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ABDELHAMID BENMEZAÏ1,∗, SOUAD CHENTOUT1, JOHNNY HENDERSON2

1Faculty of Mathematics, USTHB, Algiers, Algeria
2Department of Mathematics, Baylor University, Waco, Texas 76798-7328, USA

Abstract. In this paper, we investigate existence and nonexistence of positive solutions for the α-order, where 2 < α ≤ 3,
nonlinear fractional boundary value problem{

Dα u(t)+ f (t,u(t)) = 0, 0 < t < 1,
u(0) = u′(0) = u′(1) = 0.
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1. INTRODUCTION

The study on the existence of positive solutions to fractional differential equations is important due to
its numerous applications in various areas of physics, chemistry and engineering. Existence results has
attracted much attention recently; see, for example, [1, 2, 3, 4, 5, 6, 7] and the references therein.

In this paper, we investigate the existence and nonexistence of positive solutions for fractional bound-
ary value problems having Carathéodory type nonlinearities. We are concerned in this paper with the
following nonlinear fractional boundary value problem (FBVP for short){

Dαu(t)+ f (t,u(t)) = 0, 0 < t < 1,
u(0) = u′(0) = u′(1) = 0,

(1.1)

where 2 < α ≤ 3 is a real number, Dα is the standard Riemann-Liouville derivative and f : (0,1)×
[0,+∞)→ [0,+∞) is an L1-Carathéodory function, that is,

• f (·,u) is a measurable function for all u≥ 0,
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• f (t, ·) is continuous for a.e. t ∈ (0,1) ,
• for all r > 0, there exists ψr ∈L1 [0,1] such that | f (t,u)| ≤ψr (t) for a.e. t ∈ (0,1) and all |u| ≤ r.

Existence and nonexistence results for positive solutions were established in [8, 9, 10, 11] under
eigenvalue criteria for several classes of boundary value problems associated with ordinary differential
equations. Optimality of these results (see [9, Remark 3.5]) motivate us to look for similar results.
Evidently, the fractional nature of Problem (1.1) will give rise to some new difficulties.

Our main existence result (Theorem 3.8) will be obtained by means of a new fixed point theorem
(Theorem 2.14). This new theorem states that if a positive mapping (mapping leaving invariant a cone
in a Banach space) is approximately, upper bounded at ∞ and lower bounded at 0 (or the reverse) by
positive compact linear operators, admits a fixed point whenever the approximative linear lower bound
and upper bound are strongly positive-like operators having the spectral radius oppositely located with
respect to 1.

2. A FIXED POINT THEOREM VIA STRONGLY POSITIVE-LIKE OPERATORS

Let (B, || · ||) be a real Banach space and let K be an ordered cone in B (that is, K is a closed convex
subset of B with K∩ (−K) = {0B} and (tK)⊂ K for all t ≥ 0). We denote by Lc (B) the set of all linear
compact self-mappings of B. It is well known that the cone K induces a partial order in the Banach space
B. We write for all x,y ∈ B, x � y if y− x ∈ K, x ≺ y if y− x ∈ K and y 6= x and x � y if y− x /∈ K.

Notations �, �, and � denote, respectively, the reverse situations.

Definition 2.1. An operator L∈ Lc (B) is said to be positive if L(K)⊂K and strongly positive if int (K) 6=
/0 and L(Kr{0B})⊂ int (K) .

Definition 2.2. Let L∈Lc(B) be positive. L is said to be lower bounded if inf{‖Lu‖ : u ∈ K∩∂B(0,1)}>
0, where ∂B(0,1) is the boundary of the open unit ball.

Definition 2.3. Let L ∈ Lc(B) be positive. A real number λ is said to be a positive eigenvalue of L if
λ > 0 and there exists φ � 0B such that Lφ = λφ .

Definition 2.4. Let T1,T2 : K→ K be continuous mappings. We write T1 � T2 if T1x� T2x for all x ∈ K.

The proof of the main result of this section is based on the fixed point index theory. For sake of
completeness, let us recall briefly some basic facts of the fixed point index theory. A subset Ω is called a
retract of B if there exists a continuous mapping r : B→Ω such that r (x) = x for all x ∈Ω. This kind of
mapping is called a retraction.

Let U be an open bounded subset of Ω such that U ⊂ B(0B,R). For any compact mapping h : U → K
with h(x) 6= x for all x ∈ ∂U , the integer given by

i(h,U,Ω) = deg
(
I−h◦ r,B(0B,R)∩ r−1 (U) ,0

)
,

where deg is the Leray-Schauder degree, is well defined and is called fixed point index.
The fixed point index has the following properties:

(1) Normality : i(h,U,Ω)= 1 if h(x) = x0 ∈U for all x ∈U
(2) Homotopy invariance : Let H : [0,1]×U → Ω be a completely continuous mapping such that

H (t,x) 6= x for all (t,x) ∈ [0,1]×∂U. The integer i(H (t, ·) ,U,Ω) is independent of t.
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(3) Additivity :

i(h,U,Ω) = i(h,U1,Ω)+ i(h,U2,Ω)

whenever U1 and U2 are two disjoint open subsets of U such that h has no fixed point in
U 8(U1∪U2) .

(4) Permanence : If Ω′ is a retract of Ω with h
(
U
)
⊂Ω′ then

i(h,U,Ω) = i
(
h,U ∩Ω

′,Ω′
)
.

(5) Solution property : If i(h,U,Ω) 6= 0, then h admits a fixed point in U.

From Dugundji, we know that every nonempty closed convex set of B is a retract of B. In particular,
the cone K is a retract of B. Let, R > 0, KR = K∩B(0B,R) , where B(0B,R) is the open ball of radius R
centered at 0B and ∂KR is the boundary of KR, and consider a compact mapping h : KR→ K with hx 6= x
for all x∈ ∂KR. We will use in this work the following lemmas to provide fixed point index computations.

Lemma 2.5 ([12]). If hx� x for all x ∈ ∂KR, then i(h,KR,K) = 1.

Lemma 2.6 ([12]). If hx� x for all x ∈ ∂KR, then i(h,KR,K) = 0.

For more details and proofs we refer the reader to [12].
The following theorem is known as the Krein-Rutman theorem. It presents a situation where the

spectral radius r(L) = limn→∞ ‖Ln‖1/n of a positive linear compact operator L, is the unique positive
eigenvalue of L.

Theorem 2.7 ([13]). Let L ∈ Lc (B) be strongly positive. Then r (L) is the unique positive eigenvalue of
L.

Proposition 2.8 ([13]). Let L ∈ Lc (B) be strongly positive and consider the nonhomogeneous equation

λu−Lu = v (2.1)

with v � 0B. Then Equation (2.1) has a unique positive solution if λ > r(L) and no positive solution if
λ ≤ r(L).

For all positive operators L ∈ Lc(B), we introduce the subsets

ΛL = {λ ≥ 0, there exists u� 0B such that Lu� λu}
ΓL = {λ ≥ 0, there exists u� 0B such that Lu� λu} .

Proposition 2.9. Let L ∈ Lc (B) be strongly positive. Then

r (L) = supΛL = infΓL.

Proof. Note that r (L) ∈ ΛL ∩ΓL. We find from Theorem 2.7 in [14] that ΛL is bounded from above by
r (L) , which leads to supΛL = r (L) .

Now, we show infΓL ≥ r (L) by the contrary. Suppose that infΓL < r (L). Let θ ∈ (infΓL,r (L))
and u ∈ K r {0B} be such that L(u) � θu. In fact, we have that L(u) ≺ θu. If L(u) = θu, then the
uniqueness in Theorem 2.7 leads to the contradiction r(L) = θ < r(L). Thus, one has that the equation
λu−Lu = v has a positive solution for λ = θ < r(L) and v = θu−Lu. This contradicts Proposition 2.8.
This completes the proof. �
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Definition 2.10. A positive operator L ∈ Lc(B) is said to be a strongly positive-like operator if

r (L) = supΛL = infΓL > 0.

We can obtain from Lemmas 2.5 and 2.6 the following lemma.

Lemma 2.11. Let L ∈ Lc (B) be a strongly positive-like operator. Then, for all R > 0,

i(L,KR,K) =

{
1, if r(L)< 1,
0, if r(L)> 1.

Remark 2.12. We understand from the above lemma that if L∈ Lc (B) is a strongly positive-like operator,
then r(L) is a positive eigenvalue of L. Indeed, we have, for all γ,R > 0,

i(γL,KR,K) =

{
1, if r (γL) = γr(L)< 1,
0, if r (γL) = γr(L)> 1.

Proposition 2.13. Let T : K→ K be a continuous mapping and let L ∈ Lc(B) be a strongly positive-like
operator. If either

r (L)> 1 and Tu� Lu for all u ∈ K (2.2)

or
r (L)< 1 and Tu� Lu for all u ∈ K, (2.3)

then T has no positive fixed point.

Proof. We present the proof in the case of (2.2) and the other one can be obtained similarly. On the
contrary, we suppose there exists u� 0B such that Tu = u. In this case, we have that u = Tu� Lu, 1∈ ΓL

and r(L) = infΓL ≤ 1. This contradicts the hypothesis r (L)> 1 in (2.2). �

Theorem 2.14. Let T : K → K be a completely continuous mapping and assume that there exist two
strongly positive-like operators L1,L2 ∈ Lc(B) and two functions F1,F2 : K → K such that L1 is lower
bounded on K, r (L2)< 1 < r (L1) and for all u ∈ K

L1u−F1u� Tu� L2u+F2u.

If either
F1u = ◦(‖u‖) as u→ ∞ and F2u = ◦(‖u‖) as u→ 0 (2.4)

or
F1u = ◦(‖u‖) as u→ 0 and F2u = ◦(‖u‖) as u→ ∞, (2.5)

then T has a positive fixed point.

Proof. We present the proof in the case where (2.4) holds and the other case can be obtained similarly.
We have to prove existence of 0 < r < R such that i(T,Kr,K) = 1 and i(T,KR,K) = 0. In such a situation,
additivity and solution properties of the fixed point index imply that

i(T,KRrKr,K) = i(T,KR,K)− i(T,Kr,K) =−1

and T has a positive fixed point u with r < ‖u‖< R.
Consider the function H0 : [0,1]×K→ K defined by

H0(t,u) = (1− t)Tu+ tL2u



STRONGLY POSITIVE-LIKE OPERATORS AND EIGENVALUE CRITERIA 5

and let us prove existence of r > 0 small enough such that, for all t ∈ [0,1], equation H0(t,u) 6= u in ∂Kr.

On the contrary, we suppose that, for all integers n≥ 1, there exist tn ∈ [0,1] and un ∈ ∂K1/n such that

un = (1− tn)Tun + tnL2un.

Note that vn = un/‖un‖ ∈ ∂K1 and satisfies

vn = (1− tn)(Tun/‖un‖)+ tnL2vn (2.6)

and
L2vn = (1− tn)L2 (Tun/‖un‖)+ tnL2 (L2vn) . (2.7)

Because of the compactness of L2, there exists a subsequence (vnk) such that (L2vnk) converges to v ∈
Kr{0B} . Indeed, if v = 0B, we obtain, from the inequality

(Tun/‖un‖)� L2 (vn)+(F2un/‖un‖)

and the hypothesis F2u = ◦(‖u‖) as u→ 0 in (2.4), that lim(Tunk/‖unk‖) = 0B. This implies from (2.6)
that

0B = limvnk = (1− tnk)(Tunk/‖unk‖) tnk L2vnk .

This contradicts ‖vnk‖= 1. Therefore, passing to the limit in (2.7), we obtain v� L2 (v) and 1≤ supΛL2 =

r(L2), which contradicts r(L2) < 1. Thus, there exists r > 0 small enough such that H0 (t,u) 6= u for all
t ∈ [0,1] and u∈ ∂Kr and for such a radius r > 0, homotopy property of the fixed point index and Lemma
2.11 lead to

i(T,Kr,K) = i(H0(0, ·),Kr,K) = i(H0(1, ·),Kr,K) = i(L2,Kr,K) = 1.

Similarly, consider the function H∞ : [0,1]×K→ K defined by

H∞(t,u) = (1− t)Tu+ tL1u.

Let us prove the existence of R > 0 large enough such that, for all t ∈ [0,1] , equation H∞(t,u) 6= u in
∂KR. On the contrary, we suppose that, for all integers n ≥ 1, there exist tn ∈ [0,1] and un ∈ ∂Kn such
that

un = (1− tn)Tun + tnL1un.

Note that vn = un/‖un‖ ∈ ∂K1 satisfies

vn = (1− tn)(Tun/‖un‖)+ tnL1vn

and then
L1vn = (1− tn)L1 (Tun/‖un‖)+ tnL1 (L1vn) . (2.8)

Because of the compactness and the lower boundedness of L1, there exists a subsequence (vnk) such that
(L1vnk) converges to some w and ‖w‖= lim‖L1vn‖ ≥ cL1,K > 0, where

cL1,K = inf{‖L1u‖ ,u ∈ ∂K1} .

Thus, we obtain from (2.8) the estimates

L1vnk = (1− tnk)L1 (Tunk/‖un‖)+ tnk L1 (L1vnk)

� L1 (L1vnk)− (1− tnk)L1 (F1unk/‖un‖) .

Then from the hypothesis F1u = ◦(‖u‖) as u→ ∞ in (2.4), w � L1w and 1 ∈ ΓL1 . This leads to the
contradiction r (L1)> 1≥ infΓL1 = r (L1) .
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Thus, there exists R > 0 large such that H∞ (t,u) 6= u for all t ∈ [0,1] and u∈ ∂KR and for such a radius
R > 0, homotopy property of the fixed point index and Lemma 2.11 imply that

i(T,KR,K) = i(H∞(0, ·),KR,K) = i(H∞(1, ·),KR,K) = i(L1,KR,K) = 0.

This completes the proof. �

3. EIGENVALUE CRITERIA FOR THE EXISTENCE AND NONEXISTENCE OF POSITIVE SOLUTIONS

FOR α -ORDER (2 < α ≤ 3) FRACTIONAL BVPS WITH CARATHÉODORY NONLINEARITIES

3.1. Preliminaries. Now, let us recall some basic facts related to the theory of fractional differential
equations. Let β be a nonnegative real number. The Riemann-Liouville fractional integral of order β of
a function f : (0,+∞)→ R is defined by

Iβ

0+ f (t) =

{
1

Γ(β )

∫ t
0(t− s)β−1 f (s)ds, if β > 0,

f (t) , if β = 0,
(3.1)

where Γ(β ) is the Gamma function provided that the right side is pointwise defined on (0,+∞). For
example, we have, for any real σ >−1,

Iβ

0+tσ =
Γ(σ +1)

Γ(σ +β +1)
tσ+β .

The Riemann-Liouville fractional derivative of order β of a continuous function f : (0,+∞)→ R is
given by

Dβ

0+ f (t) =
1

Γ(n−β )

(
d
dt

)n ∫ t

0

f (s)
(t− s)β−n+1 ds, (3.2)

where n = [β ]+1, [β ] denotes the integer part of the number β provided that the right side is pointwise
defined on (0,∞). As a basic example, for σ >−1,

Dβ

0+tσ =
Γ(σ +1)

Γ(σ −β +1)
tσ−β .

Thus, if u ∈C (0,1)∩L1 (0,1), then fractional differential equation Dβ

0+u(t) = 0 has

u(t) =
i=[β ]+1

∑
i=1

citβ−i,

ci ∈ R, as the unique solution and if u has a fractional derivative of order β in C (0,1)∩L1 (0,1) , then

Iβ

0+Dβ

0+u(t) = u(t)+
i=[β ]+1

∑
i=1

citβ−i, ci ∈ R, (3.3)

and
Dα

0+Iβ

0+u(t) = Iβ−α

0+ u(t) if β ≥ α > 0. (3.4)

For a detailed presentation on fractional differential equations, we refer the read to [15] or [16].
Now, we introduce some spaces and operators which are needed for the proof of the main results in

this paper. Throughout this section, we let

L1 = {m : (0,1)→ R : m is measurable and
∫ 1

0
|m(t)|dt < ∞}

be equipped with its norm ‖·‖1 and let E be the Banach space of all continuous functions defined on
[0,1], endowed with its sup-norm denoted ‖·‖

∞
.
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We also define the spaces X and Y by

X = {u ∈C [0,1] : lim
t→0

u(t)
tα−1 exists} and

Y = {u ∈ X :
u(t)
tα−1 ∈C1 [0,1]}.

Throughout this section, the linear spaces X and Y are equipped respectively with the norms

‖u‖X = sup{
∣∣∣ u(t)

tα−1

∣∣∣ : t ∈ [0,1]} and

‖u‖Y = ‖u‖X + sup{
∣∣∣∣( u(t)

tα−1

)′∣∣∣∣ : t ∈ [0,1]}.

It is easy to check that (X ,‖·‖X) and (Y,‖·‖Y ) are Banach spaces, and i the embedding of C1 [0,1] into E
and j the embedding of Y into X are compact.

E+ is the cone of nonnegative functions in E and, for fixed 0 < δ < 1, P is the cone in E defined by

P =
{

u ∈ E+ : u(t)≥ δ
α−1 ‖u‖

∞
for all t ∈ [δ ,1]

}
.

X+ is the natural cone in X , i.e., X+ = {u ∈ X : u(t)≥ 0 for all t ∈ [0,1]}.

L1
+ = {m ∈ L1 (0,1) : m(t)≥ 0 a.e. t ∈ (0,1)},
L1
++ = {m ∈ L1

+ : m > 0 in a subset of positive measure}.

We need to introduce the following subset of X .

S =

{
u ∈ X : u(t)> 0 for all t ∈ (0,1] and lim

t→0

u(t)
tα−1 > 0

}
.

Lemma 3.1. S is open in X .

Proof. We have to show that X\S is a closed set in X . Note that X\S = F1∪F2, where

F1 = {u ∈ X : u(t)≤ 0 for some t ∈ (0,1]}

F2 =

{
u ∈ X : lim

t→0

u(t)
tα−1 ≤ 0

}
.

Clearly, F2 is a closed set in X . Thus, let (un)⊂F1 converging to u in X , (tn)⊂ (0,1) with lim tn = t ∈ [0,1]
and u′n (tn)≤ 0. We distinguish the following two cases.

i) t ∈ (0,1] . In this case, we have u(t) = limn→∞ un (tn)≤ 0. This shows u ∈ F1.

ii) t = 0. In this case, we have u ∈ F2. Indeed, if

lim
t→0

u(t)
tα−1 = l > 0,

then there exists an integer n0 such that, for all t ∈ (0,1],

u(t)
tα−1 −

l
4
≤ un(t)

tα−1 ≤
u(t)
tα−1 +

l
4
.

Moreover, there exists δ > 0 such that, for all t ∈ (0,δ ],

− l
4
≤ u(t)

tα−1 − l ≤ l
4
.
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Thus, let n1 be such that tn ∈ (0,δ ] for all n ≥ n1. We have, for all integer n ≥ max(n0,n1), the contra-
diction

0 ≥ un(tn) =
(
tα−1
n
)(un(t)

tα−1

)
≥
(
tα−1
n
)( u(t)

tα−1 −
l
4

)
≥ l

2
(
tα−1
n
)
> 0.

This ends the proof. �

Let G : [0,1]× [0,1]→ R be a continuous function defined by

G(t,s) =
1

Γ(α)

{
tα−1(1− s)α−2− (t− s)α−1, if 0≤ s≤ t ≤ 1,
tα−1(1− s)α−2, if 0≤ t ≤ s≤ 1.

The function G has the following properties:

G(t,s)> 0 for all t,s ∈ (0,1) , (3.5)

G(t,s)≤ G(1,s) for all t,s ∈ [0,1] , (3.6)

G(t,s)≥ δ
α−1G(1,s) for all t ∈ [δ ,1] and all s ∈ [0,1] . (3.7)

Lemma 3.2. Consider, for h ∈ L1 (0,1) , the following FBVP{
Dα

0+u(t)+h(t) = 0, t ∈ (0,1) ,
u(0) = u′(0) = u′(1) = 0.

(3.8)

Then u is a solution to FBVP (3.8) if and only if u = £h, where £ : L1 (0,1)→ C1 [0,1] with £h(t) =∫ 1
0 G(t,s)h(s)ds.

Proof. Let u be a solution to FBVP (3.8). We find by (3.3) that

u(t) =− 1
Γ(α)

∫ t

0
(t− s)α−1h(s)ds+ c1tα−1 + c2tα−2 + c3tα−3,

for some c1,c2,c3 ∈ R. Then, the the boundary conditions u(0) = u′(0) = u′(1) = 0 leads to c2 = c3 = 0
and

c1 =
1

Γ(α)

∫ 1

0
(1− s)α−2h(s)ds.

Thus,

u(t) = − 1
Γ(α)

∫ t

0
(t− s)α−1h(s)ds+

1
Γ(α)

∫ 1

0
tα−1(1− s)α−2h(s)ds

=
1

Γ(α)
(
∫ t

0
(tα−1(1− s)α−2− (t− s)α−1)h(s)ds+

∫ 1

t
tα−1(1− s)α−2h(s)ds

=
∫ 1

0
G(t,s)h(s)ds = £h(t) .

Conversely, if

u(t) = £h(t) =
∫ 1

0
G(t,s)h(s)ds,

then

u(t) =−Iα

0+h(t)+
tα−1

Γ(α)

∫ 1

0
(1− s)α−2h(s)ds.
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From (3.4), one has Dα

0+u(t) =−h(t). Since G(0,s) = 0 for all s ∈ [0,1], we have

u(0) =
∫ 1

0
G(0,s)h(s)ds = 0.

Moreover, from

u′(t) =
(α−1) tα−2

Γ(α)

∫ 1

0
(1− s)α−2h(s)ds− (α−1)

Γ(α)

∫ t

0
(t− s)α−2h(s)ds

we obtain u′(0) = u′(1) = 0. The proof is complete. �

Let, for m ∈ L1
++, Lm : E→ E and LX

m : X → X be the linear continuous operator such that LX
mu = Lmu

for all u ∈ X and for u ∈ E Lmu(t) =
∫ 1

0 G(t,s)m(s)u(s)ds.

Lemma 3.3. For all m ∈ L1
++, the operator Lm is compact and positive. Moreover, Lm (E+)⊂ P.

Proof. Note that Lm = £m ◦ i, where £m : E→C1 [0,1] is defined for u ∈ E by

£mu(t) =
∫ 1

0
G(t,s)m(s)u(s)ds.

Since the linear operator £m is continuous and i is compact, the operator Lm is compact. Let u ∈ E+, we
have from (3.5) that, for all t ∈ [0,1],

Lmu(t) =
∫ 1

0
G(t,s)m(s)u(s)ds≥ 0.

Thus Lmu ∈ E+ and the operator Lm is positive. We prove now that Lm (E+) ⊂ P. Letting v ∈ E+, we
have from (3.7) and (3.6) of function G that, for all t ∈ [δ ,1],

Lmv(t) =
∫ 1

0
G(t,s)m(s)v(s)ds≥ δ

α−1
∫ 1

0
G(1,s)m(s)v(s)ds = δ

α−1 ‖Lmv‖ .

This proves that Lmv ∈ P and Lm (E+)⊂ P. This completes the proof. �

Lemma 3.4. For all m ∈ L1
++, Lm is a strongly positive-like operator which is lower bounded on the

cone P.

Proof. First, we prove that, for all m ∈ L1
+ ∩C [0,1] , LX

m is a strongly positive operator. We begin by
proving the compactness of LX

m. Let (mn) be a sequence in Cc [0,1] converging to m in L1 and note that
for all integer n, LX

mn
= j ◦£Y

mn
, where £Y

mn
: X → Y is defined for u ∈ X by

£Y
mn

u(t) =
1

Γ(α)

(∫ 1

0
tα−1 (1− s)

α−1
mn(s)u(s)ds−

∫ t

0
(t− s)α−1 mn(s)u(s)ds

)
=

tα−1

Γ(α)

(∫ 1

0
(1− s)α−1 mn(s)u(s)ds− t

∫ 1

0
(1− s)α−1 mn(ts)u(ts)ds

)
.

The compactness of LX
mn

follows from that of j once we prove that the linear operator £Y
mn

is continuous.

Letting u ∈ X , v = £Y
mn

u and w(t) =
v(t)
tα−1 , one has

w′ (t) =−(α−1)
Γ(α)

(∫ 1

0
s(1− s)

α−2
mn(ts)u(ts)ds

)
.

It is easy to check that∥∥£Y
mn

u
∥∥

Y = ‖w‖
∞
+
∥∥w′
∥∥

∞
≤ ‖mn‖∞

‖u‖
∞
≤C (α)‖mn‖∞

‖u‖X ,
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where

C (α) =
1

Γ(α)

(
2
∫ 1

0
(1− s)α−1 ds+(α−1)

∫ 1

0
(1− s)

α−2
ds
)
.

This shows that £Y
mn

is continuous and LX
mn

is compact. Because LX
mn
→ LX

m in operator norm, we have
that LX

m is compact.
Now, let u ∈ X+\{0X} and v = LX

mu. We have from (3.5) and (3.6) that, for all t ∈ (0,1],

v(t) =
∫ 1

0
G(t,s)m(s)u(s)ds > 0.

We obtain after simple calculations that∣∣∣∣ v(t)
tα−1 −

1
Γ(α)

∫ 1

0
(1− s)α−2 m(s)u(s)ds

∣∣∣∣ ≤ 1
Γ(α) tα−1

∫ t

0
(t− s)α−1 m(s)u(s)ds

≤ ‖u‖X
Γ(α)

∫ t

0
(1− s)α−1 m(s)ds,

which leads to

lim
t→0

v(t)
tα−1 =

1
Γ(α)

∫ 1

0
(1− s)α−2 m(s)u(s)ds > 0.

The above estimates show that LX
mu ∈ S⊂ int (X+) and

LX
m
(
X+\{0X}

)
⊂ S⊂ int

(
X+
)
.

Then, Proposition 2.9 leads to
r(LX

m) = sup
(
ΛLX

m

)
= inf

(
ΓLX

m

)
where

ΛLX
m
=
{

λ ≥ 0 : there exists u ∈ X+r{0X} such that LX
mu� λu

}
ΓLX

m
=
{

λ ≥ 0 : there exists u ∈ X+r{0X} such that LX
mu� λu

}
.

Clearly, we have ΛLX
m
⊂ ΛLm and ΓLX

m
⊂ ΓLm . So, let us prove that ΛLX

m
= ΛLm and ΓLX

m
= ΓLm . To this aim,

let λ ≥ 0 and u ∈ E+\{0E} be such that Lmu� λu. Then, U = Lmu ∈ X+\{0X} ,

LX
mU = LmLmu� λLmu = λU

and λ ∈ ΛLX
m
. So, we have proved that ΛLX

m
= ΛLm In a similar way, we can also obtain that ΓLX

m
= ΓLm .

Thus,
r(LX

m) = sup
(
ΛLX

m

)
= sup(ΛLm) = inf

(
ΓLX

m

)
= inf(ΓLm) = r(Lm).

Now, we have, for all u ∈ P,

‖Lmu‖= Lmu(1) =
∫ 1

0
G(1,s)m(s)u(s)ds≥

(
δ

α−1
∫ 1

0
G(1,s)m(s)δ α−1ds

)
‖u‖ ,

which proves that Lm is lower bounded on the cone P. This ends the proof. �

Consider the operators F : E+→ L1
+ and T : E+→ E defined by

Fu(t) = f (t,u(t)), and T = i◦£ ◦F.

Lemma 3.5. We have that
i) T is completely continuous,
ii) T (E+)⊂ P and
iii) u ∈ E is a positive solution to Problem (1.1) if and only if u is a fixed point of T.
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Proof. i) Note that the fact that the nonlinearity f is an L1-Caratheodory function makes the mapping F
continuous and bounded (maps bounded sets of E+ into bounded sets in L1 (0,1)). This, together with
the continuity of the linear operator £ and the compactness of the embedding i, makes of T a completely
continuous mapping.

ii) This is due to properties (3.5)-(3.7) of function G.

iii) It follows from Lemma 3.2.
The proof is complete. �

3.2. Mains results. Letting m ∈ L1
++. For 2 < α ≤ 3, we consider the linear FBVP{

Dαu(t)+µm(t)u(t) = 0, a.e. t ∈ (0,1) ,
u(0) = u′(0) = u′(1),

(3.9)

where µ is a real parameter.

Proposition 3.6. For all m ∈ L1
++, FBVP (3.9) admits a unique positive eigenvalue µα (m).

Proof. It follows from iii) of Lemma 3.5 that the pair (µ,u) is a solution of FBVP (3.9) if and only if
Lmu = µ−1u. Hence, we conclude by Lemma 3.4 that µ−1 = r(Lm) is the unique positive eigenvalue of
Lm. Then µα (m) = 1/r(Lm) is the unique positive eigenvalue of FBVP (3.9). �

Proposition 3.7. Assume that there exists m ∈ L1
+ such that one of the following hypotheses

µα (m)< 1 and f (t,u)≥ m(t)u for all u≥ 0 and a. e. t ∈ (0,1) , (3.10)

µα (m)> 1 and f (t,u)≤ m(t)u for all u≥ 0 and a. e. t ∈ (0,1) , (3.11)

is satisfied. Then Problem (1.1) has no positive solutions.

Proof. If (3.10) holds, then f (t,u) ≥ m(t)u. In this case, Tu ≥ Lmu and Lm is a strongly positive-like
operator with r(Lm) = 1/µα (m)> 1. Thus, Hypothesis (2.2) is satisfied and Proposition 2.13 guarantees
that T has no positive fixed points. �

Theorem 3.8. Assume that there exists m1,m2 ∈ L1
++, q1,q2 ∈ L1

+ and two functions ϕ1,ϕ2 : [0,+∞)→
[0,+∞) such that µα (m1)< 1 < µα (m2) and, for all u≥ 0 and a.e. t ∈ (0,1) ,

m1 (t)u−q1(t)ϕ1 (u)≤ f (t,u)≤ m2 (t)u+q2(t)ϕ2 (u) . (3.12)

If either
ϕ1 (u) = ◦(‖u‖) as u→ ∞, ϕ2(u) = ◦(‖u‖) as u→ 0
ϕ1 is nondecreasing and ϕ2 is nondecreasing near 0,

(3.13)

or
ϕ1 (u) = ◦(‖u‖) as u→ 0 and ϕ2(u) = ◦(‖u‖) as u→ ∞,

ϕ1 is nondecreasing near 0 and ϕ2 is nondecreasing,
(3.14)

then FBVP (1.1) admits a positive solution.

Proof. Let, for i = 1,2, Fi : P→ P be defined by

Fiu(t) =
∫ 1

0
G(t,s)ϕi (u(s))ds.

We have then from Hypothesis (3.12) that, for all u ∈ P

Lm1u−F1u� Tu� Lm2u+F2u,
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with
r(Lm2) = 1/µα (m2)< 1 < r(Lm1) = 1/µα (m1) .

Suppose that (3.13) holds (the case where (3.14) holds can be checked similarly). We have

‖Fiu‖∞

‖u‖
∞

= sup
t∈[0,1]

Fiu(t)
‖u‖

∞

≤
∫ 1

0
G(1,s)qi (s)

ϕi (u(s))
‖u‖

∞

ds≤ ϕi (‖u‖∞
)

‖u‖
∞

∫ 1

0
G(1,s)qi (s)ds,

which leads to
F1u = ◦(‖u‖) as u→ ∞ and F2u = ◦(‖u‖) as u→ 0.

We conclude from Theorem 2.14 that operator T admits a fixed point, which is a positive solution to
FBVP (1.1) from iii) of Lemma 3.5. �

Example 3.9. Let a,b ∈ L1
++. The function f (t,u) = a(t)

u(1+ |sinu|)
1+u

+ b(t)
u3 (1+ |cosu|)

2(1+u2)
satisfies

(3.12)-(3.14) with

m1(t) = a(t), m2(t) = b(t), q1(t) = max(a(t),b(t)) , q2(t) = a(t),

ϕ1 (u) = 2max(u2,u3), ϕ2 (u) =
2u

1+u
.

The Separable Case. We consider now the FBVP{
Dαu(t)+q(t)g(u(t)) = 0, 0 < t < 1,
u(0) = u′(0) = u′(1) = 0,

(3.15)

where q ∈ L1
++ and g : [0,+∞)→ [0,+∞) is continuous. Set for ν = 0 or +∞

gν = lim
u→ν

inf
g(u)

u
, gν = lim

u→ν
sup
(

g(u)
u

)
.

Corollary 3.10. If either

inf
{

g(u)
u

: u > 0
}
> µα (q) , (3.16)

or

sup
{

g(u)
u

: u > 0
}
< µα (q) , (3.17)

then FBVP (3.15) admits no positive solution.

Proof. Suppose that Hypothesis (3.16) is satisfied (the other case can be checked similarly) and let ε0 > 0
be such that g(u)> (µα (q)+ ε0)u. We then have q(t)g(u)>m(t)u for all u> 0 and a.e. t ∈ (0,1) , where
m(t) = (µα (q)+ ε0)q(t) . Moreover,

µα (m) = µα ((µα (q)+ ε0)q) =
µα (q)

(µα (q)+ ε0)
< 1.

Thus, Hypothesis (3.10) of Proposition 3.7 is satisfied and FBVP (3.15) admits no positive solution. �

Corollary 3.11. If either
g0 < µα (q)< g+∞, (3.18)

or
g+∞ < µα (q)< g0, (3.19)

then FBVP (3.15) admits a positive solution.
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Proof. We present the proof in the case where (3.18) holds, the other case is checked similarly. Let ε > 0
be such that

(
g0 + ε

)
< µα (q) < (g+∞− ε) . Then, there exists a positive constant C∞ such that, for all

u≥ 0,
(g+∞− ε)u−C∞ ≤ g(u)≤

(
g0 + ε

)
u+h(u)

where
h(u) = max

(
0,g(u)−

(
g0 + ε

)
u
)
.

Set
m1 = (g+∞− ε)q, m2 =

(
g0 + ε

)
q, ϕ1(u) =C∞, ϕ2(u) = h(u) .

So,

µα (m1) = µα ((g+∞− ε)q) =
µα (q)

(g+∞− ε)
< 1 < µα (m2) = µα

((
g0 + ε

)
q
)
=

µα (q)
(g0 + ε)

,

and
ϕ1 (u) = ◦(‖u‖) as u→ ∞ and ϕ2(u) = ◦(‖u‖) as u→ 0.

Thus, Hypothesis (3.13) is satisfied and the existence of a positive solution to FBVP (3.15) can be
obtained from Theorem 3.8. �
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