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1. Introduction

Let f : [a,b] — R be a differentiable mapping on (a,b) whose derivative [’ : (a,b) — R is

bounded on (a,b), i.e., || f'||.. := sup |f'(t)| < e. From [19], we have the inequality
t€(a,b)

b
1
b—a/f(t)dt =

1 =)’ (b—a)|f||. ¥xelab].  (11)
2" b-ap = |

f(x) =

The constant % is the best possible. This inequality is well known in the literature as the Os-
trowski inequality.
In [15], Dragomir proved following Ostrowski type inequalities related functions of bounded

variation.
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Theorem 1.1. Let f : [a,b] — R be a mapping of bounded variation on [a,b]. Then

e

b
[ 1= o-a) 50| < [ 6-a)+

holds for all x € [a,b]. The constant § is the best possible.

In [22], Tseng et al. gave the following weighted Ostrowski type inequalities for functions

of bounded variation.

Theorem 1.2. Let us have 0 < o < 1, let w: [a,b] — [0, ) continuous and positive on (a,b) and
h:|a,b] — R be differentiable such that I (t) = w(t) on [a,b]. Leta; = h~" ((1— %) h(a) + $h(b)) ,
by =h"'(%$h(a)+ (1—%) k(b)) . If f : [a,b] — R be mapping of bounded variation on [a,b],

then for all x € [ay,b;], we have the inequality

b b
[wiorrar - {(1 - a)f@)mM} [winar <k (). (12)

where
( b
152 [w(r)de + |n(x) — 070 fo<a<l,
¥ b

K:= max{lTafw(t)dt—f— ‘h( ) h(a)erh(b) 2 (t)dt}, lfé <a< %,

b
& [w(t)dt, ifi<a<l

\ a

b
and \a/( f) denotes the total variation of f on interval [a,b]. In (1.2), the constant 5% for

0<a< % and the constant %for % < o < 1 are the best possible.
2. Preliminaries

In 1910, Fréchet [17] has given the following characterization for the double Riemann-
Stieltjes integral. Assume that f(x,y) and g(x,y) are defined over the rectangle Q = [a, D] x

[c,d]; let R be the divided into rectangular subdivisions, or cells, by the net of straight lines
X=X, Y=DYi,
a=xg<x1<..<xp=b,andc=y) <y <..<yn=d;

let &,m; be any numbers satisfying & € [x;_1,xi], n; € [y;—1,y;], (= 1,2,...,n; j=1,2,....m);
and for all 7, j, let Aj1g(xi,y;) = g(xi-1,¥j-1) — 8(xi-1,¥;) — &(%i,yj—1) + &(xi, ;). Then if the
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n m

sum S= Y ¥ f(&,n;)Ang(xi,y;) tends to a finite limit as the norm of the subdivisions
i=1j=1

approaches zero, the integral of f with respect to g is said to exist. We call this limit the

restricted integral, and designate it by the symbol

b d
| [reyddsty). @1

n

m
If S is replaced by the sum $* = Y. ¥ f (&, Mij) A11g(xi,y;), where &;, 7;; are numbers satis-
1

i=1j=1
fying &;; € [x;i—1,x], nij € [y i—1,Y j] , we call the limit, when it exist, the unrestricted integral,

and designate it by the symbol

b d
() [ [ Fxnddig(x.y). 22)

Clearly, the existence of (2.2) implies both the existence of (2.1) and its equality (2.2). On the
other hand, Clarkson [13] has shown that the existence of (2.1) does not imply the existence of
(2.2).

In [12], Clarkson and Adams gave the following definitions of bounded variation for func-
tions of two variables.

The function f(x,y) is assumed to be defined in rectangle R(a < x < b, ¢ <y < d). By the

term net we shall, unless otherwise specified mean a set of parallels to the axes:

x = x(i=0,1,2,...m), a=xo < x1 < ... <Xy =b;

y = y](.]:()>17277n)7c:y0<yl<<yn:d

Each of the smaller rectangles into which R is devided by a net will be called a cell. We employ

the notation

A f(xi,y;) = f(xie1,yj41) = F(xir1,55) = Fxa,yj41) + f(x6,95)

Af(xi,y;) = f(xig1,yj41) — f(x0,55)

The total variation function, ¢(X) [w(¥)], is defined as the total variation of f(x,y) [f(x,y)]
considered as a function of y [x] alone in interval (c¢,d) [(a,D)],or as oo if f(X,y) [f(x,¥)] is of

unbounded variation.
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Definition 2.1. (Vitali-Lebesque-Fréchet-de la Vallée Poussin). The function f(x,y) is said tobe
of bounded variation if the sum

m—1,n—1

Y |Ausf(xy))]
i=0, j=0
is bounded for all nets.
Definition 2.2. (Fréchet). The function f(x,y) is said tobe of bounded variation if the sum
m—1,n—1
Y, &g |Anf(xiy))|
i=0 , j=0
is bounded for all nets and all possible choices of € = &1 and €; = +1.
Definition 2.3. (Hardy-Krause). The function f(x,y) is said tobe of bounded variation if it
satisfies the condition of Definition 2.1 and if in addition f(X,y) is of bounded variation in y
(i.e. ¢(x) is finite) for at least one X and f(x,y) is of bounded variation in y (i.e. y(y) is finite)

for at least one y.
Definition 2.4. (Arzela). Let (x;,y;) (i =0,1,2,...,m) be any set of points satisfiying the condi-
tions

a = x<x1<..<xu=>b;

c = y<y<..<yp=d.

m
Then f(x,y) is said tobe of bounded variation if the sum Y, |Af(x;,y;)| is bounded for all such
i=1
sets of points.
Therefore, one can define the consept of total variation of a function of variables, as follows:

Let f be of bounded variation on Q = [a,b] X [c,d], and let ¥ (P) denote the sum

I

m
Z A1 f(xiy))]

corresponding to the partition P of Q. The number

\/(f)::(/\b/ —sup{z :PeP(Q }

Q

is called the total variation of f on Q.

In [18], authors proved the following Lemmas related double Riemann-Stieltjes integral.
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Lemma 2.5. (Integrating by parts) If f € RS(g) on Q, then g € RS(f) on Q, and we have

d b d b
C/ / Flt,$)didsg(t, ) + / / 2(t,5)dsds £(1,5) )

= f(b,d)g(b,d) — f(b,c)g(b,c) — f(a,d)g(a,d) + f(a,c)g(a,c).
Lemma 2.6. Assume that Q € RS(g) on Q and g is of bounded variation on Q. Then

/ / Q(x,y)ddyg(x,y)| < sup |Q(x,y I\/ (2.4)
(xy)€eQ

In [18], Jawarneh and Noorani obtained the following Ostrowski type inequality for functions

of two variables with bounded variation.

Theorem 2.7. Let [ : Q —— R be mapping of bounded variation on Q. Then for all (x,y) € O,

we have inequality
d b
(b-a)d=o)f(xy) - [ [ fle.s)ands

o523y

o

< B(b—a>+

where \/ (f) denotes the total (double) variation of f on Q.
0

In [6], Budak and Sarikaya proved the following generalization of the inequality (2.5).

Theorem 2.8. Let f: Q — R be mapping of bounded variation on Q. Then for all (x,y) € Q,

we have inequality

((b—a)(d—c)[(1-24)(1-n) f(x,y)

+(1—/1)11

> [f(a,y) + f(b,y)] +

(2.6)

Xmax{nd; (y_ (2—n)2c+nd) | ((2—n)2d+nc_y)}\z/<:/(f)
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forany A,n €[0,1] and a+A%54 <x <b—A%%, c+ %< <y <d—n%E, where (f)

a <l
o <X

denotes he total variation of f on Q.

For more information and recent developments on inequalities for mappings of bounded vari-
ation, we refer authors to [1]-[11], [14]-[16], [18], [20]-[25] and the references therein. The aim
of this paper is to establish new weighted Ostrowski type inequalities for functions of two inde-

pendent variables with bounded variation.
3. Main results

Let us have 0 < o, < 1 and let w; : [a,b] — [0,%0) continuous and positive on (a,b) and
h : [a,b] — R be differentiable such that 2 (#) = w (¢) on [a,b] . Similarly, let ws : [c,d] — [0, 0)
)

wa (1)

continuous and positive on (c,d) and h; : [c,d] — R be differentiable such that A (r
on [c,d]. Let aj = by (1= %) hi(a) + $hi (b)), by = by ($hi(a)+ (1= %) by (b)), ¢

hy! ((1 - %) ha(c) + %hz(d)> and d, = h; (th( )+ (1 - %) hz(d)> .

Theorem 3.1. If f : [a,b] X [c,d] — R is a mapping of bounded variation on [a,b] X [c,d], then
we have the following inequality for all (x,y) € [ay,b1] X [c1,d],

b d
[m@ar | | [waan | 10-a)(1-) 5 ()
+(1_a)ﬁf(x76)42rf(x,d)+a(1_ﬁ)f(a,y);f(b,y)}
b d (3.1)
+aﬁf(a,c)+f(a,d):f(b o)+ /(b,d) //Wl wa(s)f(t,s)dsdt
b d
<KL\/\/ (/).

where
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and
( d
12 Fwa(e)de + [a(y) - 221 fO<p<i,
d d
L= maX{#fwz(l)dH- ’hz()’) LAORAL) ‘ ,gfwz(t)dt}, if 1 <pB <32,
B C ) s
| 2/ wal0)dt F3<p<l,

b d
and \/ \/ (f) denotes the total variation of f on interval [a,b] X [c,d].
a ¢

In (3.1), the constant w for o, 8 € [0, 3] and the constant O‘Tﬁ for a,B € [%,1] are
the best possible.

Proof. For (x,y) € |a;,b;] X [c1,d1], we define the following mappings ¢, p by

Using the ¢(¢) and p(s) kernels, we have

b d
| [awps)dasc.s

://y<h1(t)— [(1—%>h1(a)+%h1(b)]> (hz(s)— {(1—%) hz(c)+§hz(d)] dyd, f(1,5)

d _ -
[ [ (mo=[(1-5) m@+ Sm®)]) (#s) - _§h2(0)+ <I—E) ha(d)|
a 'y

) has) = | hale) + (1 - g) hz(d):

)
( )

] o= 0+ (1= §m0]) (= [(1-8) e B Y
( )

+ [ [(mo=[Fn@+(1-5) me)

=Lh+hL+1L+14.




8 H. BUDAK, M.Z. SARIKAYA

By integrating by parts, we get

n= [ [ (0~ [(1- 2 miar+ S

AA|—|
[E—
|ml\3|$2

NlQ R

5
5
S
~—

//w1 wo(s)f(t,s)dsdt.

Using a similar method, we have

x d
12—//h1
ay

x([
[<—

@)+ 5 m b))

) @) ) df 1)

} ( hz(d)—hz(c))f(x7d)

B
—h
52
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+
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S
=
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|
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& NlQ lez
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and

b d
14://<h1(t)— [%hl(a)Jr(l—%) hl(b)D
Xy

< (hz(s) _ [ghz(c) 4 (1 _ g) hz(d)D dudi f(1,5)
_ (ahl(b)—hl(a)) (ﬁhZ(d)_hZ(c))f(b,d)

2 2
- (220D i)~ ey (1-8 ) mla)| 6 (3
B [h1(x) B %h] (a)— (1 _%) hl(b)} (th(d) ;hz(c)) F(x,d)
+ @ - En@ - (1- L) m) {hz(y) Pt - (1 —ﬁ) h2<d>] Fx)
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Adding (3.2)-(3.5), we have

b d
— (/w(t)dt) (/g(t)dt) {(1 —a)(1-B) fx,y)+(1 —a)ﬁf(x c)JZFf(x ,d)

fla,c)+f(a,d)+ f(b,c) + f(b,d)

+a(l1-p) 5 +af 2
//w1 wo(s)f(t,s)dsdt.
On the other hand, using Lemma 2.2, we have
J famonar
b d
< sup lg(0)] sup [p(s)|\V/ V()
t€la,b) s€le,d] a ¢
— max (A (x) = [(1= 51 (@) + 5 b (b)), [ 1 (@) + (1= )i ()] = I ()
Sl (B) = (@)
< max {(s) ~ (1~ 2 a(e) + E nafa)]. B ma(e) + (1 = B ypat@)] oty
B b d
E[hz(d)—hz(c)]}\/\/(f)
:max{l‘z"‘[m<b>—h1<a>1+ () — ™1 )3}”“’)\ ‘;‘[mb)—m(an}
b d
xmax{ ! ;ﬁ [ha(d) — ha(c)] + |ha(y) — o );hz(d)‘ g[hz(d) _hZ(C)]}\/\/(f)
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This completes the proof of inequality (3.1). Assume (o, ) € [0, %] x [0, %] . Suppose (3.1)
holds with a constant A = A.A,, A1,Ay > 0, that is,

e s

_|2_fXd +a (l_ﬁ)f(aﬂ));f(b?y)}
d
+(xﬁf(a,c)—i—f(a,d):f(b c)+ f(b,d) /w1 f(t,s)dsdt (3.6)
b a ¢
< [Al / wi(1)dr + | (x) — ‘]

c

+h1
i +h2 N
a2 [y + o) - 2OTEDN Vv )
If we choose f: Q — R with

1, if (t,s)z( ( a)th (b >,h2 ha(e)thy(d) ))
flt,s) = 0.if (1.s) € [a {<h1<h1 +h1 )M(M))}

then f is of bounded variation on Q. For (x,y) (hl <h1 @) +hi (b ) (M)) , we have
a

fxe)+ f(x.d) flay) +f(by) _, fla.c)+f(a.d)+f(bc)+f(b,d)

=0
2 2 4

ﬁ :07

b d
//wl(t)wzf(t,s)dsdt =0, and \/(f) =
. 0

Putting this equalities in (3.6), we get

b d b d
(/wl(t)dt> (/wz(t)dt) (l—a)(1—B) <4 (/wl(t)dt) (/wz(t)dt) AAs.

It follows that A > w which implies # is the best possible.
The sharpness of inequality (3.1) for o, € [% } can be easily proved by choosing the

) { Lt (1.9) = (bd),

This completes the proof.

function f
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Remark 3.2. If we choose w(t) = g(s) =1 (h1(t) =t and hy(s) = s), and @ = 8 = 0, then the
inequality (3.1) reduces the inequality (2.5).

Remark 3.3. If we choose w(t) = g(s) =1 (hi(t) =t and ha(s) =), x = = %, x= # and

y= ﬂ in inequality (3.1), then we have the Simpson’s inequality

‘f(b,d)+f(b70)+f(a»d)+f(a70)
36

fla59) + £ (552 0) + £ (0,54 +1(%5%.d)
9

b d
4 (a+b c+d 1
+§f( 22 >_(b—a)(d—c)//ftSdet

b d
V V()

_|_

IA
O —

which is proved by Jawarneh and Noorani in [18].

Remark 3.4. If we choose wi(t) =wy(s) =1 (h(t) =tand hy(s) =s),a =1, =0,x= #

and y = ‘*d in inequality (3.1), then we have

b

f(a,59) + £ (b, 59) ! 7 1
T (b-a d—c)//ftSdet Sva’

which is given by Budak and Sarikaya in [10]. The constant le is the best possible.

Remark 3.5. If we choose w (f) = wa(s) = 1 (hy(t) =t and hy(s) =s), =0, f =1, x = 452

andy = C+d in inequality (3.1), then we have

b d

f(432,0) + (52.d) 1 1
2 : 2 _(b_a)(d_c)a/c/f(t,s)dsdt SZ\Q/(f),

which is proved by Budak and Sarikaya in [10]. The constant % is the best possible.
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Remark 3.6. If we choose wi(t) =wa(s) =1 (hi(t) =t and hp(s) = s), a = f = 5, x = <L

andy = C+d in the inequality (3.1), then we have

‘1 [ a,c)+ f(a,d)+ f (b,c)+ f (b,d)
4 4 +

o5 b)) (23]
A o]

(3.7)

which is given by Budak and Sarikaya in [6]. The constant % is the best possible.

Corollary 3.7. (Weighted Ostrowski Inequality) Under the assumption Theorem 3.1, if we
choose a = =0, for all (x,y) € |a,b] X [c,d], then we have the following weighted Ostrowski

inequality
b d b d
/wl(t)a’t /wz(t) t //f (t,5)dsdt
b b d
<5/ w]<r>dr+\h1<x>}”(“)+}”] % walo)de + n(y) 2D\ )

Corollary 3.8. (Weighted Trapezoid Inequality) Under the assumption Theorem 3.1, if we

choose oo = 3 = 1, then we have the following weighted trapezoid inequality,

b d b d
f(b,d)+f(b,c):f(a,d)—Ff(a,C) /Wl(t)d, /Wz(t)d, _//f (t,5)dsdt

a

d

Joo) (i) i

=
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Corollary 3.9. (Weighted Simpson’s Inequality) Under assumption Theorem 3.1, if we choose

o=p= 3, X = <M) and y= hgl <M) then we have the weighted Simp-

son’s inequality

d
/W1(t)dt /Wz(t)dt {f(b,d) +f(b,c);f(a,d) + f(a,c)

ctd ath c+d atb b d
fla,5%) +£(5%0) +f (b,5%) +f (“57.4) +4f(a+b c+d>} //f(t,s)dsdt

+ 9 9
] b d b d
<3 /Wl(t)df /Wz(f)df VVH)

4. Applications for qubature formulae

Now, we apply the results presented previous section to qubature formulae.
Let us consider the arbitrary division I, :a =x0 < x1 < ... <xp=b, Jp:c =y <y; < ... <

ym=d,l} ;== x4y —x;, and I3 :=yj11 —yj,

v(l) :=max{lj| i=0,..,n—1},

v(lh) ::max{lg‘ j:O,...,m—l},

Xit+1

V(W) 1= max {Wi| i=0,...n—1}, W= / wi()du = iy (xie1) — b (x0),

Xi

Yj+1

o(Ws) = max { WJ| j=0,...m—1}, W) := /wz(u)du:hz(yj+1)—h2(yj).
Yj

Let us have a, B, wi, hy, wy, and h; defined as in Theorem 3.1. Let a’i = h_l((l — S )hi(x;) +
iy (1)), By = Ayt (Zhy () 4+ (1= @) by (xi41)) s ] =y (( ——)hz y]+1)+ﬁhz(y]+1))
and d] =1 (Ba(y) + (1= 8) haloy1)) . & € [ah 4] (=0, — 1) and m € [e] ]
(j=0,....m—1).
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Define the sum

A(fvwl7hlvw27h27ln7‘]m)

n—1m—1
=Y Y [(1-o)(1-B)f (&)
i=0 j=0

e _a)Bf(éi,yj)—sz(éi,yHl) tal _ﬁ)f(xi,nj) +2f(x,~+1,nj)
+aﬁf(xi;yj)+f(xi;)’j+1)+1;(xi+layj)+f(xi+1a)’j+l)

wiwy.
Theorem 4.1. Let f defined as in Theorem 3.1 and let
b d
//WI(I)W2<S)f(taS)det :A(f,W1,h1,W27h27In,Jm) +R(f,W1,h1,W2,h2,In,Jm).

The remainder term R(f,wy,hy,wn,ha, I, Jy) satisfies

Xit1Yj+1

n—1m—1 b d
R(f,wihwa by L Ja) | < Y Y KL\ (F) <N\ ()
i=0 j=0 Xi yj a c

(4.1)
b d b d
<MN,\/\/(f) <MsN5\/ \/ (),
a ¢ a ¢
where
I—Tawli+ hl(gl)_hl(xi)‘i‘hl(xm) , ifo<a< %7
K = max{lfTawfﬂh](@)—w Wit ifh<a<d (i=0..n-1),
awi, if3<a<l,
6nax 1{%W{—|— hl<§l)_h1(x5)+h1(xz‘+l) }’ ifoﬁaf%,
1=0,...,n—
M=  max l{max{l—T%(Wl)ﬂhl(@)—w ,%U(Wl)}}, ifl<a<?
1=0,...,n—
ED(WI)7 lf%gaglu
]_Tav(Wl)+i:(§r}%§,l‘hl(éi)_hl(XiH;l(xm) : lfOSOCS%,
My=q max {max{55C0W)dr+ | (&) - Bl gyt it <a<d,
1=0,...,n—
o (W), fi<as<t,
M, — (I—a)o(W) if0<a<3,
%D(Wl)a lf%gagh
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and similarly

(

#W{#‘hz ;) _hz()’j)Jr;lz()’jH) : if0<p < %,
Li: maX{l ﬁW +‘h2 T[] (y-i)+;2(yf+l) ’%WZJ}J lf% <B < %7 (.]:07 ,m 1)7
( . .
j_gna;_l{%wzl ‘hz(n]) (y,)+£zz(y,+1) }’ ifOSﬁg%,
Ny = _max {max{Tﬁ v(Wa) +‘h2 n;)— (yj)+2hz(y/+1)’,gv(Wz)}}, if 3 <B <3,
L gU(WZ), lf%ﬁﬁgl,
" %D(Wz)—f—j:gnax {‘hz nj (Yj)+£tz(y;+1) }7 if0 < B < %,
Ny = nax {max{ Bows) +‘h2 n;) (Y/)+£12(Yj+1) ,gv(Wz)}}, if s <B <3
L %v(Wz), lf%ﬁﬁﬁl,
wo | a=Broom). ro<p<s
So(wa), ifi<p<lL.
Proof. Applying Theorem 3.1 to the bidimentional interval [x;,x;1] X [y iVt 1} , we have
[[(A—a)(1=B)f (& n))
iy) ] + i'Jj
+(X(1 _ﬁ) f(xianj) +2f(xi+1>nj)
ihYj)t irYj + i+1,¥i)+ it1, Vi i
rap AL TXH RS AN PG (42)
Xit1Yj+1
- wi(t)wa(s)f(t,s)dsdt
X yj
Xit1Vj+1

for any &;

<KL \/ \/ (/)
Xi Yj

€la),b}],(i=0,...,n—1)andn; € [c{,d{} (j=0,...,m—1). Summing inequality

(4.2) over i from O to n — 1 and j from O to m — 1 and using the generalized triangle inequality,
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we get
—1m—1 xz+1Yj+1
IR(f,wi,h1,wa,hy, Ly, Jm)| < Z ZKL \/
i=0 j=0 X;
n—1m—1%i+1Yj+1
S(max Kl)< max )ZZ\/\/
i=0,...;1—1 j=0 por e S

b d
:M1N1\/\/(f) §M2N2\/\/(f)

This completes the proof of the first three inequalities in (4.1). In inequality (4.3), we observe
that hl(gi) — hl(xi)Jthl(XiH)

< IEO‘Wf . Hence, we have

hl(x,-)+h1(x,~+1) -«
) < )
_gax_ \n(&) 5 < —5—v(W)
Similarly, we obtain
ha(yi)+hy(y; 1—
. max hZ(nj)_ Z(YJ)+ Z(y]+l) S 'BD(WZ)
j=0,....,m—1 2 2

These show that My < M3 and N, < N3. This completes the proof.

Remark 4.2. If we choose @ = 3 =0, w(t) = 1,h(t) =1 on [a,b] and wy(s) = 1, ha(s) =
on [c,d] in Theorem 4.1, then inequalities (4.1) reduce to the inequality (4.2) in [5].

Remark 4.3. If we choose o0 = 8 = % w(t) =1,hi(t) =t on [a,b] and g(s) = 1, ha(s) = s on
le,d], & =551 (j=0,....,n—1) and n; = 201 (j=0,...,m— 1) in Theorem 4.1, then we

have the Simpson’s sum

_ 4% Imolxi4x y+y 1\ i
fvlnaJ Z Zf( ml / 2J+ )llllé
J
—1m-1
%rtm {f (Xi+2Xz+1 )+f(xl+xl+l’yj+l):| lilé
1 n=lm= . . . . L.
) Y {f (xi,w%) +f <Xi+1,yj+%)] hi

[F (ainy ) + sy jn) + f iy )+ (s yien) | B0

with

b d
//f(t,s)dsdt:Ag(f,ln,Jm)+RS(f,In,Jm)
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and the remainder term Rg(f,1,,J,) satisfies

b d

Rs(f. )| < g0 0(0)\/ V().

a ¢

which was given by Budak and Sarikaya in [10].
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