
J. Nonlinear Funct. Anal. 2018 (2018), Article ID 30 https://doi.org/10.23952/jnfa.2018.30

ENERGY ESTIMATE FOR IMPULSIVE FRACTIONAL ADVECTION DISPERSION
EQUATIONS IN ANOMALOUS DIFFUSIONS

NADER BIRANVAND, AMJAD SALARI∗

Faculty of Sciences, Imam Ali University, Tehran, Iran

Abstract. This paper deals with the existence and energy estimates of solutions for a class of impulsive fractional advection
dispersion equations in anomalous diffusions, while the nonlinear part of the problem admits some hypotheses on the behavior
at origin or perturbation property. In particular, for a precise localization of the parameter, the existence of a non-zero solution
is established requiring the sublinearity of nonlinear part at origin and infinity. We also consider the existence of solutions for
our problem under algebraic conditions with the classical Ambrosetti-Rabinowitz. By combining two algebraic conditions on
the nonlinear term which guarantees the existence of two solutions as well as applying the mountain pass theorem given by
Pucci and Serrin, we establish the existence of the third solution for our problem. Moreover, concrete examples of applications
are also provided.
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1. INTRODUCTION

In [1], Risken introduced an advection-dispersion equation to describe the Brownian motion of parti-
cles

∂C(x, t)
∂ t

=

[
−v

∂

∂x
+D

∂ 2

∂x2

]
C(x, t),

where C(x, t) is a concentration field of space variable x at time t, D > 0 is the diffusion coefficient
and v > 0 is the drift coefficient. Many laboratory data [2, 3] and numerical experiments [4] indicate
that solutes moving through a highly heterogeneous aquifer violate the basic assumptions of the local
second order theories because of the large deviations due to the stochastic process of Brownian motion.
According to [2], an anomalous dispersion process should be described by the following advection-
dispersion equation containing the left and the right fractional differential operators
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where C is the expected concentration field of space variable x at time t, v is a constant mean velocity,
x is the distance in the direction of the mean velocity, D is a constant dispersion coefficient, 0 ≤ j ≤ 1
describes the skewness of the transport process, and γ is the order of left and right fractional differential
operators (see [2, Appendix] for details about left and right fractional differential operators). Especially,
if γ = 2, the dispersion operator reduces to the classical advection-dispersion operator and (1.1) becomes
the classical advection-dispersion equation. On the other hand, if j = 1

2 , (1.1) describes symmetric
transitions. Define an equivalent Riesz potential symmetric operator [5]

2∇
γ ≡ Dγ

++Dγ

−,

which gives the mass balance equation for the symmetric fractional advection dispersion

∂C(x, t)
∂ t

=−v∇C(x, t)+D∇
γC(x, t).

Fractional differential equations (FDEs) is a simplification of ordinary differential equations and in-
tegration into arbitrary non-integer orders. FDEs have recently established themselves as precious tools
in modeling many events in different fields of science and engineering. We can also observe plentiful
applications in such fields as electrochemistry, chemistry, electromagnetic, mechanics, biology, electric-
ity, economics, polymer rheology, control theory, regular variation in thermodynamics, signal and image
processing, wave propagation, aerodynamics, electrodynamics of complex medium, blood flow phenom-
ena, biophysics, viscoelasticity and damping, etc. (see [5, 6, 7, 8, 9]). There has also been important
advances in theory of fractional calculus and fractional ordinary and partial differential equations recent-
ly; see [10, 11] as an example. Many researchers have explored the existence of solutions for nonlinear
FDEs with various tools such as fixed-point theorems, the method of upper and lower solutions, critical
point theory, the topological degree theory, and variational methods; see, for instance, [12, 13, 14, 15, 16]
and the references therein. This type of equations can be used to simulate anomalous diffusion in fractal
media. They established the existence and uniqueness of local and global mild solutions and proved the
existence and regularity of classical solutions.

On the other hand, impulsive differential equations have become important in recent years as math-
ematical models of phenomena in both the physical and social sciences. For example, many biological
phenomena involving thresholds, bursting rhythm models in medicine and biology, optimal control mod-
els in economics and frequency modulated systems, do exhibit impulsive effects. For the background and
applications of the theory of impulsive differential equations to different areas, we refer the reader to the
classical monograph [17]. For the general aspects of impulsive differential equations, we refer the reader
to [18, 19, 20]. The existence of multiple solutions of impulsive problems has been studied also using the
variational methods and critical point theory (see [21]). Both FDEs and impulsive differential equations
have drawn intense attention from researchers in the last decades due to the numerous applications. The
idea that combining these two classes of differential equations may yield an interesting and promising
object of investigation, viz., impulsive FDEs, prompted numerous papers. For the recent developments
in theory and applications of impulsive FDEs, we refer the reader to the papers [22, 23] and the refer-
ences therein. Impulsive problems for fractional equations have been treated by topological methods in
[24, 25, 26, 27]. In [21, 28], based on variational methods and critical point theory the authors studied
the existence and multiplicity of solutions for the problem (Dλ ), in the case h(x) = 0 for all x ∈ R.
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We also cite the papers [29, 30, 31, 32, 33] in which fractional systems have been studied. In [32, 33],
through variational methods and critical point theory the existence of multiple solutions for coupled
systems of nonlinear fractional differential equations was analyzed. In [31], using Ricceri’s Variational
Principle, the existence of one weak solution for a class of fractional differential systems was argued. In
[30], employing Ricceri’s Variational Principle, the existence of an infinite number of weak solutions for
a class of impulsive fractional differential systems was guaranteed. In [29], using variational methods
and critical point theory, the multiplicity results of solutions for a class of impulsive fractional differential
systems was established.

In this paper, due to the researches above, we are interested in the existence results and energy esti-
mates of solutions for for the following impulsive nonlinear fractional boundary value problem

tDα
T (c

0Dα
t u(t))+a(t)u(t) = λ f (t,u(t)), t 6= t j, a.e. t ∈ [0,T ],

∆
(

tDα−1
T (c

0Dα
t u)
)
(t j) = λ I j(u(t j)), j = 1, . . .n,

u(0) = u(T ) = 0,

(Dλ )

where α ∈ (1/2,1], a ∈ C([0,T ]) such that there are a1,a2 > 0 such that 0 < a1 ≤ a(t) ≤ a2, λ > 0, f :
[0,T ]×R→R is an L1-Carathéodory function, 0= t0 < t1 < .. . < tn < tn+1 = T , ∆

(
tDα−1

T (c
0Dα

t u)
)
(t j)=

tDα−1
T (c

0Dα
t u)(t+j )− tDα−1

T (c
0Dα

t u)(t−j ) and I j : R→ R, j = 1, . . . ,n are Lipschitz continuous functions
with the Lipschitz constants L j > 0, i.e.,

|I j(x1)− I j(x2)| ≤ L j|x1− x2|

for every x1,x2 ∈ R and I j(0) = 0.
The main result of this paper ensures the existence of exact values of the parameter λ for which

problem (Dλ ) admits at least one/two/three non-zero weak solutions. Several special cases of the main
results and examples are also given. We also refer the reader to [34, 35] for some related results in this
subject.

2. PRELIMINARIES

In this section, we will introduce several basic definitions, notations, lemmas, and propositions
used all over this paper.

Definition 2.1 ([7]). For a function f defined on [a,b] and α > 0, the left and right Riemann-Liouville
fractional integrals of order α for the function f are defined by

aD−α
t f (t) =

1
Γ(α)

∫ t

a
(t− s)α−1 f (s)ds, t ∈ [a,b],

tD−α

b f (t) =
1

Γ(α)

∫ b

t
(s− t)α−1 f (s)ds, t ∈ [a,b],

while the right-hand sides are point-wise defined on [a,b], where Γ(α) is the gamma function.

Definition 2.2 ([7]). Let a,b ∈ R and AC([a,b]) be the space of absolutely continuous functions on
[a,b]. For 0 < α ≤ 1, f ∈ AC([a,b]) left and right Riemann-Liouville and Caputo fractional derivatives
are defined by:

aDα
t f (t)≡ d

dt aDα−1
t f (t) =

1
Γ(1−α)

d
dt

∫ t

a
(t− s)−α f (s)ds,
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tDα
b f (t)≡− d

dt tDα−1
b f (t) =− 1

Γ(1−α)

∫ b

t
(s− t)−α f (s)ds,

c
aDα

t f (t)≡ cDα

a+ f (t) := aDα−1
t f ′(t) =

1
Γ(1−α)

∫ t

a
(t− s)−α f ′(s)ds

and
c
t Dα

b f (t)≡ cDα
b− f (t) :=−tDα−1

b f ′(t) =− 1
Γ(1−α)

∫ b

t
(s− t)−α f ′(s)ds

where Γ(α) is the gamma function. Note that when α = 1, c
aD1

t f (t) = f ′(t) and c
t D1

b f (t) =− f ′(t)

We have the following property of fractional integration.

Proposition 2.3 ([5, 7]). ∫ b

a
[aD−γ

t f (t)]g(t)dt =
∫ b

a
[tD
−γ

b g(t)] f (t)dt, γ > 0,

provided that f ∈ Lp([a,b],RN), g ∈ Lq([a,b],RN) and p≥ 1, q≥ 1, 1/p+1/q≤ 1+ γ or p 6= 1, q 6= 1,
1/p+1/q = 1+ γ .

To create suitable function spaces and apply critical point theory to explore the existence of solu-
tions for problem (Dλ ), we require the following essential notations and findings which will be used in
establishing our main results.

Let 0 < α ≤ 1 and 1 < p < ∞. Let Eα,p
0 (0,T ) be a Banach space, which is closure of C∞

0 ([0,T ]) with
respect to the norm

‖u‖p
Eα,p

0 (0,T )
= ‖c

aDα
t u(t)‖p

Lp(0,T )+‖u‖
p
Lp(0,T ).

It is an established fact that Eα,p
0 (0,T ) is a reflexive and separable Banach space (see [36, Proposition

3.1]). In short Eα,2
0,T = Eα , and by ‖.‖ and ‖.‖∞ the norms in L2(0,T ) and C([0,T ]):

‖u‖2 =
∫ T

0
|u(t)|2 dt, u ∈ L2(0,T ),

‖u‖∞ max
t∈[0,T ]

|u(t)|, u ∈ C([0,T ]).

Eα is a Hilbert space with inner product

(u,v)α =
∫ T

0
(c

0Dα
t u(t) c

0Dα
t v(t)+u(t)v(t))dt

and the norm

‖u‖2
α =

∫ T

0
(|c0Dα

t u(t)|2 + |u(t)|2)dt.

If a ∈ C([0,T ]) and there are two positive constants a1 and a2, so that 0 < a1 ≤ a(t)≤ a2, an equivalent
norm in Eα is

‖u‖2
a,α =

∫ T

0
(|c0Dα

t u(t)|2dt +a(t)|u(t)|2)dt.

Proposition 2.4 ([36]). Let 0 < α ≤ 1. For u ∈ Eα , we have

‖u‖ ≤ T α

Γ(α +1)
‖c

0Dα
t u‖. (2.1)

In addition, for 1
2 < α ≤ 1,

‖u‖∞ ≤
T α−1/2

Γ(α)(2α−1)1/2 ‖
c
0Dα

t u‖.
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By (2.1), we can take Eα with the norm

‖u‖0,α =
(∫ T

0
|c0Dα

t u(t)|2dt
)1/2

= ‖c
0Dα

t u‖, ∀u ∈ Eα .

By Proposition 2.4, when α > 1/2, for every u ∈ Eα , we have

‖u‖∞ ≤ k
(∫ T

0
|c0Dα

t u(t)|2dt
)1/2

= k‖u‖0,α < k‖u‖a,α , (2.2)

where

k =
T α− 1

2

Γ(α)
√

2α−1
.

Now, by setting L := ∑
n
i=1 L j, we put

C1 := 1
2(1−LT k2),

C2 := 1
2(1+LT k2).

(2.3)

We suppose that the Lipschitz constant L > 0 of the function h satisfies the condition LT k2 < 1.
Here we give the definition of weak and classical solutions for problem (Dλ ) as below.

Definition 2.5. A function u ∈ Eα is said to be a weak solution of (Dλ ), if for every v ∈ Eα ,∫ T

0
[(c

0Dα
t u(t))(c

0Dα
t v(t))+a(t)u(t)v(t)]dt +λ

n

∑
j=1

I j(u(t j))v(t j)

= λ

∫ T

0
f (t,u(t))v(t)dt.

Definition 2.6. A function

u ∈
{

u ∈ AC([0,T ]) :
∫ t j+1

t j

(|c0Dα
t u(t)|2 + |u(t)|2)dt < ∞, j = 0, . . .n

}
is said to be a classical solution of problem (Dλ ) if

tDα
T (c

0Dα
t u(t))+a(t)u(t) = λ f (t,u(t))+h(u(t)), a.e. t ∈ [0,T ]\{t1, . . . , tn},

the limits tDα−1
T (c

0Dα
t u)(t+j ) and tDα−1

T (c
0Dα

t u)(t−j ) exist, ∆
(

tDα−1
T (c

0Dα
t u)
)
(t j)= µI j(u(t j)) and u(0)=

u(T ) = 0.

Lemma 2.7 ([21, Lemma 2.1]). A function u∈Eα is a weak solution of (Dλ ) if and only if it is a classical
solution of (Dλ ).

We refer the reader to [37, 38] for the following notations and results. Let X be a real Banach s-
pace. We say that a continuously Gâteaux differentiable functional J : X → R satisfies the Palais-Smale
condition (in short (PS)-condition) if any sequence {un} such that

(j1) {J(un)} is bounded,
(j2) lim

n→∞
‖J′(un)‖X∗ = 0,

has a convergent subsequence.
Let Φ,Ψ : X → R be two continuously Gâteaux differentiable functions. Set

J = Φ−Ψ,

and fix r1,r2 ∈ [−∞,+∞] with r1 < r2. We say that J satisfies the Palais-Smale condition cut off lower at
r1 and upper at r2 (in short [r1](PS)[r2]-condition) if any sequence {un} satisfying (j1), (j2) and
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(j3) r1 < Φ(un)< r2, ∀n ∈ N,

has a convergent subsequence.
Clearly, if r1 =−∞ and r2 =+∞, it coincides with the classical (PS)-condition. Moreover, if r1 =−∞

and r2 ∈R, it is denoted by (PS)[r2], while if r1 ∈R and r2 =+∞, it is denoted by [r1](PS). Furthermore,
if J satisfies [r1](PS)[r2]-condition, it satisfies [ρ1](PS)[ρ2]-condition for all ρ1,ρ2 ∈ [−∞,+∞] such that
r1 ≤ ρ1 < ρ2 ≤ r2.

In particular, we deduce that if J satisfies the classical (PS)-condition, then it satisfies [ρ1](PS)[ρ2]-
condition for all ρ1,ρ2 ∈ [−∞,+∞] with ρ1 < ρ2. For r ∈ R and r1,r2 ∈ R with r1 < r2, we set

ρ(r) = sup
v∈Φ−1(r,+∞)

Ψ(v)− supu∈Φ−1(−∞,r] Ψ(u)

Φ(v)− r
, (2.4)

β (r1,r2) := inf
v∈Φ−1(r1,r2)

sup
u∈Φ−1(r1,r2)

Ψ(u)−Ψ(v)

r2−Φ(v)
, (2.5)

and

ρ2(r1,r2) := sup
v∈Φ−1(r1,r2)

Ψ(v)− sup
u∈Φ−1(−∞,r1]

Ψ(u)

Φ(v)− r1
. (2.6)

In the proof of our main results, we will apply the following two Theorems.

Theorem 2.8. [39, Theorem 5.1] (see also [37, 38]) Let X be a real Banach space and let Φ,Ψ :
X → R be two continuously Gâteaux differentiable functions. Assume that there exist r1, r2 ∈ R with
r1 < r2, such thatβ (r1,r2) < ρ2(r1,r2), where β and ρ2 are given by (2.5) and (2.6), and for each λ ∈( 1

ρ2(r1,r2)
, 1

β (r1,r2)

)
, the function Jλ :=Φ−λΨ satisfies [r1](PS)[r2]-condition. Then, ∀λ ∈

(
1

ρ2(r1,r2)
, 1

β (r1,r2)

)
there exists u0,λ ∈Φ−1(r1,r2) such that Jλ (u0,λ )≤ Jλ (u) for all u ∈Φ−1(r1,r2) and J′

λ
(u0,λ ) = 0.

Theorem 2.9. [39, Corolary 5.1] Let X be a real Banach space and let Φ,Ψ : X→R be two continuously
Gâteaux differentiable function. Put

β
∗ := liminf

r→+∞

supu∈Φ−1(−∞,r) Ψ(u)

r
and assume that there is r̄ ∈ R such that ρ(r̄) > β ∗ where ρ is given by (2.4). Moreover, assume that
for each λ ∈ ( 1

ρ(r̄) ,
1

β ∗ ) the function Jλ := Φ−λΨ satisfies [r̄](PS)[r]-condition for all r > r̄. Then there

is r2 > r̄ such that for each λ ∈ ( 1
ρ(r̄) ,

1
β ∗ ), there is u0,λ ∈ Φ−1(r̄,r2) such that Jλ (u0,λ ) ≤ Jλ (u) for all

u ∈Φ−1(r̄,r2) and J′
λ
(u0,λ ) = 0.

Corresponding to the functions f , h and I j, j = 1 . . . ,n, we introduce the functions F : [0,T ]×R−→R
and J j : [0,T ]×R−→ R, j = 1, . . . ,n , respectively, as follows

F(t,ξ ) :=
∫

ξ

0
f (t,x)dx, for all ξ ∈ R

and
J j(x) =

∫ x

0
I j(ξ )dξ , j = 1, . . . ,n for every x ∈ R.

Throughout this paper, we consider the following conditions on impulsive terms

(H ) let I j ≥ 0 for all j = 1, . . . ,n.

We need the following proposition for existence our main results.
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Proposition 2.10. Let S : Eα −→ (Eα)∗ be the operator defined by

S(u)(v) =
∫ T

0
[(c

0Dα
t u(t))(c

0Dα
t v(t))+a(t)u(t)v(t)]dt

for every u,v ∈ Eα . Then, S admits a continuous inverse on (Eα)∗.

Proof. It is obvious that

S(u)(u) =
∫ T

0

(
|c0Dα

t u(t)|2 +a(t)|u(t)|2
)

dt ≥ ‖u‖2
a,α .

It follows that S is coercive. Hence,

〈S(u)−S(v),u− v〉=
∫ T

0

(
|c0Dα

t (u(t)− v(t))|2 +a(t)|u(t)− v(t)|2
)

dt

≥ ‖u− v‖2
a,α > 0

for every u,v∈ Eα , which means that S is strictly monotone. Moreover, since Eα is reflexive, for un−→ u
strongly in Eα as n→+∞, one has S(un)→ S(u) weakly in (Eα)∗ as n→∞. Hence, S is demicontinuous.
By [40, Theorem 26.A(d)], the inverse operator S−1 of S exists and it is continuous. Indeed, let en be a
sequence of (Eα)∗ such that en→ e strongly in (Eα)∗ as n→∞. Let un and u in Eα such that S−1(en) = un

and S−1(e) = u. Taking into account that S is coercive, one has that the sequence un is bounded in the
reflexive space Eα . For a suitable subsequence, we have un→ û weakly in Eα as n→∞, which concludes

〈S(un)−S(u),un− û〉= 〈en− e,un− û〉= 0.

If un → û weakly in Eα as n→ +∞ and S(un)→ S(û) strongly in (Eα)∗ as n→ +∞, one has un → û
strongly in Eα as n → +∞. Since S is continuous, one has un → û weakly in Eα as n → +∞ and
S(un)→ S(û) = S(u) strongly in (Eα)∗ as n→+∞. Hence, taking into account that S is an injection, we
have u = û. �

3. MAIN RESULTS

In this section, we formulate our main results. Put

A(α) :=
1

Γ2(1−α)
(
T
4
)1−2α 6α2−19α +16

(1−α)2(2−α)(3−2α)

and

` := k

√
C2

C1

(
A(α)+

2T‖a‖∞

3
)
.

Moreover, for every two nonnegative constants γ and σ with γ 6= σ`, we set

bγ(σ) =

∫ T
0 sup|ξ |≤γ F(t,ξ )dt−

∫ 3T
4

T
4

F(t,σ)dt

γ2− `2σ2 . (3.1)

We denote by F the class of all continuous functions f : R→ R satisfy in the following condition:

• there exist two non-negative constants a1, a2 such that

| f (t,x)| ≤ a1 +a2|x|p−1, ∀x ∈ R. (3.2)
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Theorem 3.1. Assume that f ∈F and there exist three real constants γ1,γ2 and σ , with

0 < γ1 < kσ` < γ2, (3.3)

such that

bγ2(σ)< bγ1(σ). (3.4)

Then, for each parameter λ ∈
( C1

k2bγ1(σ)
,

C1

k2bγ2(σ)

)
, problem (Dλ ) possesses at least one non-zero

classical solution u0,λ ∈ Eα such that γ1
C2

< ‖u0,λ‖< γ2
C1

.

Proof. We will apply Theorem 2.8. Let X := Eα and consider the functionals Φ,Ψ : X → R defined by

Φ(u) :=
1
2
‖u‖2

a,α +
n

∑
j=1

J j(u(t j)), (3.5)

and

Ψ(u) :=
∫ T

0
F(t,u(t))dt. (3.6)

From the facts −L j|ξ | ≤ I j(ξ ) ≤ L j|ξ | for every ξ ∈ R, j = 1, . . . ,n, and taking (2.2) and (2.3) into
account, for every u ∈ X , we have

C1‖u‖2
a,α ≤Φ(u)≤C2‖u‖2

a,α . (3.7)

Thus, the functional Φ : X → R is coercive. On the other hand, Φ and Ψ are continuously Gâteaux
differentiable. More precisely, we have

Φ
′(u)(v) =

∫ T

0

[
(c

0Dα
t u(t))(c

0Dα
t v(t))+a(t)u(t)v(t)

]
dt +

n

∑
j=1

I j(u(t j))v(t j)

and

Ψ
′(u)(v) =

∫ T

0
f (t,u(t))v(t)dt

for every u,v ∈ X . Fix λ > 0. A critical point of the functional Jλ := Φ−λΨ is a function u ∈ X such
that

Φ
′(u)(v)−λΨ

′(u)(v) = 0, ∀v ∈ X .

Hence, the critical points of the functional Jλ are weak solutions (and by Lemma 2.7 classical solutions)
of the problem (Dλ ). At this point, let us observe that Φ(0) = Ψ(0) = 0. Moreover, choose r1 =

C1
k2 γ2

1

and r2 =
C1
k2 γ2

2 . Letting u ∈Φ−1(−∞,r1), we find from (3.7) that

Φ
−1(−∞,r1) =

{
u ∈ X ;Φ(u)< r1

}
⊆
{

u ∈ X ; |u| ≤ γ1
}
. (3.8)

By same argument as above, one sees that

Φ
−1(−∞,r2)⊆

{
u ∈ X ; |u| ≤ γ2

}
.

Hence, due to the condition (H ),

sup
u∈Φ−1(−∞,r1)

Ψ(u) = sup
u∈Φ−1(−∞,r1)

∫ T

0
F(t,u(t))dt ≤

∫ T

0
sup
|ξ |≤γ1

F(t,ξ )dt

and

sup
u∈Φ−1(−∞,r2)

Ψ(u) = sup
u∈Φ−1(−∞,r2)

∫ T

0
F(t,u(t))dt ≤

∫ T

0
sup
|ξ |≤γ2

F(t,ξ )dt.
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Now, we define wσ by

wσ (t) =


4σ

T t, if t ∈ [0, T
4 ),

σ , if t ∈ [T
4 ,

3T
4 ],

4σ

T (T − t), if t ∈ (3T
4 ,T ].

Clearly, wσ ∈ X . Obviously, one has

w′σ (t) =


4σ

T , if t ∈ (0, T
4 ),

0, if t ∈ (T
4 ,

3T
4 ),

−4σ

T , if t ∈ (3T
4 ,T ),

and

|c0Dα
t wσ (t)|=

1
Γ(1−α)

(∫ T

0
(t− s)−αw′σ (s)ds

)

=
1

Γ(1−α)



4σ

T
t1−α

1−α
, if t ∈ [0, T

4 ),

4σ

T
( T

4 )
1−α

1−α
, if t ∈ [T

4 ,
3T
4 ],

4σ

T
1

1−α
[(T

4 )
1−α − (t− (3T

4 ))1−α ], if t ∈ (3T
4 ,T ],

so that

‖wσ‖2
a,α = A(α)σ2 +

∫ T

0
a(t)|wn(t)|2dt ≤

(
A(α)+

2T‖a‖∞

3

)
σ

2.

Using (3.7), we obtain that

Φ(wσ )≤
(

A(α)+
2T‖a‖∞

3

)
C2σ

2. (3.9)

On the other hand, based on non-positivity of J j, j = 1, . . . ,n, we see that

Ψ(wσ )≥
∫ 3T

4

T
4

F(t,σ)dt. (3.10)

Taking (3.3) into account, by a direct computation, one has r1 < Φ(wσ )< r2. On the other hand,

β (r1,r2) := inf
v∈Φ−1(r1,r2)

sup
u∈Φ−1(r1,r2)

Ψ(u)−Ψ(v)

r2−Φ(v)
≤

sup
u∈Φ−1(−∞,r2)

Ψ(u)−Ψ(wσ )

r2−Φ(wσ )

≤ k2

∫ T
0 sup|ξ |≤γ2

F(t,ξ )dt−
∫ 3T

4
T
4

F(t,σ)dt

C1γ2
2 −
(
A(α)+ 2T‖a‖∞

3

)
k2C2σ2

,

and

ρ2(r1,r2) := sup
v∈Φ−1(r1,r2)

Ψ(v)− sup
u∈Φ−1(−∞,r1]

Ψ(u)

Φ(v)− r1
≥

Ψ(wσ )− sup
u∈Φ−1(−∞,r1]

Ψ(u)

Φ(wσ )− r1

≥ k2

∫ T
0 sup|ξ |≤γ1

F(t,ξ )dt−
∫ 3T

4
T
4

F(t,σ)dt

C1γ2
1 −
(
A(α)+ 2T‖a‖∞

3

)
k2C2σ2

.

Hence, by using the notation (3.1), from (3.8) and (3.9) together with (3.10), it follows that β (r1,r2) ≤
k2bγ2(σ) andρ2(r1,r2) ≥ k2bγ1(σ). Finally, assumption (3.4) yields β (r1,r2) < ρ2(r1,r2). Now, from
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above the functional Φ is continuously Gâteaux differentiable while by Proposition 2.10 admits a contin-
uous inverse on X?, the functional Φ is continuously Gâteaux differentiable whose Gâteaux derivative is
compact and since g ∈ G the functional Φ−Ψ is coercive. Thus, from [39, Proposition 1], the functional
Jλ satisfies the [r1](PS)[r2]-condition for all r1 and r2 with r1 < r2 <+∞. Therefore, by Theorem 2.8, for

each λ ∈
( C1

k2bγ1(σ)
,

C1

k2bγ2(σ)

)
, Jλ possesses at least one critical point u0,λ such that r1 < Φ(u0,λ )< r2,

that is, γ1
C2

< ‖u0,λ‖< γ2
C1

. This completes the proof. �

Remark 3.2. The results of Theorem 3.1 hold if condition (3.2) is replaced by

• lim|t|→∞

f (t)
|t| = 0, i.e., f is sublinear at infinity.

Now, we point out a particular case of Theorem 3.1.

Theorem 3.3. Assume that f ∈F and there exist two positive constants γ and σ with γ > σ` such that

∫ T
0 sup|ξ |≤γ F(t,ξ )dt−

∫ 3T
4

T
4

F(t,σ)dt

γ2− `2σ2 <

∫ 3T
4

T
4

F(t,σ)dt

`2σ2

Then, for each parameter

λ ∈
(

C1

k2
`2σ2∫ 3T

4
T
4

F(t,σ)dt
,
C1

k2
γ2− `2σ2∫ T

0 sup|ξ |≤γ F(t,ξ )dt−
∫ 3T

4
T
4

F(t,σ)dt

)
,

problem (Dλ ) possesses at least one non-zero classical solution u0,λ ∈ Eα such that ‖u0,λ‖< γ

C1
.

Proof. Taking γ1 = 0 and γ2 = γ and bearing (3.1) in mind, we obtain

bγ(σ) =

∫ T
0 sup|ξ |≤γ F(t,ξ )dt−

∫ 3T
4

T
4

F(t,σ)dt

γ2− `2σ2 <

∫ 3T
4

T
4

F(t,σ)dt

`2σ2 = b0(σ).

Hence, Theorem 3.1 ensures the conclusion. �

Now, we give an application of Theorem 2.9 which will be used later to obtain multiple solutions for
the problem (Dλ ).

Theorem 3.4. Assume that f ∈F and there exist two positive constants γ̄ and σ̄ with γ̄ < σ̄` such that
α0G(σ̄)< |α|1G(γ̄) Then, for each λ > λ̃ , where

λ̃ :=
C1

k2
γ̄2− `2σ̄2∫ T

0 sup|ξ |≤γ̄ F(t,ξ )dt−
∫ 3T

4
T
4

F(t, σ̄)dt
,

problem (Dλ ) possesses at least one non-trivial classical solution ū0,λ ∈ Eα such that ‖ū0,λ‖> γ̄

C2
.

Proof. Take X = Eα and put Iλ = Φ−λΨ, where Φ and Ψ are given as in (3.5) and (3.6), respectively.
The functionals Φ and Ψ satisfy all assumptions requested in Theorem 2.9. Put r̄ := C1

k2 γ̄2. From [39,
Proposition 1], the functional Jλ satisfies [r̄](PS)[r]-condition for all r with r > r̄. Arguing as in the proof
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of Theorem 3.1, we obtain that

ρ(r̄) = sup
v∈Φ−1(r̄,+∞)

Ψ(v)− supu∈Φ−1(−∞,r̄] Ψ(u)

Φ(v)− r̄

≥
Ψ(wσ )− sup

u∈Φ−1(−∞,r̄]
Ψ(u)

Φ(wσ )− r̄

≥ k2

C1

∫ T
0 sup|ξ |≤γ̄ F(t,ξ )dt−

∫ 3T
4

T
4

F(t, σ̄)dt

γ̄2− `2σ̄2 .

Hence, from our assumption, it follows that ρ(r̄)> 0. Therefore, it follows from Theorem 2.9 with β ∗ =

0, for each λ > λ̃ , the functional Jλ admits at least one local minimum ū0,λ ∈ Eα such that Φ(ū0,λ )> r̄,
which is just ‖ū0,λ‖> γ̄

C2
. Thus the conclusion is obtained. �

The following result is a straight consequence of Theorem 3.3.

Theorem 3.5. Assume that f ∈F and

lim
ξ→0+

F(t,ξ )
ξ 2 =+∞. (3.11)

Furthermore, let γ > 0 and set λ ?
γ := C1

k2
γ2∫ T

0 sup|ξ |≤γ F(t,ξ )dt
. Then, for every λ ∈ (0,λ ?

γ ), problem (Dλ ) admits

at least one non-zero classical solution u0,λ ∈ Eα such that ‖u0,λ‖< γ

C1
.

Proof. Fix λ ∈ (0,λ ?
γ ). From (3.11), there exists a constant σ > 0 with γ > σ` such that

C1

k2
`2σ2∫ 3T

4
T
4

F(t,σ)dt
< λ <

C1

k2
γ2− `2σ2∫ T

0 sup|ξ |≤γ F(t,ξ )dt−
∫ 3T

4
T
4

F(t,σ)dt
.

Hence, by Theorem 3.3, problem (Dλ ) possesses at least one non-zero classical solution u0,λ such that
‖u0,λ‖< γ

C1
. �

Example 3.6. Consider the problem

tD
2
3
1

(
c
0D

2
3
t u(t)

)
+u(t) = λ t f (u(t)), t 6= 1

3
,
2
3
, a.e. t ∈ [0,1],

∆

(
tD
− 1

3
1

(
c
0D

2
3
t u
))

(
1
3
) =

λ

9
Γ

2(
2
3
)sin

(
u(

1
3
)
)
,

∆

(
tD
− 1

3
1

(
c
0D

2
3
t u
))

(
2
3
) =

λ

12
Γ

2(
2
3
)arctan

(
u(

1
3
)
)
,

u(0) = u(1) = 0

(3.12)

with

f (x) =


ex, x ∈ (−∞,−1],

esin( π

2 x), x ∈ (−1,1),

e−cos(πx), x ∈ [1,∞).

Direct calculations show that k = 3√
3Γ( 2

3 )
and C1 =

29
72 and

lim
ξ→0+

f (ξ )
ξ

= lim
ξ→0+

esin( π

2 ξ )

ξ
=+∞, lim

ξ→+∞

f (ξ )
ξ

= lim
ξ→+∞

e−cos(πξ )

ξ
= 0.
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Choosing γ = 1, we clearly see that all assumptions of Theorem 3.5 are satisfied. Hence, applying
Theorem 3.5 and Remark 3.2 for every λ ∈

(
0, 58

216e Γ2(2
3)
)
, we see that problem (3.12) possesses at least

one non-zero classical solution u0,λ ∈ Eα such that ‖u0,λ‖< 72
29 .

Theorem 3.7. Suppose that g ∈ G . Then the mapping λ 7→ Jλ (u0,λ ) is negative and strictly decreasing
in (0,λ ?

γ ).

Proof. The restriction of the functional Jλ to Φ−1(0,r) admits a global minimum, which is a critical
point (local minimum) of Jλ in Eα . Moreover, since wσ ∈Φ−1(0,r) and

Φ(wσ )

Ψ(wσ )
≤
(
A(α)+ 2T‖a‖∞

3

)
C2σ2∫ 3T

4
T
4

F(t,σ)dt.
< λ ,

we have

Jλ (u0,λ )≤ Jλ (wσ ) = Φ(wσ )−λΨ(wσ )< 0.

Next, we observe that Jλ (u) = λ

(
Φ(u)

λ
−Ψ(u)

)
for every u ∈ Eα and fix 0 < λ1 < λ2 < λ ?

γ . Set

mλ1 :=
(

Φ(u0,λ1)

λ1
−Ψ(u0,λ1)

)
= inf

u∈Φ−1(0,r2)

(
Φ(u)

λ1
−Ψ(u)

)
,

and

mλ2 :=
(

Φ(u0,λ2)

λ2
−Ψ(u0λ2)

)
= inf

u∈Φ−1(0,r2)

(
Φ(u)

λ2
−Ψ(u)

)
.

Clearly, as claimed before, mλi < 0 (for i = 1,2), and mλ2 ≤mλ1 thanks to λ1 < λ2. Hence, λ 7→ Jλ (u0,λ )

is strictly decreasing in (0,λ ?
γ ) since the fact

Jλ2(u0,λ2) = λ2mλ2 ≤ λ2mλ1 < λ1mλ1 = Jλ1(u0,λ1).

�

Remark 3.8. Generally, Theorem 3.5 ensures that if g ∈ G satisfies (3.11), then for every parameter λ

belonging to the real interval ΛΩ := (0,λ ?), where λ ? := C1
k2 supγ>0

γ2

F(t,γ) , (Dλ ) possesses at least one
non-zero solution u0,λ ∈ Eα .

Remark 3.9. We note that, in particular, if f is sublinear at infinity with respect to the second variable,
then Theorem 3.5 ensures that problem (Dλ ) admits at least one non-zero classical solution for every
positive parameter λ . Moreover, in our case, the obtained solution is non-zero, while the classical direct
method approach, that can be accept in this context, ensures the existence of at least one solution that
may be zero.

Remark 3.10. A careful analysis of the proof of Theorem 3.5 ensures that the result still remains true if

condition (3.11) is replaced by the more general assumption limsupξ→0+
F(t,ξ )

ξ 2 = +∞. Moreover, the
previous asymptotic condition at zero can be replaced by the following form

limsup
ξ→0+

f (t,ξ )
ξ

=+∞. (3.13)

Therefore, it is natural to obtain the following result.
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Theorem 3.11. Let limξ→0+
f (t,ξ )

ξ
=+∞ and limξ→+∞

f (t,ξ )
ξ

= 0. Then there exists λ ? > 0 such that, for
every λ ∈ (0,λ ?), (Dλ ) possesses at least one non-zero classical solution u0,λ ∈ Eα . Moreover, we have(∫ T

0
(|c0Dα

t u(t)|2dt +a(t)|u(t)|2)dt
) 1

2 → 0

as λ → 0+ and the mapping

λ 7→
(∫ T

0
(|c0Dα

t u(t)|2dt +a(t)|u(t)|2)dt
) 1

2 −
∫ T

0

(∫ u0,λ

0
f (t,x)dt

)
dx

is negative and strictly decreasing in (0,λ ?).

Below, we show how the former analysis can be used to pass from the existence of at least one
nontrivial solution to that of at least two nontrivial solutions. Accordingly, we start with the following
theorem, where the celebrated Ambrosetti-Rabinowitz condition is necessary.

Theorem 3.12. Let g be a continuous function such that g(0) 6= 0 and assumption (3.13) holds. Further-
more, assume that

(AR) there are constants ν > 2 and ρ > 0 such that, for all ξ ≥ ρ , one has

0 < νF(t,ξ )≤ ξ f (t,ξ ). (3.14)

Then, for each λ ∈ ΛΩ, problem (Dλ ) admits at least two non-trivial classical solutions in the space Eα .

Proof. Fix λ ∈ ΛΩ. In view of the assumption (3.13), Theorem 3.5 ensures that problem (Dλ ) admits
at least one weak non-zero solution u1 in Eα , which is a local minimum of the functional Jλ as defined
in the proof of Theorem 3.1. Now, we prove the existence of the second local minimum distinct from
the first one. To this end, we verify the hypotheses of the mountain-pass theorem for Jλ . Clearly, Jλ is
of class C1 and Jλ (0) = 0. The first part of proof guarantees that u1 ∈ Eα is a nontrivial local minimum
for Jλ in Eα . We can assume that u1 is a strict local minimum for Jλ in Eα . Therefore, there is ρ > 0
such that inf‖u−u1‖=ρ Iλ (u) > Iλ (u1). So condition [38, (I1), Theorem 2.2] is verified. By integrating
the condition (3.14), there exist constants a1,a2 > 0 such that F(t,x) ≥ a1|x|ν − a2 for all x ∈ R. Now,
choosing any u ∈ Eα , one find that

Jλ (τu) = (Φ−λΨ)(τu)≤C2‖τu‖2
a,α −λ

∫
R

F(t,τu(x))dx

≤C2τ
2‖u‖2

a,α −λτ
νa1

∫ T

0
|u(x)|νdx+λa2|α|1→−∞, τ →+∞.

Thus condition [38, (I2), Theorem 2.2] is satisfied. Therefore, Jλ satisfies the geometry of mountain
pass. Moreover, Jλ satisfies the (PS)-condition. Indeed, assume that {un}n∈N ⊂ X such that {Jλ (un)}n∈N

is bounded and J′
λ
(un)→ 0 as n→+∞. Then, there exists a positive constant c0 such that

|Jλ (un)| ≤ c0, |J′λ (un)| ≤ c0 for alln ∈ N.

Therefore, we infer to deduce from the definition of J′
λ

and the assumption (AR) that

c0 + c1‖un‖ ≥ νJλ (un)− J′
λ
(un)(un)≥

(ν

2
−1
)
‖un‖2

a,α

−λ

∫
Ω

(νF(t,un(t))− f (t,un(t))(un(t)))dt ≥
(ν

2
−1
)
‖un‖2

a,α ,



14 N. BIRANVAND, A. SALARI

for some c1 > 0. Since ν > 2, we find that (un) is bounded. This implies that {un} converges strongly
to u in Eα . Consequently, Jλ satisfies (PS)-condition. Hence, by the classical theorem of Ambrosetti and
Rabinowitz [41, Theorem 5.8], we establish a critical point u2 of Jλ such that Jλ (u2) > Jλ (u1). Since
g(0) 6= 0, u1 and u2 are two distinct non-trivial classical solutions of (Dλ ) . The proof is completed. �

Remark 3.13. The non-triviality of the second solution ensured by Theorem 3.12 can be achieved also
in the case g(0) = 0 requiring the extra conditions at zero

limsup
ξ→0+

F(t,ξ )
|ξ |2

=+∞ and liminf
ξ→0+

F(t,ξ )
|ξ |2

>−∞. (3.15)

Indeed, let 0 < λ̄ < λ ∗, where λ ∗ = C1
k2 supγ>0

γ2

F(t,γ) . Then there exists γ̄ > 0 such that C1λ̄

k2 < γ̄ p

F(t,γ) . Let

Φ and Ψ be as given in (3.5) and (3.6), respectively. Due to Theorem 3.12, for every λ ∈ (0, λ̄ ), there
exists a critical point of Jλ = Φ−λΨ such that uλ ∈Φ−1(−∞,rλ ), where rλ := γ̄2

p . In particular, uλ is a
global minimum of the restriction of Jλ to Φ−1(−∞,rλ ). We will prove that uλ cannot be trivial. Let us
show that

limsup
‖u‖→0+

Ψ(u)
Φ(u)

= +∞. (3.16)

In view of (3.15), we can consider a sequence {ξn} ⊂ R+ converging to zero and two constants ι ,κ

(with ι > 0) such that limn→+∞
F(t,ξn)
|ξn|p =+∞ and F(t,ξ )≥ κ|ξ |α p, for every ξ ∈ [0, ι ]. We consider a set

F ⊂ B of positive measure and a function v ∈ Eα such that

(k1) v(t) ∈ [0,1] for every t ∈ [0,T ];
(k2) v(t) = 1 for every t ∈F .

Hence, fix N > 0 and consider a real positive number η with

N <
2ηmeas(F )+2κ

∫
R\F |v(t)|2dt

‖v‖2
a,α

.

Then there is n0 ∈ N such that ξn < ι and F(t,ξn)≥ η |ξn|2, for every n > n0. Now, for every n > n0, by
the properties of the function v (that is, 0≤ ξnv(t)< ι for n large enough), one has

Ψ(ξnv)
Φ(ξnv)

=

∫
F F(t,ξn)dt +

∫
[0,T ]\F F(t,ξnv(t))dt

Φ(ξnv)

>
2ηmeas(F )+2κ

∫
R\F |v(t)|2dt

‖v‖2
a,α

> N.

Since N could be arbitrarily large, we get limn→∞
Ψ(ξnv)
Φ(ξnv) = +∞, from which (3.16) clearly follows. So,

there exists a sequence {ωn} ⊂ X strongly converging to zero such that, for n large enough, ωn ∈
Φ−1(−∞,rλ ) and

Jλ (ωn) = Φ(ωn)−λΨ(ωn)< 0.

Since uλ is a global minimum of the restriction of Jλ to Φ−1(−∞,rλ ), we obtain Jλ (uλ )< 0, so that uλ

is not trivial.

Below, we present one application of Theorem 3.12 as follows.
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Example 3.14. Let n = 1, α = 3
4 , T = π , a(t) = et for all t ∈ [0,π], I1(x) =

Γ2( 3
4 )

2 ln(1+ x2) for all

x ∈ R, f (t,x) = t(1+ x6) for all (t,x) ∈ [0,π]×R. Thus L1 =
Γ2( 3

4 )
4 , k = 2√

2Γ( 3
4 )

and C1 =
1
4 . Moreover,

f (0) = 1 6= 0, limξ→0+
f (ξ )
ξ p−1 = limξ→0+

1+ξ 6

ξ 2 =+∞ and taking into account that

lim
|ξ |→+∞

ξ f (ξ )
F(ξ )

= lim
|ξ |→+∞

ξ +ξ 7

ξ + 1
7 ξ 7

= 7 > 3 = p,

by choosing ν = 7 > 3 = p, there exist ρ > 1 such that the assumption (AR) in Theorem 3.12 is fulfilled
for all |ξ | > ρ . Hence, by applying Theorem 3.12 and Remark 3.2, for every λ > 0, (Dλ ) in this case
possesses at least two nontrivial classical solutions.

Finally, as a consequence of Theorems 3.3 and 3.4, we can obtain the following existence result of
three solutions.

Theorem 3.15. Assume that g(0) 6= 0 and there exist four positive constants γ , σ , γ̄ and σ̄ with γ̄ < σ̄`≤
σ < γ such that

∫ T
0 sup|ξ |≤γ F(t,ξ )dt <

∫ 3T
4

T
4

F(t,σ)dt and
∫ T

0 sup|ξ |≤γ̄ F(t,ξ )dt <
∫ 3T

4
T
4

F(t, σ̄)dt hold, and

∫ T
0 sup|ξ |≤γ F(t,ξ )dt

γ2 <

∫ T
0 sup|ξ |≤γ F(t,ξ )dt−

∫ 3T
4

T
4

F(t,σ)dt

γ2− `2σ2 (3.17)

is satisfied. Then, for each

λ ∈ Λ =
(

max
{

λ̃ ,
γ2− `2σ2∫ T

0 sup|ξ |≤γ F(t,ξ )dt−
∫ 3T

4
T
4

F(t,σ)dt

}
,

γ2∫ T
0 sup|ξ |≤γ F(t,ξ )dt

)
,

problem (Dλ ) possesses at least three classical solutions u0,λ , ū0,λ and ũ0,λ such that ‖u0,λ‖ < γ

C1
and

‖ū0,λ‖> γ̄

C2
,

Proof. First, in view of (3.17), we have Λ 6= /0. Next, we fix λ ∈ Λ. Employing Theorem 3.3, there
is a positive classical solution u0,λ such that ‖u0,λ‖ < γ

C1
, which is a local minimum for the associated

functional Jλ , while Theorem 3.4 ensures a weak solution ū0,λ such that ‖ū0,λ‖ > γ̄

C2
, which is a local

minimum for Jλ . Arguing as in the proof of Theorem 3.1, we observe that Jλ is coercive. Then it satisfies
the (PS)-condition. Hence, the conclusion follows from the mountain pass theorem as given by Pucci
and Serrin [42]. �
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