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1. Introduction

The terminology of CAT (κ) spaces was coined by Gromov in 1987 [5]. The initials are

in honour of Cartan, Alexandrov and Toponogov. A geodesic metric space X is said to be a

CAT (κ) space if for any geodesic triangle of appropriate size is not fatter than its comparison

triangle in the model space M2
κ . A metric space X is said to be of curvature bounded above

by κ if it is locally a CAT (κ) space. It is well known that any complete, simply connected
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Riemannian manifold having non-positive sectional curvature is a CAT (0) space. The classical

hyperbolic spaces, Euclidean buildings, and the complex Hilbert ball with a hyperbolic metric

are examples of CAT (0) spaces. A general reference for facts about CAT (0) spaces used here

is [5].

KKM theory which was proposed by Knaster, Kuratowski, and Mazurkiewicz, in 1929 [21]

and later developed by Ky Fan in 1972 [9] has a lot of valuable consequences in nonlinear anal-

ysis, such as fixed point theorems. In 1961 Ky Fan showed that the KKM theorems provide the

foundation for a lot of modern essential results in diverse areas of mathematical sciences and in

1961 [8] he generalized the KKM theorem in the infinite dimensional topological vector spaces.

In 1996 Khamsi [12] established an analogue of the famous KKM-map principle based on Ky

Fan’s theory for hyperconvex metric spaces. This result was used by Park [23] to establish some

fixed point theorems and by Kirk et al. [20] to establish some fixed point theorems and saddle

point theorems in hyperconvex metric spaces. Such contents of the KKM theory have numerous

applications on various fields, especially, on fixed point theory and equilibrium theory; for more

details and references see [25]. Recently, Niculescu and Roventa [22] obtained an analogue to

KKM principle in CAT (0) spaces; see [2,3,11,17,18,24–28,30–33] and the references therein.

The present paper mainly aims at establishing the class of generalized KKM type mappings

on CAT (0) spaces to specify the characteristics of the family of subsets in finite intersection

properties. These in turn are applied to obtain some existence theorem of fixed point and best

approximation. Moreover the paper extends the finite intersection property theorems and its

application to noncompact version of the KKM principle in CAT (0) spaces.

2. Preliminaries

Let (X ,d) be a metric space and x,y ∈ X with d(x,y) = l. A geodesic path from x to y is an

isometry c : [0, l]⊆ R→ X such that c(0) = x and c(l) = y. The image of c is called a geodesic

segment joining x and y. A geodesic segment joining x and y is not necessarily unique in

general. When it is unique, this geodesic segment is denoted by [x,y]. This means that z ∈ [x,y]

if and only if there exists α ∈ [0,1] such that d(x,z) = (1−α)d(x,y) and d(y,z) = αd(x,y).

In this case, we write z = αx⊕ (1−α)y. The space (X ,d) is said to be a geodesic space if
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every two points of X are joined by a geodesic and X is said to be a uniquely geodesic if there

is exactly one geodesic joining x to y for each x,y ∈ X . In a geodesic space (X ,d), the metric

d : X×X → R is convex if for any x,y,z ∈ X and α ∈ [0,1], one has

d(x,αy⊕ (1−α)z)≤ αd(x,y)+(1−α)d(x,z).

A subset Y of X is said to be convex if Y includes every geodesic segment joining any couple

of its points. A geodesic triangle 4(x1,x2,x3) in a geodesic metric space (X ,d) consists of

three points in X (the vertices of 4) and a geodesic segment between each pair of vertices

(the edges of 4). A comparison triangle for a geodesic triangle 4(x1,x2,x3) in (X ,d) is a

triangle4(x1,x2,x3) :=4(x1,x2,x3) in the Euclidean plane E2 such that dE2(xi,y j) = d(xi,y j)

for i, j ∈ {1,2,3}.

A geodesic metric space is said to be a CAT (0) space if all geodesic triangles of appropriate

size satisfy the following comparison axiom:

“Let4 be a geodesic triangle in X and let4 be a comparison triangle for4. Then4 is said to

satisfy the CAT (0) inequality if for all x,y ∈4 and all comparison points x,y ∈4,

d(x,y)≤ dE2(x,y).”

Also we will use z =
⊕n

i=1 αizi = α1z1⊕α2z2⊕ ·· ·αnzn where α1, · · · ,αn ≥ 0,
n
∑

i=1
αi = 1,

and z1, · · · ,zn ∈ X , to denote the unique point z = (1−αn)z′⊕αnzn where

z′ =
α1

1−αn
z1⊕

α2

1−αn
z2⊕·· ·⊕

αn−1

1−αn
zn−1

for αn 6= 1 and z = zn for αn = 1.

Let X and Y be topological Hausdorff spaces, A ⊆ Y and T : X → 2Y be a multivalued map

with nonempty values. Define

T−(A) = {x ∈ X : T (x)∩A 6= φ}

and let int(A), ∂A and F (A) denote the interior, boundary and the set of all nonempty finite

subsets of A, respectively. We recall that a map F : X → 2Y is said to be upper semi-continuous

(lower semi-continuous) if for each closed (open) set B⊆ Y , T−(B) is closed (open) in X .
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Typically (cf. [22]) the convex hull co(A) of a subset A of a CAT (0) space X is defined as

follows:

co(A) =
∞⋃

n=0

An,

where A0 = A and for n ≥ 1 the set An consist of all points in X which lie on geodesics which

start and end in An−1.

Definition 2.1. Let X be a nonempty set, Y be a CAT (0) space and C ⊆ Y .

i. A multivalued mapping G : C→ 2Y is said a KKM map if

co(F)⊆
⋃
x∈F

G(x)

for every F ∈F (C).

ii. A multivalued mapping G : X → 2Y is said generalized KKM map if for each nonemp-

ty finite subset A = {x1, · · · ,xn} of X there exist a nonempty subset {y1, · · · ,yn} (not

necessarily disjoint) of Y such that for each subset {yi1, · · · ,yi j} of {y1, · · · ,yn} we have

co({yi1, · · · ,yi j})⊆
j⋃

k=1

G(xik).

The concept of generalized KKM maps is defined by Chang and Zhang in topological vector

spaces [6] motivated by the works of Knaster-Kuratowski and Mazurkiewicz [21]. These no-

tions also have been studied by Khan et al. in GFC-spaces [14], and more recently by Khamsi

et al. in metric type spaces [13], and Park in generalized convex spaces [26]. We consider

generalized KKM mappings in complete geodesic spaces.

It is clear that each KKM mapping is a generalized KKM map but there are some examples

of generalized KKM mappings which are not KKM, see [15, 19].

Definition 2.2. [10] Let X be a set and (Xi)i∈I a family of subsets of X , then (Xi)i∈I has finite

intersection property if for any finite, nonempty subset J of I,
⋂

i∈J Xi is not empty.

Motivated by the work of [4, 7, 31] we summarize some known results which we will use in

the ensuing section.
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For n≥ 0, ∆n denotes the standard n-simplex of Rn+1 with vertices e0, · · · ,en where ei is the

i-th unit vector in Rn+1, that is

∆n = {(α0,α2, · · · ,αn) ∈ Rn+1 :
n

∑
i=1

αi = 1,∀αi ≥ 0}.

The following lemmas can be easily proved.

Lemma 2.3. [7] Let X be a CAT (0) space and x,y,z ∈ X such that x 6= y. Then

i. The mapping f : [0,1]→ [x,y] defined by f (t) = (1− t)x⊕ ty, is continuous.

ii. d((1− t)x⊕ ty,z)≤ (1− t)d(x,z)+ td(y,z), for all t ∈ [0,1].

Lemma 2.4. Suppose X is a CAT (0) space and A⊆ X. Then the convex hull of A is introduced

via the formula

co(A) =
∞⋃

n=0

A′n,

where A′0 = A and A′i = {
n⊕

i=1
aixi : ∑

n
i=1 ai = 1,{x1, · · · ,xn} ∈F (A′i−1)} for i≥ 1.

Lemma 2.5. Let X be a CAT (0) space. Then the mapping f : ∆n→ X which is defined by

f (t0, t1, · · · , tn) = t0x0⊕ t1x1⊕·· ·⊕ tnxn,

is continuous for each x0, · · · ,xn ∈ X and n ∈ N.

Proof. Our proof is by induction on n. For case n = 1, the result is obvious by Lemma 2.3Now

assume that for case n = k−1 the result is true. To prove the result for n = k, let {αm}∞
m=1 be a

sequence in4k such that αm→ α , and x0, · · · ,xn ∈ X . Our goal is to show that

α
m
0 x0⊕α

m
1 x1⊕·· ·⊕α

m
k xk→ α0x0⊕α1x1⊕·· ·⊕αkxk,

where αm = (αm
0 , · · · ,αm

k ) for each m ∈ N and α = (α0, · · · ,αk). Assume that αm
k → 1 and we

can also assume that αm
k 6= 1. Define

zm
k−1 =

αm
0

1−αm
k

x0⊕·· ·⊕
αm

k−1

1−αm
k

xk−1.

By the induction hypothesis, we have

zm
k−1→

α0

1−αk
x0⊕·· ·⊕

αk−1

1−αk
xk−1,
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as m→ ∞. Set

L = lim
m→∞

α
m
0 x0⊕α

m
1 x1⊕·· ·⊕α

m
k xk.

Then we have

L = ( lim
m→∞

(1−α
m
k )) lim

m→∞
zm

k−1⊕ lim
m→∞

α
m
k xk

= (1−αk)

(
α0

1−αk
x0⊕·· ·⊕

αk−1

1−αk
xn

)
⊕αkxk

= α0x0⊕·· ·⊕αk−1xk−1⊕αkxk.

Thus we have proved that

α
m
1 x0⊕α

m
1 x1⊕α

m
k xk→ α1x0⊕·· ·⊕αkxk,

when αm
k 9 1 as m→ ∞. If αm

k → 1, then αm
i → 0 as m→ ∞ for each i = 0, · · · ,k− 1. This

condition is satisfied due to ∑
k
i=0 αm

i = 1.

Thus in order to finish our proof we have to show that

α
m
0 x0⊕α

m
2 x2⊕·· ·⊕α

m
k xk→ xk,

as m→ ∞. Consider {βm} be a subsequence of {αm} such that β m
k 6= 1 and {γm} be a subse-

quence of {αm} such that γm
k = 1, where βm = (β m

0 , · · · ,β m
k ), and γm = (γm

0 , · · · ,γm
k ). Since

γ
m
0 x0⊕ γ

m
1 x1⊕·· ·⊕ γ

m
k xk→ xk,

as m→ ∞. So it is enough to check that

β
m
0 x0⊕β

m
1 x1⊕·· ·⊕β

m
k xk→ xk,
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as n→∞. In order to prove, put d = d(β m
0 x0⊕β m

1 x1⊕·· ·⊕β m
k xk,xk). By Lemma 2.3, we have

d = d
(
(1−β

m
k )

(
β m

0
1−β m

k
x0⊕·· ·⊕

β m
k−1

1−β m
k

xk−1

)
⊕βkxk,xk

)
≤ (1−β

m
k )d(

β m
0

1−β m
k

x0⊕·· ·⊕
β m

k−1

1−β m
k

xk−1,xk)

≤ (1−β
m
k −β

m
k−1)d(yk−2,xk)+β

m
k−1d(xk−1,xk)

...

≤
n

∑
i=0

β
m
i d(xi,xk)→ 0,

as m→ ∞, where

yk−2 =
β m

0
1−β m

k −β m
k−1

x0⊕·· ·⊕
β m

k−2

1−β m
k −β m

k−1
xk−2.

It follows that

β
m
0 x0⊕β

m
1 x1⊕·· ·⊕β

m
k xk→ xk,

as m→ ∞. This completes the proof.

Lemma 2.6. [4] Suppose F0,F1, · · · ,Fn are closed subset of standard n-simplex ∆n in Rn+1. If

for any nonempty subset I of {0,1, · · · ,n},

co({ei : i ∈ I})⊆
⋃
i∈I

Fi,

then
⋂n

i=0 Fi 6= φ .

Now suppose that {xn} is a sequence in a CAT (0) space X such that xn→ x ∈ X as n→ ∞,

and {αn} is a sequence in [0,1] such that αn→ α . Then we have

zn = αnxn⊕ (1−αn)y→ z = αx⊕ (1−α)y,

as n→ ∞, where y ∈ X . Indeed, by ( [16], Lemma 3.2) and triangular inequality, we deduce

d(zn,z)≤ d(zn,αnx⊕ (1−αn)y)+d(αnx⊕ (1−αn)y,z)→ 0,

as n→ ∞.

3. Main results
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Now, we give a characterization of the generalized KKM mappings in CAT (0) spaces.

Theorem 3.1. Let X be a nonempty set, Y be a CAT (0) space, and F : X→ 2Y be a multivalued

mapping with closed values. Then the family

{F(x) : x ∈ X},

has the finite intersection property if and only if the mapping F is a generalized KKM mapping.

Proof. Let {x0, · · · ,xn} be a subset of X , and F : X → 2Y be a generalized KKM mapping.

Therefore, there exist corresponding points y0, · · · ,yn of Y such that for each subsequence

yi0, · · · ,yik we deduce

co({yi0, · · · ,yik})⊂
k⋃

j=0

F(xi j).

Let C = co({y0,y1, · · · ,yn}) and define

Fi = F(xi)∩C

for every i = 0, · · · ,n. Since for every i = 0, · · · ,n; Fi is a closed subset of C. Define φ : ∆n→C

by

φ(a) =
n⊕

i=0

aiyi,

where a = (a0,a1, · · · ,an). By Lemma 2.5, φ is continuous, and we deduce φ−1(Fi) is closed in

∆n for each i = 0, · · · ,n.

On the other hand, we have

φ(co({ei0,ei1 , · · · ,eik})⊆ co({yi0,yi1, · · · ,yik})⊆
k⋃

j=0

F(xi j)

for each subsequence ei0, · · · ,eik of {e0, · · · ,en}. It implies

co{ei0,ei1, · · · ,eik} ⊆
k⋃

j=0

φ
−1(F(xi j))

for each subsequence ei0, · · · ,eik . Therefore, by Lemma 2.6,
⋂n

i=0 φ−1(Fi) 6= φ . It implies there

exists a ∈ ∆n such that

a ∈
n⋂

i=0

φ
−1(F(xi)∩C).

Then φ(a) ∈ ∩n
i=0F(xi)∩C, Finally, we have φ(a) ∈

⋂n
i=0 F(xi), as we wanted.
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In order to finish the proof we have to show that if the family

{F(x) : x ∈ X}

has the finite intersection property, then F is a generalized KKM mapping. Suppose {x0, · · · ,xn}

is a subset of X . We know that
⋂n

i=0 F(xi) 6= /0, so choose x∗ ∈
⋂n

i=0 F(xi). Set yi = x∗ for

i = 0, · · · ,n. Then for any 0≤ k ≤ n and any subsequence yi0, · · · ,yik it follows that

co({yi j : j = 0, · · · ,k}) = co({x∗}) = {x∗} ⊆
k⋃

i=0

F(xi).

This proves that F is a generalized KKM mapping.

Corollary 3.2. Let X be a nonempty set Y be a CAT (0) space and G : X → 2Y be a multivalued

map with closed values. If the mapping G is a KKM mapping, then the family

{G(x) : x ∈ X},

has the finite intersection property. In the sequel, we are going to obtain a characterization of

a generalized KKM mapping G : X → 2Y with transfer closed values. i.e., for each x ∈ X and

y 6∈ G(x), there exist x′ ∈ X such that y 6∈ (G(x′)), where X and Y are two CAT (0) spaces.

Remark 3.3. It is obvious that every multivalued mapping with closed values is transfer closed

valued. However, you can find some examples in [31] which show the converse is not true.

Also it is easy to check that the mapping G : X → 2Y is transfer closed valued if and only if⋂
x∈X G(x) =

⋂
x∈X (G(x)).

Motivated by the study of Kirk, Sims and Yuan [18] we now establish noncompactness

version of both generalized KKM and the fixed point theorems for set-valued mappings in

CAT (0) spaces. These results are noncompact generalization of the corresponding results given

in above.

Let M be a CAT (0) space and let µ denote the usual Kuratowksi measure of noncompactness

on M i.e. for each nonempty bounded A⊆M :

µ(A) = inf{ε > 0: there exists n with A⊂
⋃n

i=1 Ai, where diam(Ai) < ε}.
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Note that diam(Ai)= supx,y∈Ai
d(x,y) for i= 1, · · · ,n. We also need the following result which

is from Horvath [10].

Lemma 3.4. Let Y be a complete metric space and let {Fi : i ∈ I} be a family of nonempty

closed subset of Y having the finite intersection property. If inf
i∈I

µ(Fi) = 0 then
⋂
i∈I

Fi is nonempty

and compact.

Theorem 3.5. Let X be a nonempty set and Y be a complete CAT (0) space. Suppose G : X →

2Y\{φ} is a closed valued mapping and inf
x∈X

µ(G(x)) = 0. Then
⋂

x∈X G(x) is nonempty if and

only if the mapping G is a generalized KKM mapping.

Proof. If G(x) is a generalized KKM mapping, it follows by Theorem 3.1 that the family

{G(x) : x ∈ X} has the finite intersection property. Since

inf
x∈X

µ(G(x)) = 0,

according to Lemma 3.4 we imply that
⋂

x∈X G(x) 6= φ , according to Remark 3.3 G is transfer

closed valued so ⋂
x∈X

G(x) 6= φ .

Now suppose
⋂

x∈X
G(x) 6= φ since G is transfer closed valued, so

⋂
x∈X G(x) 6= φ and the family

{G(x) : x ∈ X} has the finite intersection property, so according to Theorem 3.1, G(x) is a

generalized KKM mapping.

Corollary 3.6. Let X be a nonempty set, Y be a complete CAT (0) space, and G : X → 2Y\{φ}

be a closed valued mapping, and inf
x∈X

µ(G(x)) = 0. Moreover, suppose for any finite nonempty

subset J of I,
⋂

i∈J G(xi) is nonempty. Then

⋂
x∈X

G(x) =
⋂
x∈X

(G(x)) 6= /0.

Theorem 3.7. Let X be a nonempty set, Y be a complete CAT (0) space, and F : X → 2Y be a

multivalued mapping with closed values and infx∈X µ(F(x)) = 0. Then
⋂

x∈X F(x) 6= /0 if and

only if F is a generalized KKM map.
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Proof. Suppose F : X → 2Y be a generalized KKM mapping, so according to Theorem the

family {F(x) : x ∈ X} has the finite intersection property. By assumption infx∈X µ(F(x)) = 0,

so according to Lemma 3.4,
⋂

x∈X F(x) 6= /0.

Now suppose
⋂

x∈X F(x) 6= /0. So the family {F(x) : x∈ X} has the finite intersection property

and according to Theorem 3.1, F is a generalized KKM mapping.

Theorem 3.8. Let X be a nonempty set, Y be a complete CAT (0) space and G : X→ 2Y be a mul-

tivalued mapping with closed values. Suppose there exists x0 ∈X such that inf
x∈X

µ(G(x0)
⋂

G(x))=

0. Then the
⋂

x∈X G(x) 6= /0 if and only if the mapping G is a generalized KKM mapping.

Proof. Since
⋂

x∈X G(x) 6= φ , the family {G(x) : x ∈ X} has the finite intersection property.

Since G(x) is closed for each x ∈ X , thus by Theorem 3.1, G is a generalized KKM mapping.

Now suppose G is a generalized KKM mapping. Theorem 3.1 implies that the family {G(x) :

x ∈ X} has the finite intersection property. Therefore

{G(x)∩G(x0) : x ∈ X},

has the finite intersection property. Since inf
x∈X

µ(G(x0)
⋂

G(x)) = 0, we find from Lemma 3.4

that

/0 6=
⋂
x∈X

G(x)
⋂

G(x0) =
⋂
x∈X

G(x),

which completes the proof.

4. Applications

Here are some applications of our results. At first we obtain some best approximation theo-

rems and then we prove some fixed point theorems.

Theorem 4.1. Suppose X is a compact subset of a complete CAT (0) space Y and F,G : X→ 2Y

are upper semi continuous maps with nonempty, compact and convex values. If G−(C) is convex

for each convex subset C of Y , then H : X → 2X is generalized KKM mapping, where

H(y) = {x ∈ X : d(G(x),F(x))6 d(G(y),F(x))}
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and inf
y∈X

µ(H(y)) = 0, also there exists x0 ∈ X such that

d(G(x0),F(x0)) = inf
x∈X

d(G(x),F(x0)).

Proof. Since H : X → 2X is defined by

H(y) = {x ∈ X : d(G(x),F(x))≤ d(G(y),F(x))},

for each y ∈ X , y ∈H(y), so H(y) 6= /0. We claim that H(y) is closed for each y ∈ X . In order to

show that, suppose {yn} is a sequence in H(y) such that yn→ y∗. We show that y∗ ∈ H(y). Let

ε > 0 be arbitrary. Since F is upper semicontinuous with compact values, there exists N1 such

that for each n≥ N1, we have

F(yn)⊆ B(F(y∗),ε).

Similarly, we can prove there exists N2 such that for each n≥ N2, we have

G(yn)⊆ B(G(y∗),ε).

Let N = max{N1,N2}. Then we have

d(G(y∗),F(y∗))≤ d(G(y∗),G(yn))+d(G(yn),F(yn))+d(F(yn),F(y∗))

≤ 2ε +d(G(yn),F(yn)) yn ∈ H(y)

≤ 2ε +d(G(y),F(yn))

≤ 2ε +d(G(y),F(y∗))+d(F(y∗),F(yn))

≤ 3ε +d(G(y),F(y∗)).

Since ε is arbitrary, d(G(y∗),F(y∗))≤ d(G(y),F(y∗)), and this proves our claim.

Now we show that for each A∈F (X), co(A)⊆H(A). On the contrary suppose co(A) 6⊆H(A)

for some A ∈F (X). Then there exists y ∈ co(A) such that y 6∈H(a) for every a ∈ A. Therefore

d(G(a),F(y))< d(G(y),F(y))
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for all a ∈ A. So we have

G(a)
⋂ ⋃

y′∈F(y)

B
(

y′,max
a∈A

d(G(a),F(y))
) 6= /0

for each a ∈ A. Since F(y) is convex, we have

⋃
y′∈F(y)

B
(

y′,max
b∈A

d(G(b),F(y))
)

is convex. It follows that

G(y)
⋂ ⋃

y′∈F(y)

B
(

y′,max
b∈A

d(G(b),F(y))
) 6= /0.

Therefore, we have

d(G(y),F(y))≤max
b∈A

d(G(b),F(y))< d(G(y),F(y)),

which is a contradiction. Now, Corollary 3.2 implies that H(y) has finite intersection property.

Since inf
y∈X

µ(H(y)) = 0, we find from Lemma 3.4 that
⋂

y∈X H(y) 6= /0. So there exists x0 ∈ X

such that

x0 ∈
⋂
y∈X

H(y).

Hence

d(G(x0),F(x0)) = inf
x∈X

d(G(x),F(x0)),

which completes the proof.

Corollary 4.2. Let Y be a complete CAT (0) space and X be a nonempty subset of Y . Suppose

F : X → 2Y is a set-valued continuous mapping such that

inf
x∈X

µ({y ∈ X : d(y,F(y))≤ d(x,F(y))}) = 0.

Then there exists x0 ∈ X such that

d(x0,F(x0)) = inf
x∈X

d(x,F(x0)).

Corollary 4.3. Let X be a nonempty subset of CAT (0) space Y and X ∈ F (Y ). Suppose

F : X → 2X is a set-valued continuous mapping with nonempty closed values such that



14 F. N. SARVESTANI, S. M. VAEZPOUR, M. ASADI

i. inf
x∈X

µ{y ∈ X : d(y,F(y))≤ d(x,F(y))}= 0

ii. for each x ∈ X with x 6∈ F(x) there exist z ∈ X such that

d(z,F(x))< d(x,F(x)),

then F has a fixed point in X.

Proof. By Corollary 4.2, we see that there exist x0 ∈ X such that

d(x0,F(x0)) = inf
x∈X

d(x,F(x0)).

We claim x0 is a fixed point of F . Indeed, assume this were not true, i.e., x0 6∈ F(x0). Then it

follows d(x0,F(x0))> 0. Then by assumption z0 ∈ X such that

d(z0,F(x0))< d(x0,F(x0)).

On the other hand, note that d(z0,F(x0)) ≥ d(x0,F(x0)) > 0. This implies 0 < d(z0,F(x0)) <

d(z0,F(x0)) which is a contradiction so x0 is a fixed point of F .

We can state the following result which is an analogue of Fan’s best approximation in CAT (0)

spaces.

Corollary 4.4. Suppose X is a compact subset of a CAT (0) space Y , and F : X → Y be contin-

uous. Then there exists x0 ∈ X such that

d(x0,F(x0)) = inf
x∈X

d(x,F(x0)).

In general, the result obtained in Theorem 4.1 is not true if we change the compactness of X

by completeness. In fact, define f : [0,∞)→ [0,∞) by f (x) = x+1, It is not difficult to check

that Theorem 4.1 does not hold. However, Kirk [16] proved an analogue of Theorem 4.1 for

complete R-trees. As a consequence a fixed point theorem for continuous mappings in complete

R-trees was found in [16], but it does not hold in CAT (0) space [29]. Corollary 4.4 is similar to

Theorem 2.13 of Amini et al. [1] in N R-metric spaces.

Theorem 4.5. Let X be a CAT (0) space and F : X → 2X be a convex valued mapping. Then F

has a fixed point if and only if the map x 7→ X\F−(x) is not a KKM map.
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Proof. Define G : X → 2X by

G(x) = X\F−(x).

Suppose G is not a KKM mapping. It follows that there exist a subset {x1, · · · ,xn} of X and

x0 ∈ co({x1, · · · ,xn}) such that x0 6∈ G(xi) for each i = 1, · · · ,n. It implies that xi ∈ F(x0) for

each i = 1, · · · ,n. Since F(x0) is convex, so it follows that

co({x1, · · · ,xn})⊆ F(x0),

i.e. x0 ∈ F(x0). Now suppose F has a fixed point, i.e., x0 ∈ F(x0) for some x0 ∈ X . Then

x0 6∈ G(x0). So G is not a KKM mapping and the proof is complete.

Now by Theorem 4.5 and Corollary 3.6, we obtain the following form of Fan-Browder fixed

point theorem in CAT (0) spaces.

Corollary 4.6. Let X be a convex and compact subset of a CAT (0) space Y . Moreover suppose

F : X → 2Y satisfies:

i. for each x ∈ X, X\F−(x) is transfer closed valued,

ii. for each x ∈ X, F(x) is nonempty and convex.

Then F has a fixed point.

Now we deduce an analogue of Fan’s lemma in CAT (0) spaces.

Corollary 4.7. Let X be a convex and compact subset of a CAT (0) space Y . Moreover suppose

C ⊂ X×X satisfies:

i. for each x ∈ X, (x,x) ∈C,

ii. for each x ∈ X, {y ∈ X : (x,y) 6∈C} is either nonempty and convex or empty,

iii. for each y ∈ X, {x ∈ X : (x,y) 6∈C} is closed.

Then there exists x0 ∈C such that {x0}×C ⊆C.

Proof. Define F : X → 2X by

F(x) = {y ∈ X : (x,y) 6∈C}.

Then by Corollary 3.4, there exists x0 ∈C such that {x0}×C ⊆C.
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Theorem 4.8. Let X1, · · · ,Xn be CAT (0) spaces and X = ∏
n
i=1 Xi. Suppose for each i = 1, · · · ,n,

Ti : X→ 2Xi , is a generalized KKM mapping with nonempty closed values and inf
x∈X

µ(Ti(x)) = 0

for each i = 1, · · · ,n. Then T = ∏
n
i=1 Ti : X → 2X has a fixed point.

Proof. Suppose {x1, · · · ,xn} be a nonempty finite subset of X . Since Tj : X → 2X j , is a general-

ized KKM mapping for each j = 1, · · · ,n, so there exists {y j
1, · · · ,y

j
m} in X j such that for each

subset {y j
i1 , · · · ,y

j
ik} of {y j

1, · · · ,y
j
m} we have

co({y j
i1, · · · ,y

j
ik})⊆

k⋃
l=1

Tj(xil).

Now let y j = (y1
j , · · · ,yn

j) for j = 1, · · · ,m. Therefore

co({yi1, · · · ,yik})⊆
k⋃

j=1

T (yi j),

and T is a generalized KKM mapping so by Theorem 3.1, the family {T (x) : x ∈ X} has the

finite intersection property. On the other hand by assumption we have inf
x∈X

µ(Ti(x)) = 0 for each

i = 1, · · · ,n since T = ∏
n
i=1 Ti so inf

x∈X
µ(T (x)) = 0. Now by Lemma 3.4,

⋂
x∈X T (x) 6= /0. So

there exists x0 ∈ X such that x0 ∈
⋂

x∈X T (x) then x0 ∈ T (x0) and proof is complete.

Corollary 4.9. Suppose X be a CAT (0) space and F : X→ 2X be a generalized KKM map with

nonempty, closed values and inf
x∈X

µ(F(x)) = 0 . Then F has a fixed point.
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