
J. Nonlinear Funct. Anal. 2017 (2017), Article ID 31 https://doi.org/10.23952/jnfa.2017.31

A MODIFIED HYBRID METHOD FOR SOLVING VARIATIONAL INEQUALITY
PROBLEMS IN BANACH SPACES

YING LIU
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Abstract. In this paper, we propose a hybrid type algorithm without the extrapolation step for finding a solution

of a variational inequality involving a monotone Lipschitz mapping in Banach spaces. Based on the generalized

projection operator and the Lyapunov functional introduced by Alber, we obtain the strong convergence of the

iterative sequence generated in the hybrid algorithm. Our results extend and improve the corresponding results

in [Y.V. Malitsky, V.V. Semenov, A hybrid method without extrapolation step for solving variational inequality

problems, J. Global Optim. 61 (2015), 193-202] and [K. Nakajo, Strong convergence for gradient projection

method and relatively nonexpansive mappings in Banach spaces, Appl. Math. Comput. 271 (2015), 251-258].
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1. Introduction

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be the dual space of E. In this paper,

we use 〈x, f 〉 to denote the duality pairing of E and E∗. Suppose that C is a nonempty, closed

and convex subset of E. In this paper, we study the problem of finding a point u ∈C such that

〈v−u,Au〉 ≥ 0, ∀v ∈C, (1.1)
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where A : C→E∗ is a given operator. This problem is said to be a variational inequality problem

(VIP).

The variational inequality, which was first introduced by Lions and Stampacchia in 1967, has

been intensively considered due to its various applications in operations research, economic e-

quilibrium and engineering design. Various iterative methods for solving variational inequality

(1.1) have been proposed and analyzed by many authors in Hilbert spaces or Banach spaces

when A has monotonicity and Lipschitz continuity or inverse-strong-monotonicity, see, for ex-

ample, [2]-[15] and the reference therein.

In this paper, we focus on projection methods, which are the fundamental methods for solving

VIPs with monotone and Lipschitz continuous mappings. Recently, Nakajo [2] introduced the

following iterative algorithm.

Algorithm 1.1.

x1 = x ∈ E, arbitrarily chosen,

yn = ΠCJ−1(Jxn−λnA(xn)),

zn = Tyn,

Cn = {u ∈C : φ(u,zn)≤ φ(u,xn)−φ(yn,xn)−2λn〈yn−u,Axn−Ayn〉},

Qn = {u ∈C : 〈xn−u,Jx− Jxn〉 ≥ 0},

xn+1 = ΠCn
⋂

Qnx,

(1.2)

where E is a 2-uniformly convex and uniformly smooth Banach space, T is a relatively nonex-

pansive mapping and A is only supposed to be monotone and Lipschitz continuous. He proved

sequence {xn} generated in (1.2) strongly converges to ΠD(x), where ΠD is the generalized

projection onto D and D is the set of the common elements of the fixed points set of T and the

solution set of (1.1).

We observe that Algorithm 1.1 requires two generalized projections onto feasible sets C and

Cn
⋂

Qn, and two times of computation of A on every iteration. These might be costly when

the feasible sets C,Cn
⋂

Qn and the operator A have complex structures, as in large scale VIPs

arising from optimal control; see [16] and the references therein. This might seriously affect

the efficiency of the Algorithm 1.1. In this paper, we will construct a new iterative algorithm

based on the idea in [17] as follows.
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In [17], Malitsky and Semenov introduced the following iterative algorithm.

Algorithm 1.2.

1. Choose x0,z0 ∈C and two parameters k > 0 and λ > 0.

2. Given the current iterate xn and zn, compute

zn+1 = PC(xn−λA(zn)),

where PC is the metric projection onto C. If zn+1 = xn = zn, then stop. Otherwise,

construct sets Cn and Qn as

C0 = H,

Cn = {w ∈ H : ‖zn+1−w‖2 ≤ ‖xn−w‖2 + k‖xn− xn−1‖2− (1− 1
k −λL)‖zn+1− zn‖2

+λL‖zn− zn−1‖2}, n≥ 1,

Q0 = H,

Qn = {w ∈ H : 〈xn−w,x0− xn〉 ≥ 0}, n≥ 1,
(1.3)

and calculate xn+1 = PCn
⋂

Qnx0, where H is a Hilbert space.

3. Set n← n+1 and return to step 2.

They proved {xn} and {zn} generated in Algorithm 1.2 converge strongly to PS(x0), where S is

the solution set of (1.1).

As remarked in [17], the sets Cn and Qn in Algorithm 1.2 are halfspaces and hence it is much

more simpler to calculate PCn
⋂

Qnx0 which can be found by Haugazeaus method ([18], Corol-

lary 29.8) or any available method of convex quadratic programming ([19], Chapter 8) than

projections onto the feasible sets. Thus, Algorithm 1.2 only needs to compute the projection

onto the feasible set and the value of A only one time. Hence, Algorithm 1.2 is easier to execute

than Algorithm 1.1. Since the metric projection strictly depends on the inner product properties

of Hilbert spaces, Algorithm 1.2 cannot be applied for variational inequality problem (1.1) in

Banach spaces. However, many important problems related to practical problems are general-

ly defined in Banach spaces. Therefore, it is meaningful to consider Problem (1.1) in Banach

spaces.

Motivated and inspired by Algorithms 1.1 and 1.2, the purpose of this paper is to construct

a new iterative algorithm for approximating a solution of problem (1.1) in Banach spaces. To
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be more clear, we will construct Cn and Qn as half-spaces and only compute the value of A

one time on every iteration. The results presented in this paper mainly extend and improve the

corresponding results in Nakajo [2], Malitsky and Semenov [17].

2. Preliminaries

Throughout this paper, let N be the set of all positive integers. We use xn → x and xn ⇀

x to denote the strong convergence and weak convergence of the sequence {xn} in E to x,

respectively.

Let U = {x ∈ E : ‖x‖= 1}. A Banach space E is said to be strictly convex if for any x,y ∈U

and x 6= y implies ‖ x+y
2 ‖ < 1. It is also said to be uniformly convex if for each ε ∈ (0,2],

there exists δ > 0 such that for any x,y ∈U, ‖x− y‖ ≥ ε implies ‖ x+y
2 ‖ ≤ 1− δ . It is known

that a uniformly convex Banach space is reflexive and strictly convex. We define a function

δ : [0,2]→ [0,1] called the modulus of convexity of E as follows:

δ (ε) = inf{1−‖x+ y
2
‖ : x,y ∈U,‖x− y‖ ≥ ε}.

Then E is uniformly convex if and only if δ (ε)> 0 for all ε ∈ (0,2]. Let p be a fixed real number

with p≥ 2. A Banach space E is said to be p−uniformly convex if there exists a constant c > 0

such that δ (ε)≥ cε p for all ε ∈ [0,2]. It is obvious that a p-uniformly convex Banach space is

uniformly convex; see [20] and [21] and the references therein. A Banach space E is said to be

smooth if the limit limt→0
‖x+ty‖−‖x‖

t exists for all x,y∈U . It is also said to be uniformly smooth

if the limit is attained uniformly for x,y ∈U . It is well known that Hilbert and the Lebesgue

Lq(1 < q≤ 2) spaces are 2-uniformly convex, uniformly smooth.

A Banach space E is said to have the K−K property if a sequence {xn} of E satisfying that

xn ⇀ x ∈ E and ‖xn‖→ ‖x‖, then xn→ x. It is known that if E is uniformly convex, then E has

the K−K property.

Let J : E→ 2E∗ be the normalized duality mapping defined by

J(x) := {v ∈ E∗ : 〈x,v〉= ‖v‖2 = ‖x‖2}, ∀x ∈ E.

The following properties of the duality mapping J can be found in [22]

(i) If E is smooth, then J is single-valued.

(ii) If E is strictly convex, then J is one-to-one and strictly monotone.
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(iii) If E is uniformly smooth, then J is uniformly norm-to-norm continuous on each bound-

ed subset of E.

(iv) If E is a smooth, strictly convex and reflexive Banach space, then J is single-valued,

one-to-one and onto and J−1 is also single-valued, one-to-one, surjective, and it is the

duality mapping from E∗ into E.

Let E be a smooth Banach space. We consider the following Lyapunov functional introduced

by Alber [23]

φ(x,y) = ‖x‖2−2〈x,Jy〉+‖y‖2, ∀x,y ∈ E. (2.1)

Clearly, we have from the definition of φ that

(B1) (‖x‖−‖y‖)2 ≤ φ(y,x)≤ (‖x‖+‖y‖)2,

(B2) φ(x,y) = φ(x,z)+φ(z,y)+2〈x− z,Jz− Jy〉,

(B3) φ(x,y) = 〈x,Jx− Jy〉+ 〈y− x,Jy〉 ≤ ‖x‖‖Jx− Jy‖+‖y− x‖‖y‖.

Let E be a reflexive, strictly convex and smooth Banach space. C denotes a nonempty, closed

and convex subset of E. By Alber [23], for each x ∈ E, there exists a unique element x0 ∈ C

(denoted by ΠC(x)) such that

φ(x0,x) = min
y∈C

φ(y,x).

The mapping ΠC : E→C, defined by ΠC(x) = x0, is called the generalized projection operator

from E onto C. Moreover, x0 is called the generalized projection of x. In a Hilbert space,

ΠC = PC (the metric projection operator).

Lemma 2.1. [23] Let C be a nonempty closed and convex subset of a smooth Banach space E

and x ∈ E. Then, x0 = ΠCx if and only if

〈x0− y,Jx− Jx0〉 ≥ 0, ∀y ∈C.

Lemma 2.2. [23] Let E be a reflexive, strictly convex and smooth Banach space, let C be a

nonempty closed and convex subset of E and let x ∈ E. Then

φ(y,ΠCx)+φ(ΠCx,x)≤ φ(y,x), ∀y ∈C.

Lemma 2.3. [23] Let C be a nonempty, closed and convex subset of a Banach space E and A a

monotone, hemicontinuous operator of C into E∗. Then

V I(C,A) = {u ∈C : 〈v−u,Av〉 ≥ 0 for all v ∈C}.
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It is obvious from Lemma 2.3 that set V I(C,A) is a closed and convex subset of C.

Lemma 2.4. [22] Let E be a 2−uniformly convex and smooth Banach space. Then

φ(x,y)≥ c1‖x− y‖2, ∀x,y ∈ E,

where c1 > 0 is the 2-uniformly convexity constant of E.

Lemma 2.5. [17] Let {an}, {bn}, {cn} be nonnegative real sequences, α,β ∈ R and for all

n ∈ N the following inequality holds

an ≤ bn−αcn+1 +βcn.

If ∑
∞
n=1 bn < ∞ and α > β ≥ 0, then lim

n→∞
an = 0.

Lemma 2.6. [23] Let E be a uniformly convex and smooth Banach space and let {yn},{zn} be

two sequences of E. If φ(yn,zn)→ 0, and either {yn}, or {zn} is bounded,then yn− zn→ 0.

3. Main results

Inspired by Malitsky and Semenov’ results [17], we propose the Algorithm 3.1 to extend the

Algorithm 1.2 from Hilbert spaces to Banach spaces and prove a strong convergence theorem,

which is different from the scheme proposed by Nakajo [2].

In this section, we always assume the following conditions.

(C1) E is a 2-uniformly convex and uniformly smooth Banach space with the 2-uniformly

convexity constant c1 and C is a nonempty closed convex subset of E.

(C2) Mapping A : C→ E∗ is monotone and L-Lipschitz continuous.

(C3) The solution set of (1.1), denoted by V I(C,A), is nonempty.

Algorithm 3.1.

1. Choose x0,z0 ∈C and two parameters k > 0 and λ > 0.

2. Given the current iterate xn and zn, compute

zn+1 = ΠCJ−1(Jxn−λA(zn)), (3.1)
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where ΠC is the generalized projection onto C. If zn+1 = xn = zn then stop. Otherwise,

construct sets Cn and Qn as



C0 = E,

Cn = {w ∈ E : φ(w,zn+1)≤ φ(w,xn)+( k
c1
+ 1

c2
1
−1)φ(xn−1,xn)

−(1− 1
c1k −

λL
c1
)φ(zn+1,zn)+

λL
c1

φ(zn,zn−1)}, n≥ 1,

Q0 = E,

Qn = {w ∈ E : 〈xn−w,Jx0− Jxn〉 ≥ 0}, n≥ 1,

(3.2)

and calculate xn+1 = ΠCn
⋂

Qnx0.

3. Set n← n+1 and return to step 2.

Remark 3.2. Algorithm 3.1 improves Algorithm 1.1 in the following senses:

(1) Algorithm 3.1 improves Cn and Qn from two general closed, convex sets to two halfs-

paces. Therefore, it is more easier to compute ΠCn
⋂

Qn(x0) than that in Algorithm 1.1 to

obtain the next iterate.

(2) Algorithm 3.1 needs to compute the value of A on each iteration only one time. Thus,

Algorithm 3.1 reduces the number of computation required in Algorithm 1.1. Hence,

Algorithm 3.1 improves Algorithm 1.1 constructed in [2] from a numerical point of

view.

Lemma 3.3. If zn+1 = xn = zn in Algorithm 3.1, then xn ∈V I(C,A).

Proof. It follows from (3.1) and Lemma 2.1 that 〈xn− z,Jxn−λAzn− Jxn〉 ≥ 0, z ∈C. Since

λ > 0, we have xn ∈V I(C,A). This completes the proof.

Theorem 3.4. Assume that (C1)-(C3) hold and let λ ∈ (0, c1
2L),k >

1
c1−2λL . Then {xn} and {zn}

generated in Algorithm 3.1 converge strongly to ΠV I(C,A)(x0).
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Proof. It is evident that sets Cn and Qn are closed and convex. Now, we show that V I(C,A)⊂Cn

for all n ∈ N. Let u ∈V I(C,A). By Lemma 2.2 and (B2), we have

φ(u,zn+1)≤ φ(u,J−1(Jxn−λAzn))−φ(zn+1,J−1(Jxn−λAzn))

= φ(u,xn)+φ(xn,J−1(Jxn−λAzn))+2〈u− xn,Jxn− (Jxn−λAzn)〉

−φ(zn+1,xn)−φ(xn,J−1(Jxn−λAzn))−2〈zn+1− xn,Jxn− (Jxn−λAzn)〉

= φ(u,xn)−φ(zn+1,xn)−2λ 〈zn+1−u,Azn〉.

(3.3)

Since A is monotone and u ∈V I(C,A), we see that 〈zn−u,Azn〉 ≥ 0. It follows from (3.3) that

φ(u,zn+1)≤ φ(u,xn)−φ(zn+1,xn)−2λ 〈zn+1− zn,Azn〉

= φ(u,xn)−φ(zn+1,xn−1)−φ(xn−1,xn)−2〈zn+1− xn−1,Jxn−1− Jxn〉−2λ 〈zn+1− zn,Azn〉

= φ(u,xn)−φ(xn−1,xn)−2〈zn+1− xn−1,Jxn−1− Jxn〉−φ(zn,xn−1)−φ(zn+1,zn)

−2λ 〈zn+1− zn,Azn−Azn−1〉+2〈zn− zn+1,Jzn− Jxn−1 +λAzn−1.

(3.4)

In view of zn = ΠCJ−1(Jxn−1−λAzn−1) and zn+1 ∈C, we have

〈zn− zn+1,Jzn− Jxn−1 +λAzn−1〉 ≤ 0. (3.5)

Using Lemma 2.4, we obtain

2〈zn+1− xn−1,Jxn−1− Jxn〉

≤ 2‖zn+1− xn−1‖‖xn−1− xn‖

≤ 2‖xn−1− xn‖(‖zn+1− zn‖+‖zn− xn−1‖)

≤ 2

√
k
√

φ(xn−1,xn)√
c1

√
φ(zn+1,zn)√

k
√

c1
+2

√
φ(xn−1,xn)

c1

√
φ(zn,xn−1)

≤ 1
c2

1
φ(xn−1,xn)+φ(zn,xn−1)+

k
c1

φ(xn−1,xn)+
1

c1k
φ(zn+1,zn).

(3.6)

Since A is Lipschitz continuous, we get

2λ 〈zn+1− zn,Azn−Azn−1〉 ≤ 2λL‖zn+1− zn‖‖zn− zn−1‖

≤ λL(‖zn− zn−1‖2 +‖zn+1− zn‖2)≤ λL
c1

(φ(zn+1,zn)+φ(zn,zn−1)).
(3.7)
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Combining inequalities (3.4)–(3.7), we see that

φ(u,zn+1)≤ φ(u,xn)−φ(xn−1,xn)−φ(zn,xn−1)+
1
c2

1
φ(xn−1,xn)+φ(zn,xn−1)

+
k
c1

φ(xn−1,xn)+
1

c1k
φ(zn+1,zn)−φ(zn+1,zn)+

λL
c1

φ(zn,zn−1)+
λL
c1

φ(zn+1,zn)

= φ(u,xn)+(
k
c1

+
1
c2

1
−1)φ(xn−1,xn)− (1− 1

c1k
− λL

c1
)φ(zn+1,zn)+

λL
c1

φ(zn,zn−1).

This shows that V I(C,A) ⊂ Cn for all n ∈ N. Let us show by mathematical induction that

V I(C,A)⊂ Qn for all n ∈ N. For n = 0, we have V I(C,A)⊂ Q0 = E. Suppose V I(C,A)⊂ Qn.

It is sufficient to show that V I(C,A)⊂ Qn+1. Since xn+1 = ΠCn
⋂

Qnx0 and V I(C,A)⊂Cn
⋂

Qn,

we find that

〈xn+1− z,Jx0− Jxn+1〉 ≥ 0, ∀z ∈V I(C,A).

This implies z ∈ Qn+1. Thus, V I(C,A) ⊂ Qn+1 and hence V I(C,A) ⊂ Cn
⋂

Qn for all n ∈ N.

Hence, {xn} is well defined. Let x̄ = ΠV I(C,A)x0. Since xn+1 = ΠCn
⋂

Qnx0 and x̄ ∈ V I(C,A) ⊂

Cn
⋂

Qn, we have

φ(xn+1,x0)≤ φ(x̄,x0). (3.8)

Therefore, {xn} is bounded. From xn+1 ∈Cn
⋂

Qn ⊂ Qn and xn = ΠQnx0, we obtain

φ(xn,x0)≤ φ(xn+1,x0).

Hence, limn→∞ φ(xn,x0) exists. In addition, since xn = ΠQnx0 and xn+1 ∈ Qn, we from from

Lemma 2.2 that

φ(xn+1,xn)≤ φ(xn+1,x0)−φ(xn,x0). (3.9)

This implies ∑
∞
n=1 φ(xn+1,xn)< ∞ is convergent. Since xn+1 ∈Cn, we see that

φ(xn+1,zn+1)≤ φ(xn+1,xn)+(
k
c1

+
1
c2

1
−1)φ(xn−1,xn)

− (1− 1
c1k
− λL

c1
)φ(zn+1,zn)+

λL
c1

φ(zn,zn−1).

(3.10)

Set an = φ(xn+1,zn+1), bn = φ(xn+1,xn)+( k
c1
+ 1

c2
1
−1)φ(xn−1,xn), cn = φ(zn+1,zn), α = (1−

1
c1k −

λL
c1
), and β = λL

c1
. By Lemma 2.5, we have

lim
n→∞

φ(xn,zn) = 0. (3.11)

It follows from Lemma 2.6 that

lim
n→∞
‖xn− zn‖= 0. (3.12)
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Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞
‖Jxn− Jzn‖= lim

n→∞
‖Jzn+1− Jzn‖= 0. (3.13)

As {xn} is bounded, there exists a subsequence {xni} of {xn} such that {xni} converges weakly

to some x∗ ∈ E. Now, we show x∗ ∈ V I(C,A). Since zn+1 = ΠCJ−1(Jxn− λAzn), it follows

from Lemma 2.1 that

〈y− zni+1,Jzni+1− Jxni +λAzni〉 ≥ 0, ∀y ∈C.

This is equivalent to

0≤ 〈y− zni+1,Jzni+1− Jzni + Jzni− Jxni〉

+λ 〈y− zni,Azni〉+λ 〈zni− zni+1,Azni〉

≤ 〈y− zni+1,Jzni+1− Jzni〉+ 〈y− zni+1,Jzni− Jxni〉

+λ 〈y− zni,Ay〉+λ 〈zni− zni+1,Azni〉, ∀y ∈C.

(3.14)

In the last inequality, we used monotonicity of A. Taking the limit as i→ ∞ in (3.14) and using

that zni ⇀ x∗, we obtain

0≤ 〈y− x∗,Ay〉, ∀y ∈C,

which implies by Lemma 2.3 that x∗ ∈V I(C,A). Let us show xni → x∗. Since the norm of E is

weak lower semicontinuous, we get

φ(x∗,x0) = ‖x∗‖2−2〈x∗,Jx0〉+‖x0‖2

≤ liminf
i→∞

(‖xni‖
2−2〈xni,Jx0〉+‖x0‖2)

= liminf
i→∞

φ(xni,x0)≤ limsup
i→∞

φ(xni,x0)

≤ φ(ΠV I(C,A)x0,x0).

The last inequality is due to (3.8). Since x∗ ∈V I(C,A), we have x∗ = ΠV I(C,A)x0 and

lim
i→∞

φ(xni,x0) = φ(x∗,x0).

Again, we have limi→∞ ‖xni‖= ‖x∗‖. Using the K−K property of E, we obtain

xni → x∗ = ΠV I(C,A)x0.

Since {xni} is an arbitrary convergent subsequence of {xn}, we find that {xn} converges strongly

to ΠV I(C,A)x0. It is clear that zn→ΠV I(C,A)x0. This completes the proof.
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Remark 3.5. If E is a Hilbert space, c1 = 1, φ(x,y) = ‖x− y‖2, ΠC = PC, then Theorem 3.4 is

reduced to Theorem 1 of Malitsky and Semenov [17].

4. Conclusions

The hybrid method without the extrapolation step was firstly introduced by Malitsky and Se-

menov [17] which provides a strong convergence theorem for variational inequalities of mono-

tone and Lipschitz continuous operators in Hilbert spaces. In this paper, we extend Malitsky

and Semenov’s results from Hilbert spaces to Banach spaces. Our main results mainly improve

the corresponding results in Nakajo [2] and Malitsky and Semenov [17].
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