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Abstract. In this paper, we investigate the existence of a periodic solution to the Cauchy problem for a class of impulsive
differential equations with infinite delay in Banach spaces under general fading memory phase spaces satisfying a basic axiom.
It is shown that the related Poincaré operator given by P(φ) = uT (φ) (i.e., T units along the unique solution u(φ) determined by
the initial function φ ) is a condensing operator by virtue of the Kuratowski measure of non-compactness. Based on this result,
we derive the existence of a periodic solution to the Cauchy problem with help of the boundedness of the solutions and three-set
fixed point theorems. The main result in this paper extends the previous results for equations without impulsive conditions or
in special Cg phase spaces. Finally, we give a remark on future developments of the related impulsive problems for fractional
differential equations with infinite delay in Banach spaces.
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equation.
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1. INTRODUCTION

In this paper, we investigate the existence of T -periodic solutions to the following Cauchy problem
for an impulsive differential equation with infinite delay in a Banach space (X , ‖ · ‖),

u′(t)+A(t)u(t) = f (t,u(t),ut), t > 0, t 6= ti, (1.1)

u(s) = φ(s), s≤ 0, (1.2)

∆u(ti) = Ii(u(ti)), i = 1,2, · · · , 0 < t1 < t2 < · · ·<+∞, (1.3)
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where A(t) and f (t,x,y) are T –periodic in t, the operator A(t) is unbounded,

ut(s) = u(t + s), s≤ 0,

∆u(ti) = u(t+i )−u(t−i ),

and Ii : X → X (i = 1,2, · · ·) are appropriate functions.
As usual, we consider the corresponding Poincaré operator ([1]) defined by

P(φ) = uT (φ),

which maps an initial function φ along the unique mild solution u(φ) to problem (1.1)–(1.2) by T -units.
We will present conditions and find methods to prove that these conditions ensure the existence of fixed
points of the Poincaré operator. Clearly, such fixed point yields the T -periodic mild solutions to problem
(1.1)–(1.2).

As noted in [2, 3, 4, 5, 6, 7, 8, 9, 10], the study of problem (1.1)–(1.2) with infinite delay in general
Banach spaces is difficult because the related Poincaré operator may not be compact. Therefore, fixed
point theorems requiring compactness are not applicable to equations with infinite delay in general Ba-
nach spaces. Now, the combination of impulsive condition (1.3) makes problem (1.1)–(1.3) even more
difficult.

These difficulties are overcome in [7] for Cg (see [11] for more information on the space), where
problem (1.1)–(1.3) are treated in a “weighted” Banach phase space Cg defined by

Cg =
{

φ : φ ∈ PC((−∞,0],X) and sup
s≤0

‖φ(s)‖
g(s)

<+∞

}
, (1.4)

which is equipped with the norm

|φ |g = sup
s≤0

‖φ(s)‖
g(s)

, φ ∈Cg, (1.5)

where PC((−∞,0],X) is the space of piecewise continuous functions from (−∞,0] to X , g is a function
on (−∞,0] such that

g(0) = 1, g(−∞) = +∞,

and g is decreasing on (−∞,0]. Then the corresponding Poincaré operator is shown to be condensing with
respect to the Kuratowski’s measure of non-compactness in Cg. Hence, periodic solutions are derived by
virtue of the Sadovskii’s Fixed Point Theorem when solutions of problem (1.1)–(1.3) are locally strictly
bounded.

In this paper, we will extend the results in [5, 6, 7, 9, 10] to problem (1.1)–(1.3) in a “relaxed” fading
memory phase space, which is defined to be a Banach space (P, | · |P) consisting of functions from
(−∞,0] to X that satisfy the following axiom ([2, 7, 11, 12]):

(A1). There exist a positive constant H and locally bounded non-negative continuous functions K(·)
and M(·) on [0,+∞) with the property that if u : (−∞,a)→ X is piecewise continuous on [σ ,a)
with uσ ∈P for some σ < a, then for all t ∈ [σ ,a), ut ∈P , and

H‖u(t)‖ ≤ |ut |P ≤ K(t−σ) sup
σ≤s≤t

‖u(s)‖+M(t−σ)|uσ |P .



PERIODIC SOLUTIONS 3

A fading memory space is called a uniform fading memory space if it satisfies (A1) with K(·)≡ K1 (a
constant) and M(t)→ 0 as t→+∞.

We will first prove that the related Poincaré operator is condensing with respect to the Kuratowski’s
measure of non-compactness in general fading memory phase spaces.

Hence, periodic solutions are derived by using the Sadovskii’s Fixed Point Theorem when solutions
of problem (1.1)–(1.3) are locally strictly bounded. Also, if the phase spaces are uniform fading memory
phase spaces, then by using a fixed point theorem of Hale and Lunel [13], we will make a classical
extension by deriving periodic solutions when solutions of problem (1.1)–(1.3) are bounded and ultimate
bounded. Since Cg is a typical example of uniform fading memory phase spaces (cf. [11]), our results
obtained in this paper extend those in [5, 6, 7, 9, 10] (for equations without impulsive conditions or in
special Cg phase spaces) to problem (1.1)–(1.3) in these quite general fading memory phase spaces. In
this way, we present a very general existence theorem of periodic solutions and related analysis method
for problem (1.1)–(1.3) in general fading memory phase spaces.

2. THE CONDENSENESS OF THE POINCARÉ OPERATOR

For problem (1.1)–(1.3), we make the following assumptions.

Assumption 2.1. For a constant T > 0, f (t +T,x,y) = f (t,x,y),A(t +T ) = A(t), t ≥ 0. f is continuous
in its variables and is locally Lipschitzian in the second and the third variables, and f is bounded for all
(t,x,y), Ii, i = 1,2, · · · , are Lipschitzian and compact. And

0 < t1 < t2 < · · ·< tp < T < tp+1 and tp+k = tk +T, Ip+k = Ik, k ≥ 1.

Assumption 2.2. [14, p.150] For t ∈ [0,T ] one has

(H1). The domain D(A(t)) = D is independent of t and is dense in X .
(H2). For t ≥ 0, the resolvent R(λ ,A(t)) = (λ I−A(t))−1 exists for all λ with Reλ ≤ 0 and is compact,

and there is a constant M independent of λ and t such that

‖R(λ ,A(t))‖ ≤M(|λ |+1)−1, Reλ ≤ 0.

(H3). There exist constants L > 0 and 0 < a≤ 1 such that

‖(A(t)−A(s))A(r)−1‖ ≤ L|t− s|a, s, t,r ∈ [0,T ].

Assumption 2.3. For the fading memory space P satisfying (A1), we assume that M(0)< 1.

Remark 2.4. In Cg, M(0) = 1
2 , see [9]. So, this assumption is satisfied there.

Under the Assumption 2.2, the results in, e.g., Amann [1] and Pazy [14] imply the existence of a
unique evolution system U(t,s), 0≤ s≤ t ≤ T, for problem (1.1).

Let φ ∈P be fixed. We define a mild (in a generalized sense) solution (called solution throughout in
this paper) of problem (1.1)–(1.3) to be a piecewise continuous function u : (−∞,+∞)→ X with points
of discontinuity ti, where u is left continuous and has the right limits, and satisfies u(s) = φ(s), s ≤ 0,
and

u(t) =U(t,0)φ(0)+
∫ t

0
U(t,h) f (h,u(h),uh)dh+ ∑

0<ti<t
U(t, ti)Ii(u(ti)), t ≥ 0. (2.1)
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It is easily seen that mild solutions satisfy impulsive condition (1.3). Similar to [5, 6, 7, 9, 10], to be
able to study fixed points and periodic solutions, we assume that, for each φ ∈P , problem (1.1)-(1.3)
has a unique (mild) solution u(·,φ) existing on (−∞,+∞).

Now, we consider the Poincaré operator P : P →P given by

P(φ) = uT (·,φ), φ ∈P, (2.2)

(i.e.,(Pφ)(s) = uT (s,φ) = u(T + s,φ), s≤ 0),

which maps the initial function φ along the unique solution u(·,φ) by T units.

Definition 2.5. The Kuratowski’s measure of non-compactness (or the α measure) for a bounded set E
of a Banach space Y with norm | · |Y is defined as

α(E) = inf
{

d > 0 : E has a finite cover of diameter < d
}
. (2.3)

Definition 2.6. [13] Suppose that α is Kuratowski’s measure of non-compactness in Banach space Y and
that P : Y → Y is a continuous operator. Then P is said to be a condensing operator if P takes bounded
sets into bounded sets, and α(P(B))< α(B) for every bounded set B of Y with α(B)> 0.

Let D ⊂P and u(φ) be the unique solution with u0(φ) = φ . Then we write

Pl(D) = {ul(φ) : φ ∈D},

P[h,r](D) = {u[h,r](φ) : φ ∈D},

where u[h,r] is the restriction of u on [h,r].
We have from [7] the following result.

Lemma 2.7. Let the Assumptions 2.1 and 2.2 be satisfied, and let D ⊂P be bounded. Then α(P[l,r](D))=

0 for any 0 < l < r ≤ T .

Now, combining the techniques from [5, 7], we have the following result concerning the condenseness
of the Poincaré operator P.

Theorem 2.8. Let the Assumptions 2.1, 2.2, and 2.3 be satisfied. Then the operator P defined by (2.2) is
condensing in P .

Proof. First, we know from the proof of [7] and the Axiom (A1) that P is a continuous operator. It also
implies that P takes bounded sets into bounded sets. Next, we can find from the assumption on function
M(·) in the Assumption 2.3 an ε ∈ (0,1) such that

M(s)≤ ε, s ∈ [0,δ ],

for some δ > 0. Since K(·) and M(·) in the Axiom (A1) are locally bounded, there exist K and M such
that

K(t)≤ K, M(t)≤M, t ∈ [0,T ].

From our assumptions, we see that

U∗ := max
0≤s≤t≤T

|U(t,s)|, (2.4)

f ∗ := max{‖ f (h,u,w)‖ : all (h,u,w)} (2.5)
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are finite numbers. Let 0 < r < 1 and ε > 0 be constants. Then there exists an integer N0 > 1 such that
ε

N0−1(K
U∗

H
+M)< r,

2ε
N0−1KU∗ f ∗

T
N0

< ε,

w0 :=
T
N0

< δ .

(2.6)

From [6, 9], we know that

α(Pt(D)) ≤ K(t−σ)α(P[σ ,t](D))+M(t−σ)α(Pσ (D)), 0≤ σ ≤ t. (2.7)

Hence it follows that from (2.7) and Lemma 2.7 that

α(P(D)) = α(PT (D))

≤ K(T − (T −w0))α(P[T−w0,T ](D))

+M(T − (T −w0))α(PT−w0(D))

= K(w0)α(P[T−w0,T ](D))+M(w0)α(PT−w0(D))

= M(w0)α(PT−w0(D))

≤ εα(PT−w0(D))

≤ ε[K(w0)α(P[T−2w0,T−w0](D))+M(w0)α(PT−2w0(D))]

= εM(w0)α(PT−2w0(D))

≤ ε
2
α(PT−2w0(D))

......

≤ ε
N0−1

α(Pw0(D))

≤ ε
N0−1[K(w0)α(P[0,w0](D))+M(w0)α(D)]. (2.8)

Next, we see from the proof of [7] that

α(P[0,w0](D))≤ U∗

H
α(D)+2U∗ f ∗w0. (2.9)

Using (2.6), (2.8), and (2.9), we obtain

α(P(D)) ≤ ε
N0−1[K(w0)α(P[0,w0](D))+M(w0)α(D)]

≤ ε
N0−1[K(

U∗

H
α(D)+2U∗ f ∗w0)+Mα(D)]

≤ ε
N0−1[ (K

U∗

H
+M)α(D)+2KU∗ f ∗w0]

≤ ε
N0−1(K

U∗

H
+M)α(D)+2ε

N0−1KU∗ f ∗
T
N0

< rα(D)+ ε. (2.10)

Since ε > 0 is arbitrary, we get

α(P(D))≤ rα(D)< α(D).

This completes the proof. �
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3. EXISTENCE OF PERIODIC SOLUTIONS

In this section, we present our existence theorem of periodic solutions to problem (1.1)–(1.3) by
showing the existence of fixed points of the Poincaré operator P defined by (2.2), as it is verified in [7, 9]
that these fixed points give rise to periodic solutions. We first list some known fixed point theorems.

Theorem 3.1. (Sadovskii [15]) Let P be a condensing operator on a Banach space Y . If P(E)⊆ E for
a convex, closed and bounded set E of Y , then P has a fixed point in E.

Theorem 3.2. (Hale and Lunel [13]) Suppose that S0 ⊆ S1 ⊆ S2 are convex bounded subsets of a Banach
space Y , S0 and S2 are closed, and S1 is open in S2. Suppose that P is a condensing operator in Y . If
P j(S1) ⊆ S2, j ≥ 0, and there is a number N(S1) such that Pk(S1) ⊆ S0, k ≥ N(S1), then P has a fixed
point.

Note that the advantage of these fixed point theorems is that the compactness is not required so that we
can try them on infinite delay impulsive evolution equations in general Banach spaces where the related
Poincaré operator may not be a compact operator.

To apply Theorem 3.1, the solutions should be bounded locally; and to apply Theorem 3.2, the solu-
tions should be bounded asymptotically. To make these more precise, we define the following.

Definition 3.3. The solutions of problem (1.1)–(1.3) are said to be locally strictly bounded if there exists
a constant C > 0 such that |φ |P ≤C implies that its solution satisfies ‖u(t,φ)‖ ≤C for t ∈ [0,T ].

Definition 3.4. The solutions of problem (1.1)–(1.3) are said to be bounded if, for each B1 > 0, there is
a B2 > 0 such that |φ |P ≤ B1 and t ≥ 0 imply that its solution satisfies ‖u(t,φ)‖< B2.

Definition 3.5. The solutions of problem (1.1)–(1.3) are said to be ultimate bounded if there is a bound
B > 0 such that, for each B3 > 0, there is a K > 0, such that |φ |P ≤ B3 and t ≥ K imply that its solution
satisfies ‖u(t,φ)‖< B.

Applying Theorem 3.1 with the notion of locally strictly boundedness, we obtain the following result.

Theorem 3.6. Let the Assumptions 2.1, 2.2, and 2.3 be satisfied. Assume that K(T )+M(T )≤ 1, where
K(·) and M(·) are functions on [0,+∞) given in (A1). If the solutions of problem (1.1)–(1.3) are locally
strictly bounded, then problem (1.1)–(1.3) has a T periodic solution.

Proof. Let the operator P be defined by (2.2). Write Q := {φ ∈P : |φ |P ≤C} with C from Definition
3.3. Then Q is convex, closed and bounded in P . Next, for u(·) = u(·,φ) with φ ∈Q, the locally strictly
boundedness implies that ‖u(t)‖ ≤C for t ∈ [0,T ]. Hence, for φ ∈ Q, we have

|P(φ)|P = |uT (φ)|P
≤ K(T ) sup

s∈[0,T ]
‖u(s)‖+M(T )|φ |P

≤ [K(T )+M(T )]C

≤ C. (3.1)

This means that

P(Q)⊂ Q.
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Therefore, Theorem 3.1 tells us that there exists a fixed point for P. It follows from [7, 9] that problem
(1.1)–(1.3) has a T -periodic solution. This ends the proof of the theorem. �

Applying Theorem 3.2 with the notion of bounded and ultimate boundedness, we obtain the following
result.

Theorem 3.7. Let the Assumptions 2.1, 2.2, and 2.3 be satisfied, and let the phase space P be a uniform
fading memory space. If the solutions of problem (1.1)–(1.3) are bounded and ultimate bounded, then
problem (1.1)–(1.3) has a T -periodic solution.

Proof. Let the operator P be defined by (2.2). From [7, 9], we have

Pm(φ) = umT (φ), φ ∈P, m = 0,1,2, · · · . (3.2)

Suppose that B > 0 is the bound in the definition of ultimate boundedness. Then, the boundedness tells
us that there is a B1 > (K1 +1)B such that

{|φ |P ≤ (K1 +1)B, t ≥ 0} implies ‖u(t,φ)‖< B1,

where K1 is from the definition of a uniform fading memory space, and moreover, there is a B2 > B1 such
that

{|φ |P ≤ B1, t ≥ 0} implies ‖u(t,φ)‖< B2.

Since the space is a uniform fading memory space, we see that there exists M such that M(·)≤M. Let

B2 > max{B1, K1B2 +MB1},

and set

S2 := {φ ∈P : |φ |P ≤ B2},
S1 := {φ ∈P : |φ |P < B1},
S0 := {φ ∈P : |φ |P ≤ (K1 +1)B}.

(3.3)

Then, we know that

S0 ⊆ S1 ⊆ S2

are convex bounded subsets of P , S0 and S2 are closed, and S1 = S1 ∩ S2 is open in S2. Clearly, for
φ ∈ S1 and j ≥ 0, we have

|P j
φ |P = |u jT (φ)|P

≤ K( jT ) sup
0≤s≤ jT

‖u(s)‖+M( jT )|u0|P

≤ K( jT ) sup
0≤s≤ jT

‖u(s)‖+M( jT )|φ |P

≤ K1B2 +MB1

≤ B2, (3.4)

which implies that

P j(S1)⊆ S2, j ≥ 0.

Next, we prove that there exists a number N(S1) such that

Pk(S1)⊆ S0 for k ≥ N(S1).
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It follows from the ultimate boundedness that there exists a positive number σ such that

{|φ |P ≤ B1, t ≥ σ} implies ‖u(t,φ)‖< B.

Therefore, we have, for φ ∈ S1 and kT > σ ,

|Pk
φ |P = |ukT (φ)|P

≤ K(kT −σ) sup
σ≤s≤kT

‖u(s)‖+M(kT −σ)|uσ |P

≤ K1B+M(kT −σ)[K(σ) sup
0≤s≤σ

‖u(s)‖+M(σ)|φ |P ]

≤ K1B+M(kT −σ)[K1B2 +MB1]

≤ K1B+M(kT −σ)B2. (3.5)

Thus, as M(t)→ 0 (t → +∞) for the uniform fading memory space, we can find an integer N(S1) such
that

M(kT −σ)B2 < B for k ≥ N(S1).

Hence, for k ≥ N(S1), (3.5) becomes

|Pk
φ |P ≤ K1B+M(kT −σ)B2

≤ (K1 +1)B, (3.6)

which implies

Pk(S1)⊆ S0, k ≥ N(S1).

Consequently, Theorem 3.2 can be used to obtain a fixed point for operator P, which, together with [7, 9],
gives rise to a T -periodic solution of problem (1.1)–(1.3). This completes the proof. �

Next, we remove the boundedness from Theorem 3.7.

Definition 3.8. The solutions of problem (1.1)–(1.3) are said to be locally bounded if for each B1 > 0 and
K > 0, there is a B2 > 0 such that |φ |P ≤ B1 and 0≤ t ≤K imply that its solution satisfies ‖u(t,φ)‖< B2.

Theorem 3.9. ([10]) “Local boundedness and ultimate boundedness” implies “boundedness and ulti-
mate boundedness”.

Theorem 3.10. ([7]) Let the Assumptions 2.1, 2.2, and 2.3 be satisfied. Then the solutions of problem
(1.1)–(1.3) are locally bounded.

Now, combining Theorems 3.7, 3.9, and 3.10, we have the following.

Theorem 3.11. Let the Assumptions 2.1, 2.2, and 2.3 be satisfied, and let the phase space P be a uniform
fading memory space. If the solutions of problem (1.1)–(1.3) are ultimate bounded, then (1.1)–(1.3) has
a T -periodic solution.
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4. CONCLUSIONS AND SOME COMMENTS ON FUTURE STUDY

By virtue of the Kuratowski measure of non-compactness, the properties of fading memory phase
spaces and condensing operators, and the Sadovskii’s fixed point theorem, it is shown that problem (1.1)–
(1.3), concerning impulsive differential equations with infinite delay in Banach spaces (1.1)–(1.3), admits
a periodic solution under some basic assumptions, and this existence theorem for periodic solutions to
problem (1.1)–(1.3) under the setting of the general fading memory phase spaces is a general extension
of the results obtained in [5, 6, 7, 9, 10] (for equations without impulsive conditions or in special Cg

phase spaces).
For the future study, it is meaningful to investigate the corresponding impulsive problem for fractional

differential equations with infinite delay in Banach spaces. Clearly, for problem (1.1)–(1.3), the cor-
responding impulsive problem for fractional differential equations with infinite delay in Banach spaces
could be as follows.

cDα
t u(t)+A(t)u(t) = f (t,u(t),ut), t > 0, t 6= ti, (4.1)

u(s) = φ(s), s≤ 0, (4.2)

∆u(ti) = Ii(u(ti)), i = 1,2, · · · , 0 < t1 < t2 < · · ·<+∞, (4.3)

where cDα
t is the Caputo fractional differential operator of order α ∈ (0, 1) (cf, e.g., [16, 17, 18, 19, 20,

21]).
Define

ψ(t,s) := α

∫ +∞

0
θ tα−1

ξα(θ)exp(−tα
θA(s))dθ ,

where ξα is a probability density function on (0,+∞) such that its Laplace transform is given by∫ +∞

0
e−σx

ξα(σ)dσ =
+∞

∑
j=0

(−x) j

Γ(1+α j)
, 0 < α ≤ 1, x > 0.

ϕ1(t, τ) := [A(t)−A(τ)]ψ(t− τ, τ),

ϕk+1(t, τ) :=
∫ t

τ

ϕk(t, s)ϕ1(s, τ)ds, k = 1,2, · · · ,

ϕ(t, τ) :=
+∞

∑
k=1

ϕk(t, τ),

U(t) := −A(t)A−1(0)−
∫ t

0
ϕ(t,s)A(s)A−1(0)ds.

As showed in [20], under some conditions, one could try to give a definition of mild solutions to problem
(4.1)–(4.3) with the help of these families of operators above. Thus, it is quite possible to obtain similar
results for problem (4.1)–(4.3) as what we have done above for problem (1.1)–(1.3). We would like
to remark here that one should be very careful for dealing with fractional differential problem (4.1)–
(4.3) since the impulsive condition and infinite delay could make things complex. Furthermore, it is
also meaningful to investigate the existence of asymptotically periodic solutions and S-asymptotically
ω-periodic solutions to the corresponding impulsive problem for fractional differential equations based
on [17].
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