u>0$ a.e. in $\{a>0\}$; and, for any nonnegative $\psi\in H^1_0(\Omega)\cap L^\infty(\Omega)$, $\chi_{\{u>0\}}au^{-\alpha}\psi\in L^1(\Omega)$, and (3.7) holds.

When $\alpha=1$, the same facts can be proved proceeding, line by line, as in the case $1<\alpha<3$, but with $\frac{1}{1-\alpha}a\left((u+t\psi)^{1-\alpha}-u^{1-\alpha}\right)$ replaced by $a\left(\ln\left(u+t\psi\right)-\ln u\right)$; and using that, on the set $\{u>0\}\cap\{\psi>0\}$, we have

$$\ln(u+t\psi) - \ln u = \frac{1}{2}(u+\sigma)^{-1}t\psi$$

for some measurable function σ , that depends on t, u and ψ , and satisfies $0 < \sigma < t\psi$.

Finally, if f(.,0) > 0 a.e. in Ω , by (3.6) we have, for any nonnegative $\psi \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$,

$$\int_{\Omega} \langle \nabla u, \nabla \psi \rangle - \int_{\Omega} \chi_{\{u > 0\}} f(., u) \psi \leq \int_{\Omega} \chi_{\{u > 0\}} a u^{-\alpha} \psi.$$

which, jointly with (3.15), implies $\int_{\Omega} f(.,u) \psi \leq \int_{\Omega} \chi_{\{u>0\}} f(.,u) \psi$; and then $\int_{\{u=0\}} f(.,u) \psi \leq 0$. Since f(.,0) > 0 a.e. in Ω , it follows that $\chi_{\{u=0\}} f(.,0) \psi = 0$ a.e. in Ω for any nonnegative $\psi \in C_c^{\infty}(\Omega)$. Thus, by Remark 2.9, $\chi_{\{u=0\}} f(.,0) = 0$ a.e. in Ω , and then $|\{u=0\}| = 0$.

Remark 3.1. If $f \le 0$, condition H4) is automatically fulfilled; indeed, in this case H4') holds.

Proof of Theorem 1.3. Since for $\lambda \geq 0$, λf satisfies the same assumptions fulfilled by f, the first assertion of the theorem follows from Theorem 1.2. If, in addition, $\lim_{s\to\infty} \frac{f(x,s)}{s} = 0$ uniformly on Ω , then -f satisfies H1)-H3), H5), and H4"); and so, for $\lambda < 0$, writing $\lambda f = 0$

 $-\lambda\left(-f\right)$, the second assertion of the theorem follows from the first one. Finally, if $\lambda\geq0$ and $f\left(.,0\right)>0$ a.e. in Ω , the statement $u_{\lambda}>0$ a.e. in Ω follows from Theorem 1.2, again.

Proof of Theorem 1.4. Assume that H6) holds. Let m be an integer such that $m \geq \max\{2, 1 + \alpha\}$, and let $k \in \mathbb{R}$ satisfy $k > \max\{0, ess\sup_{\Omega \times (0, \infty)} \frac{f(x, s)}{s}\}$. Thus $\frac{\lambda f(., s)}{s} \leq \lambda k$ and, since $\lambda_1(\lambda k \mathbf{1}) = \frac{\lambda_1(\mathbf{1})}{\lambda k} > m$ for $0 < \lambda < \frac{\lambda_1(\mathbf{1})}{mk}$, Theorem 1.2 gives, for such λ , the sought weak solution of (1.2). Note also that, if $\lambda = 0$, (1.2) reduces to $-\Delta u = \chi_{\{u > 0\}} a u^{-\alpha}$ in Ω , $u \geq 0$ in Ω , u = 0 on $\partial \Omega$; and this problem has a positive weak solution $u \in H_0^1(\Omega) \cap L^\infty(\Omega)$ (see [10]). Then the lemma holds with $\lambda^* := \frac{\lambda_1(\mathbf{1})}{mk}$.

Assume now that H7 holds. Let $V:=\{k\in(0,\infty):f(.,k)\in L^\infty(\Omega)\}$. Since $f\in L^\infty(\Omega\times(0,\sigma))$ for any $\sigma>0$, we have that $\mathbb{R}\setminus V$ has zero Lebesgue's measure. For $k\in V$ to be chosen latter, let $f_k:\Omega\times[0,\infty)$ be defined by $f_k(.,s):=f(.,s)$ if $0\leq s\leq k$, and by $f_k(.,s):=f(.,k)$ otherwise. Let $\lambda>0$; clearly λf_k satisfies the conditions H2), H3) and H5). Since $f(.,k)\in L^\infty(\Omega)$, we have $\overline{\lim}_{s\to\infty}\frac{\lambda f_k(.,s)}{s}=0$ uniformly on Ω , and so λf_k satisfies also H4"). Let $u\in H_0^1(\Omega)\cap L^\infty(\Omega)$ be the solution to the problem:

$$\begin{cases}
-\Delta u = \chi_{\{u>0\}} a u^{-\alpha} + \lambda f_k(x, u) \text{ in } \Omega, \\
u = 0 \text{ on } \partial \Omega, \\
u \ge 0 \text{ in } \Omega, \ u \not\equiv 0 \text{ in } \Omega,
\end{cases}$$

provided by Theorem 1.2. Thus u satisfies $\chi_{\{u>0\}}au^{-\alpha} \not\equiv 0$. Let m be an integer such that $m \ge \max\{2, 1+\alpha\}$, let λ_1 be the first eigenvalue for $-\Delta$ on Ω with homogeneous Dirichlet condition, let $\eta \in (0,1)$, and let $\varepsilon := \eta \frac{\lambda_1}{\lambda_m}$. Take $\Lambda \in (0,\infty)$, and define

$$s_0 := \max \left\{ \frac{m\Lambda \|f(.,k)\|_{\infty}}{\eta \lambda_1}, k \right\}.$$

Thus, for $s > s_0$ and $0 \le \lambda < \Lambda$,

$$\frac{\lambda |f_k(.,s)|}{s} \leq \frac{\Lambda |f(.,k)|}{s_0} \leq \frac{\eta \lambda_1}{m} < \frac{\lambda_1}{m} \ a.e. \text{ in } \Omega.$$

From the proof of Theorem 1.2 we know that, for M positive and large enough, u is a minimizer for $J_{\lambda f_k}$ on D_M^{α} ; and so, by Lemma 2.6, we have, in the weak sense stated there (i.e., for test

functions in $H_0^1(\Omega) \cap L^{\infty}(\Omega)$,

$$(3.18) -\Delta(u^{m}) \leq ma(u^{m})^{\frac{m-1-\alpha}{m}} + mu^{m-1}\lambda f_{k}(.,u)$$

$$\leq ma(u^{m})^{\frac{m-1-\alpha}{m}} + \lambda mAs_{0}^{m-1} + mu^{m}\chi_{u>s_{0}} \frac{\lambda |f_{k}(.,u)|}{u}$$

$$\leq mau^{m-1-\alpha} + \lambda mAs_{0}^{m-1} + \eta \lambda_{1}u^{m}$$

for $0 \le \lambda < \Lambda$ and with $A := 1 + \|f_{|\Omega \times (0,s_0)}\|_{L^{\infty}(\Omega \times (0,s_0))} < \infty$. As $ma(u^m)^{\frac{m-1-\alpha}{m}} + \lambda m A s_0^{m-1} + \eta \lambda_1 u^m \in L^2(\Omega)$, Remark 2.7 says

$$(3.19) -\Delta(u^m) \leq ma(u^m)^{\frac{m-1-\alpha}{m}} + \lambda mAs_0^{m-1} + \eta \lambda_1 u^m$$

in the usual $H_0^1(\Omega)$ weak sense (i.e., for arbitrary test functions in $H_0^1(\Omega)$). Now, $\eta \lambda_1 < \lambda_1$, and so $(-\Delta - \eta \lambda_1)^{-1} : L^{\infty}(\Omega) \to L^{\infty}(\Omega)$ is a well defined, bounded, and positive operator; let $c := \left\| \left(-\Delta - \eta \lambda_1 \right)^{-1} \right\|_{L^{\infty}(\Omega), L^{\infty}(\Omega)}$. Then, since u is nonnegative, from (3.19) we get

$$||u||_{\infty}^{m} \le c \left(m ||a||_{\infty} ||u||_{\infty}^{m-1-\alpha} + \lambda m A s_{0}^{m-1}\right).$$

Then, either $\|u\|_{\infty}^m \leq 2cm \|a\|_{\infty} \|u\|_{\infty}^{m-1-\alpha}$, or $\|u\|_{\infty}^m \leq 2c\lambda mAs_0^{m-1}$. Now we choose $k \in V$ such that $k > (2cm \|a\|_{\infty})^{\frac{1}{1+\alpha}}$. If $\|u\|_{\infty}^m \leq 2cm \|a\|_{\infty} \|u\|_{\infty}^{m-1-\alpha}$, then $\|u\|_{\infty} \leq k$; therefore $f_k(\cdot,u) = f(\cdot,u)$, and so u is a solution to (1.2). If $\|u\|_{\infty}^m \leq 2c\lambda mAs_0^{m-1}$, then $\|u\|_{\infty} \leq \lambda^{\frac{1}{m}} \left(2cmAs_0^{m-1}\right)^{\frac{1}{m}}$; and so, if $\lambda \in [0,\lambda^*)$ with $\lambda^* := \min\left\{\Lambda,\frac{k^m}{2cmAs_0^{m-1}}\right\}$, we have $u \leq k$, which implies that u solves (1.2). Finally, the conclusion $u_{\lambda} > 0$ a.e. in $\{a > 0\}$ follows from Theorem 1.2 used with f_k instead of f.

Remark 3.2. Assume H1)-H3), H5) and $f \le 0$. Then (1.2) has a weak solution (in the sense of Definition 1.1) for all $\lambda \ge 0$. Indeed, this follows from Theorem 1.2 applied with λf instead of f.

REFERENCES

- [1] B. Bougherara, J. Giacomoni, Existence of mild solutions for a singular parabolic equation and stabilization, Adv. Nonlinear Anal. 4 (2015), 123-134.
- [2] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.
- [3] B. Bougherara, J. Giacomoni, J. Hernández, Existence and regularity of weak solutions for singular elliptic problems, 2014 Madrid Conference on Applied Mathematics in honor of Alfonso Casal, Electron. J. Diff. Equ. Conference 22 (2015), 19-30.

- [4] A. Callegari, A. Nashman, A nonlinear singular boundary-value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math. 38 (1980), 275-281.
- [5] M.M. Coclite, G. Palmieri, On a singular nonlinear Dirichlet problem, Comm. Part. Differ. Equat. 14 (10), (1989), 1315-1327.
- [6] D. S. Cohen, H. B. Keller, Some positive problems suggested by nonlinear heat generators, J. Math. Mech. 16 (1967), 1361-1376.
- [7] M. G. Crandall, P. H. Rabinowitz, L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Part. Differ. Equations 2 (1977), 193-222.
- [8] F. Cîrstea, M. Ghergu, V. Rădulescu, Combined effects of asymptotically linear and singular nonlinearities in bifurcation problems of Lane–Emden–Fowler type, J. Math. Pures Appl. 84 (2005), 493-508.
- [9] J. Dávila, M. Montenegro, Positive versus free boundary solutions to a singular elliptic equation, J. Anal. Math. 90 (2003), 303-335.
- [10] M. A. del Pino, A global estimate for the gradient in a singular elliptic boundary value problem, Proc. R. Soc. Edinburgh Sect. A 122 (1992), 341-352.
- [11] J. I. Díaz, J. Hernández, Positive and free boundary solutions to singular nonlinear elliptic problems with absorption; An overview and open problems, Variational and Topological Methods: Theory, Applications, Numerical Simulations, and Open Problems (2012). Electron. J. Diff. Equ., Conference 21 (2014), 31-44.
- [12] J. Díaz, M. Morel, L. Oswald, An elliptic equation with singular nonlinearity, Comm. Part. Diff. Eq. 12 (1987), 1333-1344.
- [13] D. G. De Figueiredo, Positive solutions of semilinear elliptic equations, Lect. Notes Math. Springer, 957 (1982), 34-87.
- [14] L. Dupaigne, M. Ghergu, V. Rădulescu, Lane-Emden-Fowler equations with convection and singular potential, J. Math. Pures Appl. 87 (2007), 563-581.
- [15] W. Fulks, J. S. Maybee, A singular nonlinear equation, Osaka Math. J. 12 (1960), 1-19.
- [16] M. Ghergu, V. Liskevich, Z. Sobol, Singular solutions for second-order non-divergence type elliptic inequalities in punctured balls, J. Anal. Math. 123 (2014), 251-279.
- [17] M. Ghergu, V. D. Rădulescu, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, No 37, 2008.
- [18] M. Ghergu, V. D. Rădulescu, Multi-parameter bifurcation and asymptotics for the singular Lane-Emden-Fowler equation with a convection term, Proc. Royal Soc. Edinburgh, Sect. A 135 (2005), 61-84.
- [19] T. Godoy, A. Guerin, Nonnegative solutions of a singular elliptic problem, Electron. J. Diff. Equ. 2016 (2016), Article ID 191.
- [20] V. V. Kurta, A Liouville comparison principle for solutions of quasilinear singular parabolic inequalities, Adv. Nonlinear Anal. 4 (2015), 1-11.
- [21] A. C. Lazer, P. J. McKenna, On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc. 111 (1991), 721-730.

- [22] B. B. Manna, P. C. Srikanth, On the solutions of a singular elliptic equation concentrating on a circle, Adv. Nonlinear Anal. 3 (2014), 141-155.
- [23] V. D. Rădulescu, Singular phenomena in nonlinear elliptic problems, From blow-up boundary solutions to equations with singular nonlinearities, in Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. 4 (M. Chipot, Editor), North-Holland Elsevier Science, Amsterdam, 2007, pp. 483-591.
- [24] J. Shi, M. Yao, On a singular nonlinear semilinear elliptic problem, Proc. R. Soc. Edinburgh, Sect A 128 (1998), 1389-1401.