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RANDOM FIXED POINTS OF MULTIFUNCTIONS ON METRIC SPACES
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Abstract. Sufficient conditions for the existence of random fixed points of Suzuki type random multifunctions and

hemiconvex multifunctions are obtained. Our results generalize some known results in the literature.
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1. Introduction and preliminaries

Random fixed point theory is a stochastic generalization of classical fixed point theory for

deterministic mappings. Recently, several authors have investigated the existence and applica-

tions of random fixed points; see [2, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17]) and the references

therein. In this article, we obtain random fixed point theorems for generalized contractive Suzu-

ki type multifunctions and hemiconvex multifunctions. In particular, the results presented in this

paper improve and extend the results of Xu and Beg [19, Theorems 2.3 and 3.1] and Benavides,

Acedo and H.K. Xu [9]. Throughout this paper, we assume that (X ,d) is a metric space, M

a subset of X and (Ω,Σ) is a measurable space, where Σ is a sigma-algebra of subsets of the

nonempty set Ω. We denote the family of all nonempty subsets of X by 2X and the family of all

closed and bounded subsets of X by CB(X). Also, we denote the Hausdorff metric on CB(X)
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by H, i.e.

H(A,B) = max{sup
a∈A

d(a,B),sup
b∈B

d(b,A)} (1.1)

for all A,B ∈CB(X), where d(x,A) = infa∈A ‖x−a‖. Let T : M −→ 2X be a multifunction. The

multifunction T is called upper semi-continuous (lower semi-continuous) whenever

{x ∈M : T (x)⊂ A} (1.2)

({x ∈M : T (x)
⋂

A 6= /0}) is an open subset of M for every open subset A of X . A multifunction

T : Ω −→ 2X is called Σ-measurable if {x ∈ Ω : T (x)
⋂

A 6= /0} ∈ Σ for every open subset A

of X . A measurable function f : Ω −→ X is called a measurable selector of the measurable

multifunction T : Ω −→ 2X whenever f (ω) ∈ T (ω) for all ω ∈ Ω. Also, the multifunction

T : Ω×M −→ 2X is called a random multifunction whenever for each fixed x ∈ M, the mul-

tifunction T (.,x) : Ω −→ 2X is measurable. An element x ∈ M is called a deterministic fixed

point of random multifunction T : Ω −→ 2M whenever x ∈ T (ω,x) for all ω ∈ Ω. A mea-

surable function f : Ω −→ M is said to be a random fixed point of a random multifunction

T : Ω×M −→ 2M if f (ω) ∈ T (ω, f (ω)) for all ω ∈ Ω. When X is a Banach space, a multi-

function T : M −→CB(M) is said to be demiclosed at 0 if the conditions xn ∈M for all n≥ 1,

xn
w→ x, yn ∈ T xn and yn→ 0 imply that 0 ∈ T x. Also, we say that multifunction T : M −→ 2X

has the property (D) if for every closed ball B in M with radius r > 0 and any sequence {xn}

in M for which d(xn,B)→ 0 and d(xn,T xn)→ 0, there exists x0 ∈ B such that x0 ∈ T x0. We

appeal the following results in the sequel.

Proposition 1.1. [4, p.569] Let T : X −→ 2Y be a lower semi continuous between topological

space and let the function f : GrT −→ R be lower semi continuous. Define the extended real

function m : X −→ R by

m(x) = sup
y∈T (x)

f (x,y). (1.3)

Then function m is lower semi continuous.

Corollary 1.2. Let T : X −→ 2Y be a lower semi continuous between Banach spaces X ,Y . Then

f : X −→ R defined by

f (x) = d(x,T (x)). (1.4)

is upper-semi continuous.
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Proof. Note that −d(x,y) : GrT −→ R is lower semi continuous and

f (x) = inf
y∈T (x)

d(x,y) =− sup
y∈T (x)

−d(x,y).

Using the Proposition 1.1, we find that f is upper semi continuous.

Proposition 1.3. [1, p. 191] Let M be a nonempty subset of a metric space (X ,d). Suppose that

mapping T : M −→CB(M) is upper semi continuous. Then mapping f (x) = d(x,T x) is lower

semi continuous.

Corollary 1.4. Let T : X −→ 2Y be continuous between Banach spaces X ,Y . Then f : X −→R

defined by f (x) = d(x,T (x)) is continuous.

Proof. In view of (1.2) and (1.3), we find the desired conclusion immediately.

Proposition 1.5. [18] Let M be a separable metric space, (Ω,Σ) be a measurable space and f :

Ω×M−→R be a Caratheodory map, i.e., for every x∈M, map f (.,x) : Ω−→R is measurable

and for every ω ∈ Ω map f (ω, .) : M −→ R is continuous. Then, for each s > 0, operator

Gs : Ω−→M given by

Gs(ω) = {x ∈M : f (ω,x)< s} (ω ∈Ω) (1.5)

is measurable.

Corollary 1.6. Let M be a separable metric space , (Ω,Σ) be a measurable space and T :

Ω×M −→ CB(M) be a continuous random multifunction. Then f (ω,x) = d(x,T (ω,x)) is

Carathedory map.

Proof. By Corollary 1.4 and the Lemma 18.5 of [4], we have that f is Carathedory map.

Corollary 1.7. Let M be a separable metric space, (Ω,Σ) be a measurable space and T :

Ω×M −→ CB(M) be a random continuous multifunction. Then, for each s > 0, operator

Gs : Ω−→M given by

Gs(ω) = {x ∈M : d(x,T (ω,x))< s} (ω ∈Ω) (1.6)

is measurable and so is operator clG(ω) of the closure of G(ω).

Proof. Note that T is a random continuous multifunction. Using Corollary 1.6, we see that

f (ω,x) : Ω×M −→R with f (ω,x) = d(x,T (ω,x)), is a Caratheodory map. Using Proposition

1.5, Gs is measurable and so is the operator clG(ω) of the closure of G(ω) (Lemma 18.3 [4]).
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Proposition 1.8. [4] If T : Ω−→ 2X is a closed valued map, then T has a measurable selector.

Proposition 1.9. [4, p. 561] Let Y be a regular topological space. If T : X −→ 2Y is upper-semi

continuous and closed-valued, then T is closed.

Proposition 1.10. [19] Assume F(ω) is closed-value mapping and {Fn(ω)} is a sequence of

measurable mappings. If

lim
n→∞

H(Fn(ω),F(ω)) = 0 (1.7)

for all ω ∈Ω, then F is measurable.

2. Random fixed points of the Suzuki-contraction

Now, we are ready to state and prove our main results.

Theorem 2.1. [8] Let (X ,d) be a complete metric space and let T : X −→CB(X) be a multi-

function. Suppose that there exist α,β ∈ (0,1) such that α(β +1)≤ 1 and αd(x,T x)≤ d(x,y)

implies H(T x,Ty)≤ βd(x,y) for all x,y ∈ X. Then T has a fixed point.

Lemma 2.2. [8] Let (X ,d) be a complete metric space, T : X −→CB(X) a multifunction and

δ > 0. Suppose that there exist α,β ∈ (0,1) such that α(β + 1) ≤ 1 and αd(x,T x) ≤ d(x,y)

implies H(T x,Ty)≤ βd(x,y) for all x,y ∈ X. Put

F = {x ∈ X : x ∈ T x} and Fδ = {x ∈ X : d(x,T x)< δ}. (2.1)

Then H(Fδ ,F)≤ δ

1−β
.

Theorem 2.3. Let (X ,d) be a complete separable metric space and let T : Ω×C−→CB(X) be

a random continuous multifunction. Suppose that for each ω ∈ Ω there exist positive numbers

αω ,βω ∈ (0,1) such that αω(βω +1)≤ 1 and

αωd(x,T (ω,x))≤ d(x,y) implies that H(T (ω,x),T (ω,y))≤ βωd(x,y) (2.2)

for all x,y ∈ X. Then T has a random fixed point.

Proof. By using Theorem 2.1 and Proposition 1.9, we see that F(ω) = {x ∈ X : x ∈ T (ω,x)}

is nonempty and closed for all ω ∈ Ω. For each n ≥ 1 and ω ∈ Ω, put Fn(ω) = {x ∈ X :

d(x,T (ω,x)) < 1
n}. By Corollary 1.7, each Fn(ω) is measurable and so is Fn(ω). By Lemma

2.2, we have H(Fn(ω),F(ω)) ≤ 1
n(1−βω )

for all n ≥ 1. It follows from Proposition 1.10 that
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F(ω) is measurable. Hence, it has a measurable selector x(ω) by Proposition 1.8. This implies

that x(ω) ∈ T (ω,x(ω)) for all ω ∈Ω, that is, T has a random fixed point.

Theorem 2.4. Let M be a closed separable subset of a complete metric space X and let T :

Ω×M −→ CB(M) be a random multifunction. Suppose that T is lower semi-continuous and

for each ω ∈Ω there exists a positive number αω ∈ (0, 1
2 ] such that

αωd(x,T (ω,x)< d(x,y) implies that H(T (ω,x),T (ω,y))< d(x,y) (2.3)

for all x,y ∈ X. Then T has a random fixed point.

Proof. We first show that T has property (D). Let B be a closed ball of M , {xn} be a sequence in

M with d(xn,B)→ 0 and d(xn,T (ω,xn))→ 0 as n→∞. Since T xn is a compact set, we find that

there exists a sequence {yn} in T (ω,xn) with d(xn,yn)→ 0. As M is compact, we may, without

loss of generality, assume that {xn} and {yn} converge to some x0 and y0, respectively. Next

we show that x0 ∈ T (ω,x0). Since T (ω,yn) is compact for all n≥ 1, we find that there exists a

sequence {zn} in M such that zn ∈ T (ω,yn) for all n≥ 1 and limn→∞ zn = x0. Now, for each n≥ 1

either αωd(xn,T (ω,xn)) < d(xn,x0) or αωd(yn,T (ω,yn)) < d(x0,yn). If αωd(xn,T (ω,xn)) ≥

d(xn,x0) and αωd(yn,T (ω,yn))≥ d(x0,yn) for some n≥ 1, then

d(xn,yn)≤ d(xn,x0)+d(x0,yn)≤ αωd(xn,T (ω,xn))+αωd(yn,T (ω,yn))

≤ αωd(xn,yn)+αωH(T (ω,xn),T (ω,yn))< 2αωd(xn,yn).

Thus, we obtain αω ≥ 1
2 . This is a contradiction. Thus, by using the assumption, for each n≥ 1

either H(T (ω,xn),T (ω,x0))< d(xn,x0) or H(T (ω,yn),T (ω,x0))< d(yn,x0) hold. Therefore,

one of the following cases holds:

(i)- There exists an infinite subset I ⊆ N such that H(T (ω,xn),T (ω,x0)) < d(xn,x0) for all

n ∈ I,

(ii)- There exists an infinite subset J ⊆ N such that H(T (ω,yn),T (ω,x0)) < d(yn,x0) for all

n ∈ J.

In case (i), we obtain

d(x0,T (ω,x0)) = lim
n→∞

d(yn,T (ω,x0))≤ lim
n→∞

H(T (ω,yn),T (ω,x0))≤ lim
n→∞

d(xn,x0) = 0.

Hence, x0 ∈ T (ω,x0). In case (ii), we obtain

d(x0,T (ω,x0)) = lim
n→∞

d(zn,T (ω,x0))≤ lim
n→∞

H(T (ω,yn),T (ω,x0))≤ lim
n→∞

d(yn,x0) = 0.
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Hence, x0 ∈ T (ω,x0). Since B is closed and

d(x0,B) = d( lim
n→∞

xn,B) = lim
n→∞

d(xn,B) = 0,

we have x0 ∈ B. On the other hands, F(ω) = {x ∈M : x ∈ T (ω,x)} 6= /0. Using Proposition 1.8,

we find that T has a random fixed point.

Theorem 2.5. Let M be a weakly compact convex separable subset of a Banach space X and let

T : Ω×M −→CB(M) be a continuous random multifunction. Suppose that, for each ω ∈ Ω,

there exists a positive number αω ∈ (0, 1
2 ] such that

αωd(x,T (ω,x)< d(x,y) implies that H(T (ω,x),T (ω,y))< d(x,y) (2.4)

for all x,y ∈ X. If, in addiction, for each fixed ω ∈ Ω, I−T (ω,0) is demiclosed at 0, then T

has a random fixed point.

Proof. Let ξ0 : Ω→M be a fixed measurable mapping. For each n, define Tn : Ω×X −→CB(M)

by

Tn(ω,x) =
1
n

ξ0(ω)+(1− 1
n
)T (ω,x). (2.5)

If αd(x,T x)< d(x,y), we have

H(Tn(ω,x),Tn(ω,y))≤ (1− 1
n
)‖x− y‖.

Since α(2− 1
n) ≤

1
2(2−

1
n) =

2n−1
2n < 1, Tn(ω,x) is applied to relations in Theorem2.1. Hence

each Tn has a random fixed point ξn by Theorem 2.3. Since M is weakly compact, we find that

there exist ξ (ω) ∈M that ξn(ω)
w→ ξ (ω). From (1) we have

ξn(ω) =
1
n

ξ0(ω)+(1− 1
n
)zn(ω),

where zn(ω) ∈ T (ω,ξn(ω). Observe that

‖ξn(ω)− zn(ω)‖= 1
n
‖ξ0(ω)− zn(ω)‖.

Hence ξn(ω)− zn(ω)−→ 0. On the other hand

ξn(ω)− zn(ω) ∈ I(ξn(ω))−T (ω,ξn(ω))

and since I−T is demiclosed, 0 ∈ I(ξ (ω))−T (ω,ξ (ω)), we obtain that ξ (ω)) ∈ T (ω,ξ (ω)).

3. Random fixed points of hemi-convex multifunctions
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In [3], Aleomraninejad, Rezapour and Shahzad extended the concept of convex multifunc-

tions by following definition:

Definition 3.1. [3] Let M be a convex subset of a Banach space X and r > 0. We say that the

multifunction T : M −→ 2M is r-hemi-convex whenever

d(λx+(1−λ )y,T (λx+(1−λ )y))≤ r (3.1)

for all λ ∈ [0,1] and x,y ∈ M with d(x,T (x)) < r and d(y,T (y)) < r. We say that T is hemi-

convex whenever T is r-hemi-convex for all r > 0.

It is clear that each convex multifunction on a Banach space is a hemi-convex multifunction.

The following example shows that the converse is not true.

Example 3.2. [3] Define multifunction T : R −→ 2R by T (x) = [2x,3x] if x ≥ 0 and T (x) =

[3x,2x] if x < 0. Then T is not convex whereas T is hemi-convex. In fact, (1,2),(−1,−3) ∈

Gr(T ), but for λ = 1
2 we have

λ (1,2)+(1−λ )(−1,−3) /∈ Gr(T ). (3.2)

Since d(x,T (x)) = |x| for all x ∈ R, we find that T is a hemi-convex multifunction.

They also obtained the following results.

Theorem 3.3. [3] Let T : M −→CB(M) be an upper-semi continuous hemi-convex multifunc-

tion. Then the set of fixed points of T is convex and closed.

Theorem 3.4. [3] Let M be a weakly compact subset of X and let T : M −→ CB(M) be a

multifunction and infx∈M d(x,T (x)) = 0. If f : X −→ [0,∞) defined by f (x) = d(x,T (x)), is

lower-semi continuous and hemi-convex on M, then T has a fixed point in M.

Lemma 3.5. ([4].page 594) Let X be a separable metric space and let (Ω,Σ) be measurable

space. If each ϕn : Ω−→ 2X is measurable with closed-valued and for each ω ∈Ω and there is

some k such that ϕk(ω) is compact, then the intersection multifunction θ : Ω−→ 2X defined by

θ(ω) =
⋂

∞
n=1 ϕn(ω) is measurable.

Theorem 3.6. Let M be a convex, weakly compact separable subset of a Banach space X and

let T : Ω×M −→CB(M) be a continuous random hemi-convex multifunction. If F(ω) = {x :

x ∈ T (ω,x)} 6= /0, then T has a random fixed point.
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Proof. For each n ∈ N and ω ∈Ω, put Fn(ω) = {x : d(x,T (ω,x))≤ 1
n} and define the function

fω : X → R by fω(x) = d(x,T (ω,x)). Then fω is lower-semi continuous. So, each Fn(ω) is

measurable and closed. We claim that
⋂

∞
n=1 Fn(ω) = F(ω). It is trivial that F(ω) ⊂ Fn(ω).

Now, suppose that x ∈
⋂

∞
n=1 Fn(ω). Then for each n ≥ 1, we can choose xn ∈ Fn(ω) such that

‖x− xn‖ ≤ 1
n . Since xn −→ x and T (ω,x) is closed, x ∈ T (ω,x) and consequently x ∈ F(ω).

Thus, the claim is proved. Note that Fn(ω) and F(ω) are convex and closed. Hence

∞⋂
n=1

Fn(ω)w = F(ω)w,

where F(ω)w is the weak closure of F(ω). Since each Fn(ω)w is weakly compact, we find

from Lemma 3.3 that F is weakly measurable and so F is measurable. Consequently F has

a measurable selector such that x(ω) ∈ F(ω) for all ω ∈ Ω. Thus, x(ω) ∈ T (ω,x(ω)) for all

ω ∈Ω, that is, T has a random fixed point.

Note that Theorem 3.6 generalizes following theorem.

Theorem 3.7. (Theorem 3.2 of [?]) Let M be a convex, weakly compact separable subset of a

Banach space X and T : Ω×M −→CB(M) a continuous random and convex multifunction. If

F(ω) = {x : x ∈ T (ω,x)} 6= /0, then T has a random fixed point.

Proof. Every convex multifunction is a hemi-convex multifunction. Using Theorem 3.6, we

find that T has a random fixed point.

Theorem 3.8. Let M be a convex weakly compact separable subset of Banach space X and let

T : Ω×M −→ CB(M) be a continuous random hemi-convex multifunction. For any ω ∈ Ω,

infx∈M d(x,T (ω,x)) = 0. Then T has a random fixed point.

Proof. In view of Theorem 3.4, the fixed point set of T is nonempty. Using Theorem 3.6, one

obtains that T has a random fixed point.

The following example shows that there are many multifunctions which satisfy condition

infx∈M d(x,T (ω,x)) = 0.

Example 3.9. Let M be a convex and bounded subset of a Banach space X, u ∈ M a fixed

element and T : Ω×M→CB(M) a nonexpansive multifunction. For each n≥ 2, define Tn : Ω×

M→CB(M) by Tn(ω,x) = 1
nu+(1− 1

n)T (ω,x). Since H(Tn(ω,x),Tn(ω,y))≤ (1− 1
n)‖x− y‖

for all x,y ∈M and n ≥ 2, Tn is a contraction multifunction and so for each n ≥ 2 there exists

xn ∈M such that xn ∈ Tn(xn). Note that d(xn,T (ω,xn))→ 0 and so infx∈M d(x,T (ω,x)) = 0.
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