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Abstract. The purpose of this paper is to introduce a hybrid descent iterative algorithm for solving a split variational inclusion
problem and a fixed point problem of a strict pseudocontraction mapping. We establish a strong convergence theorem of
common solutions of the two problems in the framework of Hilbert spaces without any compact assumptions on any mapping.
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1. INTRODUCTION

Throughout the paper unless otherwise stated, let H1 and H2 be two real Hilbert spaces endowed with
inner products and induced norms denoted by 〈·, ·〉 and ‖·‖, respectively, while H refers to as any of these
spaces. Let D be a nonempty closed and convex subset of H and Let Pro jH

D be the metric projection onto
D. A very common problem in diverse areas of mathematics and physical science consists of trying
to find a ”solution” satisfying certain ”constraints”. This problem is referred to as a convex feasibility
problem, which is to find a common element in a family of nonempty closed and convex subsets of a
Hilbert space.

Let C be a nonempty closed and convex subset of H1 and let Q be a nonempty closed and convex
subset of H2. In 1994, Censor and Elfving [1] first introduced the following split feasibility problem for
modelling inverse problems formulated as follows:

Find x∗ ∈C such that Ax∗ ∈ Q, (1.1)

where A : H1→H2 is a bounded linear mapping. This problem can also be viewed as a convex feasibility
problem. There are a number of significant applications of the split feasibility problem in intensity-
modulated radiation therapy, signal processing, image reconstruction and so on. An efficient algorithm
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for solving (1.1) is the Byrne’s CQ algorithm. For any x0 ∈ H1, the CQ algorithm generates an iterative
sequence as

xn+1 = Pro jH1
C (I + γA∗(Pro jH2

Q − I)A)xn,

where 0 < γ < 2/‖A‖2. It is known that the CQ algorithm converges weakly to a solution of problem
(1.1) if such a solution exists. To guarantee the strong convergence of the sequence, a number of regu-
larization methods have been investigated to solve the split feasibility problem and their related convex
optimization problems recently; see [2]-[10] and the references therein.

Let M and N be two maximal monotone operators on H1 and H2, respectively. In this paper, we study
the following split variational inclusion problem: Find x∗ ∈ H1 such that

0 ∈M(x∗), (1.2)

and such that

y∗ = Ax∗ ∈ H2 solves 0 ∈ N(y∗). (1.3)

In this paper, we use SFP(M,N) to denote the solution set of the split variational inclusion problem.
Recently, the above split variational inclusion problem has been introduced and studied based on Mann-
like methods by many authors; see [11, 12, 13, 14, 15] and the references therein. In this paper, we
investigate the split variational inclusion problem via a hybrid descent iterative algorithm in Hilbert
spaces. Strong convergence theorems are established without any compact assumptions on mappings.
The main results presented in this paper partly improve the results in [6, 8, 11, 12]. The organization
of this paper is as follows. In Section 2, we provide the necessary mathematical preliminaries. The last
section is devoted to the strong convergence analysis of the hybrid descent iterative algorithm. Some
subresults are derived as corollaries of the main results.

2. PRELIMINARIES

Let T be a mapping on D. The fixed-point set of T is denoted by Fix(T ). Recall that T is said to be
nonexpansive iff

‖T x−Ty‖ ≤ ‖x− y‖, ∀x,y ∈ D.

T is said to be quasi-nonexpansive iff Fix(T ) 6= /0 and

‖x−Ty‖ ≤ ‖x− y‖, ∀x ∈ Fix(T ),y ∈ D.

It is known that every nonexpansive mapping satisfies the following properties

〈T x−Ty,(y−Ty)− (x−T x)〉 ≤ 1
2
‖(x−T x)− (y−Ty)‖2, ∀x,y ∈ D.

In particular, every quasi-nonexpansive mapping satisfies the following properties

〈x−Ty,(y−Ty)〉 ≤ 1
2
‖y−Ty‖2, ∀x ∈ Fix(T ),y ∈ D. (2.1)

Recall that T is said to be firmly nonexpansive iff

‖T x−Ty‖2 ≤ 〈T x−Ty,x− y〉, ∀x,y ∈ D.

Recall that T is said to be κ-strictly pseudocontractive iff there is a real number κ ∈ [0,1) such that

‖T x−Ty‖2 ≤ ‖x− y‖+κ‖(I−T )x− (I−T )‖2, ∀x,y ∈ D.
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The class of κ-strictly pseudocontractive mappings was first introduced and studied by Browder and
Petryshy [16] in the framework of Hilbert spaces. Since then, many authors have studied fixed points of
κ-strictly pseudocontractive mappings via different methods and techniques; see [17, 18, 19, 20, 21] and
the references therein.

Recall that a mapping M : H→ 2H is said to be monotone iff, for all x,y ∈ H1, u ∈Mx and v ∈My

〈x− y,u− v〉 ≥ 0.

It is said to be maximal iff the Graph(M) is not properly contained in the graph of any other monotone
mapping. It is known that a monotone mapping M is maximal iff for (x,u) ∈ H×H, 〈x− y,u− v〉 ≥ 0,
for every (y,v) ∈Graph(M) implies that u ∈M(x). The resolvent mapping, JM

r : H→H associated with
M, is defined by

JM
r x = (I + rM)−1(x),∀x ∈ H,

where r > 0 is some real number and I stands for identity operator on H. It is known that JM
r is single-

valued, nonexpansive and firmly nonexpansive. The resolve operator palys an important role in many
convex optimization problem; see [3, 8, 9, 13, 15] and the references therein.

Lemma 2.1. [16] Let D be a nonempty convex and closed subset of a Hilbert space H. Let T be a κ-strict
pseudocontraction and let {βn} be a sequence in (0,1). Define a mapping S by Sx = (1−βn)T x+βnx,
∀x ∈ D. If β ∈ [κ,1), then S is nonexpansive and Fix(S) = Fix(T ).

Lemma 2.2. [22] Let H be a real Hilbert space and let M be a maximal operator. For λ > 0 and µ > 0
we have

(I +µA)−1
(

µ

λ
x+
(

1− µ

λ

)
(I +λM)−1x

)
= (I +λM)−1x,∀x ∈ H.

Lemma 2.3. [23] Let {αn} and {βn} be sequences of real numbers such that αn ∈ [0,1] ∑
∞
n=1 αn = ∞

and limsupn→∞ βn ≤ 0. Let {λn} be a sequence of nonnegative real numbers such that λn+1 ≤ αnβn +

(1−αn)λn. Then limn→∞ λn = 0.

Lemma 2.4. [24] Let H be a Hilbert space and let F is a η-strongly monotone, L -Lipschitz continuous
mapping on H. Define a mapping T α : H→H by T αx = (I−µαF)x, ∀x∈H1, where α is a real number
in (0,1). If 0< µ ∈ (0, 2η

L 2 ), then T α is a contraction, that is, ‖T αx−T αy‖≤ (1−ατ)‖x−y‖, ∀x,y∈H,

where τ = 1−
√

1−µ(2η−µL 2) ∈ (0,1].

Lemma 2.5. [16] Let D be a nonempty convex and closed subset of a Hilbert space H. Let T be a κ-strict
pseudocontraction with fixed points. Then I−T , where I is the identity mapping, is demiclosed on any
point in D.

3. MAIN RESULTS

Theorem 3.1. Let C be a nonempty closed and convex subset of a Hilbert space H1 and let Q be a
nonempty closed and convex subset of a real Hilbert space H2. Let T be a κ-strictly pseudocontractive
mapping on H1 with fixed points. Let A : H1→H2 be a bounded linear operator and let A∗ be the adjoint
operator of A. Let F : H1→ H1 be a L -Lipschitz continuous and τ-strongly monotone mapping. Let M
be a maximal monotone mapping on H1 and let N be a maximal monotone mapping on H2. Assume that
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Fix(T )∩SFP(M,N) 6= /0. Let γ be a positive real number. Let {αn} and {βn} be sequences in (0,1) and
let {rn} be a positive sequence. Let {xn} be a sequence generated by the following process: x1 ∈H1 andxn+1 = Tβnyn−µαnFTβnyn,

yn = JM
rn
(xn + γA∗(JN

rn
− I)Axn), n≥ 1,

where Tβn = (1− βn)T + βnI. Assume that limn→∞ αn = 0, ∑
∞
n=1 αn = ∞ and ∑

∞
n=1 |αn+1−αn| < ∞,

γ ∈ (0, 1
‖A‖2 ), µ is a real number in (0, 2τ

L 2 ), {rn} is a real number sequence such that liminfn→∞ rn > 0,

∑
∞
n=1 |rn+1−rn|< ∞, {βn} is a real number sequence in [κ,1) such that ∑

∞
n=1 |βn+1−βn|< ∞. Then {xn}

converge strongly to x̄ ∈ SFP(M,N)∩Fix(T ), which is the unique solution of the following variational
inequality

〈Fx̄, x̄− y〉 ≤ 0, ∀y ∈ SFP(M,N)∩Fix(T ). (3.1)

Proof. Since the set of common solutions is nonempty, we can fix a point in SFP(M,N)∩Fix(T ), say,
x. It follows that Ax = JN

rn
Ax, x = JM

rn
x and x = T x. Note that

‖yn− x‖2 = ‖JM
rn

x− JM
rn
(xn + γA∗(JN

rn
− I)Axn)‖2

≤ ‖x− xn− γA∗(JN
rn
− I)Axn‖2

≤ ‖x− xn‖2 +2γ〈A∗(JN
rn
− I)Axn,xn− x〉+ γ

2‖A‖2‖(JN
rn
− I)Axn‖2

≤ ‖x− xn‖2 +2γ〈A(xn− x)+(JN
rn
− I)Axn,(JN

rn
− I)Axn〉

−2γ‖(JN
rn
− I)Axn‖2 + γ

2‖A‖2‖(JN
rn
− I)Axn‖2.

Since both JN
rn

and JM
rn

are nonexpansive, we find from (2.1) that

2γ〈A(xn− x)+(JN
rn
− I)Axn,(JN

rn
− I)Axn〉 ≤ γ‖(JN

rn
− I)Axn‖2

Hence, one has

‖yn− x‖2 ≤ γ(γ‖A‖2−1)‖(JN
rn
− I)Axn‖2 +‖x− xn‖2. (3.2)

From the restriction on constant γ , one reaches that ‖yn− x‖ ≤ ‖x− xn‖. Using Lemma 2.1, one finds
that Tβn is nonexpansvie and Fix(T ) = Fix(Tβn) for each n≥ 1. So,

‖Tβnyn− x‖ ≤ ‖yn− x‖ ≤ ‖x− xn‖.

This in turn implies that

‖xn+1− x‖ ≤ µαn‖Fx‖+‖(I−µαnF)Tβnyn− (I−µαnF)x‖

≤ µαn‖Fx‖+(1− ταn)‖Tβnyn− x‖

≤ µαn‖Fx‖+(1− ταn)‖xn− x‖

≤ (1− ταn)‖xn− x‖+ ταn
µ‖Fx‖

τ

≤max{µ‖Fx‖
τ

,‖xn− x‖}

≤ · · ·

≤max{µ‖Fx‖
τ

,‖x1− x‖}.
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This proves that {xn} is bounded. It is easy to see that {yn} is also bounded. Note that

‖yn− yn+1‖ ≤ ‖JM
rn
(xn + γA∗(JN

rn
− I)Axn)− JM

rn+1
(xn+1 + γA∗(JN

rn+1
− I)Axn+1)‖

≤ ‖JM
rn
(xn + γA∗(JN

rn
− I)Axn)− JM

rn
(xn+1 + γA∗(JN

rn+1
− I)Axn+1)‖

+‖JM
rn
(xn+1 + γA∗(JN

rn+1
− I)Axn+1)− JM

rn+1
(xn+1 + γA∗(JN

rn+1
− I)Axn+1)‖

≤ ‖(xn + γA∗(JN
rn
− I)Axn)− (xn+1 + γA∗(JN

rn+1
− I)Axn+1)‖

+‖JM
rn
(xn+1 + γA∗(JN

rn+1
− I)Axn+1)− JM

rn+1
(xn+1 + γA∗(JN

rn+1
− I)Axn+1)‖.

(3.3)

Using Lemma 2.2, we see that

‖JM
rn
(xn+1 + γA∗(JN

rn+1
− I)Axn+1)− JM

rn+1
(xn+1 + γA∗(JN

rn+1
− I)Axn+1)‖

= ‖JM
rn

( rn

rn+1
(xn+1 + γA∗(JN

rn+1
− I)Axn+1)+(1− rn

rn+1
)JM

rn+1
(xn+1 + γA∗(JN

rn+1
− I)Axn+1)

)
− JM

rn
(xn+1 + γA∗(JN

rn+1
− I)Axn+1)‖

≤ ‖
( rn

rn+1
(xn+1 + γA∗(JN

rn+1
− I)Axn+1)+(1− rn

rn+1
)JM

rn+1
(xn+1 + γA∗(JN

rn+1
− I)Axn+1)

)
− (xn+1 + γA∗(JN

rn+1
− I)Axn+1)‖

≤ |rn+1− rn|
rn+1

‖JM
rn+1

(xn+1 + γA∗(JN
rn+1
− I)Axn+1)

)
− (xn+1 + γA∗(JN

rn+1
− I)Axn+1)‖.

(3.4)

Using Lemma 2.2 again, we also have

‖(xn + γA∗(JN
rn
− I)Axn)− (xn+1 + γA∗(JN

rn+1
− I)Axn+1)‖

= ‖xn− xn+1 + γA∗
(
(JN

rn
− I)Axn− (JN

rn+1
− I)Axn+1

)
‖

≤ ‖xn− xn+1 + γA∗(Axn+1−Axn)‖+‖γA∗
(
JN

rn
Axn− JN

rn+1
Axn+1

)
‖

≤ (1− γ‖A‖2)‖xn− xn+1‖+ γ‖A‖‖JN
rn

Axn− JN
rn

( rn

rn+1
Axn+1 +(1− rn

rn+1
)JN

rn+1
Axn+1

)
‖

≤ (1− γ‖A‖2)‖xn− xn+1‖+ γ‖A‖
( |rn+1− rn|

rn+1
‖JN

rn+1
(Axn+1−Axn+1)‖+‖Axn+1−Axn‖

)
≤ ‖xn− xn+1‖+

γ‖A‖|rn+1− rn|
rn+1

‖JN
rn+1

(Axn+1−Axn+1)‖.

(3.5)

From (3.3), (3.4) and (3.5), we see that

‖yn− yn+1‖

≤ ‖xn− xn+1‖+
γ‖A‖|rn+1− rn|

rn+1
‖JN

rn+1
(Axn+1−Axn+1)‖

+
|rn+1− rn|

rn+1
‖JM

rn+1
(xn+1 + γA∗(JN

rn+1
− I)Axn+1)

)
− (xn+1 + γA∗(JN

rn+1
− I)Axn+1)‖.

(3.6)



6 Y. YANG, Q. YUAN

Hence, one has

‖Tβnyn−Tβn+1yn+1‖

≤ ‖Tβnyn−Tβnyn+1‖+‖Tβnyn+1−Tβn+1yn+1‖

≤ ‖yn− yn+1‖+‖Tβnyn+1−Tβn+1yn+1‖

≤ ‖yn− yn+1‖+ |βn+1−βn|‖Tyn+1− yn+1‖

≤ ‖xn− xn+1‖+
γ‖A‖|rn+1− rn|

rn+1
‖JN

rn+1
(Axn+1−Axn+1)‖

+
|rn+1− rn|

rn+1
‖JM

rn+1
(xn+1 + γA∗(JN

rn+1
− I)Axn+1)

)
− (xn+1 + γA∗(JN

rn+1
− I)Axn+1)‖

+ |βn+1−βn|‖Tyn+1− yn+1‖.

(3.7)

On the other hand, one has

‖xn+2− xn+1‖ ≤ ‖(I−µαn+1F)Tβn+1yn+1− (I−µαn+1F)Tβnyn‖

+‖(I−µαn+1F)Tβnyn− (I−µαnF)Tβnyn‖

≤ (1− ταn+1)‖Tβn+1yn+1−Tβnyn‖+µ|αn+1−αn|‖FTβnyn‖.

(3.8)

Combing (3.7) with (3.8), one arrives at

‖xn+2− xn+1‖ ≤ µ|αn+1−αn|‖FTβnyn‖+(1− ταn+1)‖xn− xn+1‖

+
γ‖A‖|rn+1− rn|

rn+1
‖JN

rn+1
(Axn+1−Axn+1)‖

+
|rn+1− rn|

rn+1
‖JM

rn+1
(xn+1 + γA∗(JN

rn+1
− I)Axn+1)

)
− (xn+1 + γA∗(JN

rn+1
− I)Axn+1)‖

+ |βn+1−βn|‖Tyn+1− yn+1‖.
(3.9)

An application of Lemma 2.3 to (3.9) yields that

lim
n→∞
‖xn+1− xn‖= 0. (3.10)

Since JN
rn

is firmly nonexpansive, we obtain from (2.1) that

‖yn− x‖2

≤ 〈yn− x,xn + γA∗(JN
rn
− I)Axn− x〉

=
1
2
{‖yn− x‖2−‖xn + γA∗(JN

rn
− I)Axn− yn‖2

+‖xn− x‖2 +2γ〈xn− x,A∗(JN
rn
− I)Axn〉+ γ

2‖A∗(JN
rn
− I)Axn‖2}

≤ 1
2
{‖yn− x‖2− (‖xn− yn‖2 +2γ〈xn− yn,A∗(JN

rn
− I)Axn〉+‖γA∗(JN

rn
− I)Axn‖2)

+‖xn− x‖2 +2γ(〈JN
rn

Axn−Ax,(JN
rn
− I)Axn〉−‖(JN

rn
− I)Axn‖2)+ γ

2‖A‖2‖(JN
rn
− I)Axn‖2}

≤ 1
2
{‖xn− x‖2 + γ(γ‖A‖2−1)‖(JN

rn
− I)Axn‖2 +‖yn− x‖2−‖xn− yn‖2

+2γ‖A(xn− yn)‖‖(JN
rn
− I)Axn‖−‖γnA∗(JN

rn
− I)Axn‖2)}

≤ 1
2
{‖yn− x‖2 +‖xn− x‖2 +2γ‖A‖‖xn− yn‖‖(JN

rn
− I)Axn‖−‖xn− yn‖2}.
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It follows that

‖yn− x‖2 ≤ ‖xn− x‖2 +2γ‖A‖‖xn− yn‖‖(JN
rn
− I)Axn‖−‖xn− yn‖2. (3.11)

This implies that

‖xn+1− x‖2 = ‖Tβnyn− x−µαnFTβnyn‖2

≤ ‖Tβnyn− x‖2−2µαn〈FTβnyn,xn+1− x〉

≤ ‖yn− x‖2 +2µαn‖FTβnyn‖‖xn+1− x‖

≤ ‖xn− x‖2 +2γ‖A‖‖xn− yn‖‖(JN
rn
− I)Axn‖−‖xn− yn‖2 +2µαn‖FTβnyn‖‖xn+1− x‖.

Thus,

‖xn− yn‖2 ≤ ‖xn− x‖2−‖xn+1− x‖2 +2γ‖A‖‖xn− yn‖‖(JN
rn
− I)Axn‖+2µαn‖FTβnyn‖‖xn+1− x‖

≤ (‖xn− x‖+‖xn+1− x‖)‖xn− xn+1‖+2γ‖A‖‖xn− yn‖‖(JN
rn
− I)Axn‖

+2µαn‖FTβnyn‖‖xn+1− x‖.
(3.12)

From Lemmas 2.1 and 2.4, we find from (3.2) that

‖xn+1− x‖2 = ‖(I−µαnF)Tβnyn− (I−µαnF)x‖2 +µ
2
α

2
n‖Fx‖2

−2µαn〈(I−µαnF)Tβnyn− (I−µαnF)x,Fx〉

= ‖(I−µαnF)Tβnyn− (I−µαnF)x‖2−µ
2
α

2
n‖Fx‖2

−2µαn〈(I−µαnF)Tβnyn− x,Fx〉

≤ (1− ταn)
2‖Tβnyn−Tβnx‖2−2µαn〈(I−µαnF)Tβnyn− x,Fx〉

≤ (1− ταn)
2‖yn− x‖2−2µαn〈(I−µαnF)Tβnyn− x,Fx〉

≤ (1− ταn)
2(‖xn− x‖2− γn(1− γ‖A‖2)‖(JN

rn
− I)Axn‖2)

−2µαn〈xn+1− x,Fx〉

≤ ‖xn− x‖2−2µαn‖xn+1− x‖‖Fx‖− (1− ταn)
2
γ(1− γ‖A‖2)‖(JN

rn
− I)Axn‖2.

It follows that
γ(1− γ‖A‖2)(1− ταn)

2‖(JN
rn
− I)Axn‖2

≤ ‖xn− x‖2−‖xn+1− x‖2 +2µαn‖xn+1− x‖‖Fx‖

≤ ‖xn− xn+1‖(‖xn− x‖+‖xn+1 + x‖)+2µαn‖xn+1− x‖‖Fx‖.

Hence,

lim
n→∞
‖JN

rn
Axn−Axn‖= 0. (3.13)

Using (3.12) and (3.13), one arrives at

lim
n→∞
‖xn− yn‖= 0. (3.14)

Since Tβnyn− yn = (1−βn)(Tyn− yn), one obtains

lim
n→∞
‖Tyn− yn‖= 0. (3.15)
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Since F is strongly monotone and Lipschitz continuous, we next use x̄ to denote the unique solution of
variational inequality (3.1). Note that

〈Fx̄, x̄− xn+1〉= 〈Fx̄, x̄− xn〉+ 〈Fx̄,xn− xn+1〉. (3.16)

Since {xn} is a bounded sequence, there exists a subsequence {xnk} of {xn} such that xnk ⇀ x∗ as k→∞.
Next, we show that x∗ is the common solution. From (3.15), we see from Lemma 2.5 that x∗ is a fixed

point of T . On the other hand, one has

xn− yn + γA∗(JN
rn

Axn−Axn)

γ
∈Myn

Note that ynk ⇀ x∗ as k→ ∞. It follows from (3.13) and (3.14) that 0 ∈ Bx∗. Since A is a linear bounded
operator, we find that Axnk ⇀ Ax∗ as k→ ∞. Using Lemma 2.2, we find that

‖JN
rn

Axn− JN
r Axn‖= ‖JN

r
( r

rn
Axn +(1− r

rn
)JN

rn
Axn
)
− JN

r Axn‖

≤ ‖ r
rn

Axn +(1− r
rn
)JN

rn
Axn−Axn‖

≤ |rn− r|
r
‖JN

rn
Axn−Axn‖,

(3.17)

where r is some positive real number. From (3.13), one obtains that ‖JN
rn

Axn−JN
r Axn‖→∞ as n→∞. In

view of

‖JN
r Axn−Axn‖ ≤ ‖JN

r Axn− JN
rn

Axn‖+‖JN
rn

Axn−Axn‖,

we find that ‖JN
r Axn−Axn‖ → ∞ as n→ ∞. Since JN

r is nonexpansive, we find that Ax∗ ∈ Fix(JN
r ), that

is, 0 ∈ NAx∗. This proves that x ∈ SFP(M,N)∩Fix(T ). This shows from (3.16) that

limsup
n→∞

〈Fx̄, x̄− xn+1〉 ≤ 0.

Finally, we show that {xn} converges strongly to x̄.

‖xn+1− x̄‖2 = ‖(I−µαnF)Tβnyn− (I−µαnF)x̄−µαnFx̄‖2

≤ ‖(I−µαnF)Tβnyn− (I−µαnF)x̄‖2−2µαn〈Fx̄,xn+1− x̄〉

≤ (1− ταn)
2‖Tβnyn− x̄‖2−2µαn〈Fx̄,xn+1− x̄〉

≤ (1− ταn)
2‖yn− x̄‖2−2µαn〈Fx̄,xn+1− x̄〉

≤ (1− ταn)
2‖xn− x̄‖2−2µαn〈Fx̄,xn+1− x̄〉

≤ (1−2ταn)‖xn− x̄‖2 +2αnµ〈Fx̄, x̄− xn+1〉+ τ
2
α

2
n‖xn− x̄‖2.

Using Lemma 2.3, we get that ‖xn− x̄‖→ 0. This completes the proof. �

From Theorem 3.1, the following results are not hard to derived easily.

Corollary 3.2. Let C be a nonempty closed and convex subset of a Hilbert space H1 and let Q be a
nonempty closed and convex subset of a real Hilbert space H2. Let T be a nonexpansive mapping on
H1 with fixed points. Let A : H1→ H2 be a bounded linear operator and let A∗ be the adjoint operator
of A. Let F : H1 → H1 be a L -Lipschitz continuous and τ-strongly monotone mapping. Let M be a
maximal monotone mapping on H1 and let N be a maximal monotone mapping on H2. Assume that
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Fix(T )∩SFP(M,N) 6= /0. Let γ be a positive real number. Let {αn} be a sequence in (0,1) and let {rn}
be a positive sequence. Let {xn} be a sequence generated by the following process: x1 ∈ H1 andxn+1 = Tyn−µαnFTyn,

yn = JM
rn
(xn + γA∗(JN

rn
− I)Axn),

Assume that limn→∞ αn = 0, ∑
∞
n=1 αn = ∞ and ∑

∞
n=1 |αn+1−αn| < ∞, γ ∈ (0, 1

‖A‖2 ), µ is a real number

in (0, 2τ

L 2 ), {rn} is a real number sequence such that liminfn→∞ rn > 0, ∑
∞
n=1 |rn+1− rn|< ∞. Then {xn}

converge strongly to x̄ ∈ SFP(M,N)∩Fix(T ), which is the unique solution of the following variational
inequality

〈Fx̄, x̄− y〉 ≤ 0, ∀y ∈ SFP(M,N)∩Fix(T ).

Corollary 3.3. Let C be a nonempty closed and convex subset of a Hilbert space H1 and let Q be a
nonempty closed and convex subset of a real Hilbert space H2. Let A : H1 → H2 be a bounded linear
operator and let A∗ be the adjoint operator of A. Let F : H1 → H1 be a L -Lipschitz continuous and
τ-strongly monotone mapping. Let M be a maximal monotone mapping on H1 and let N be a maximal
monotone mapping on H2. Assume that SFP(M,N) 6= /0. Let γ be a positive real number. Let {αn}
be a sequence in (0,1) and let {rn} be a positive sequence. Let {xn} be a sequence generated by the
following process: x1 ∈ H1, xn+1 = yn− µαnFyn, where yn = JM

rn
(xn + γA∗(JN

rn
− I)Axn). Assume that

limn→∞ αn = 0, ∑
∞
n=1 αn = ∞ and ∑

∞
n=1 |αn+1−αn|< ∞, γ ∈ (0, 1

‖A‖2 ), µ is a real number in (0, 2τ

L 2 ), {rn}
is a real number sequence such that liminfn→∞ rn > 0, ∑

∞
n=1 |rn+1−rn|< ∞. Then {xn} converge strongly

to x̄ ∈ SFP(M,N), which is the unique solution of the following variational inequality 〈Fx̄, x̄− y〉 ≤ 0,
∀y ∈ SFP(M,N).
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