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Abstract. In this paper, we study a modified subgradient extragradient iterative algorithm for the approximation of solutions
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1. INTRODUCTION

Let C be a nonempty closed and convex subset of a real Banach space E. We denote by E∗ the dual of
E. Let f : E×E→ R be a bifunction. The Equilibrium Problem (EP) for bifunction f on set C is stated
as follows:

Find x∗ ∈C such that f (x∗,y)≥ 0, ∀y ∈C. (1.1)

We denote the solution set of EP (1.1) by EP( f ,C). The EP (1.1) was first introduced by Blum and Oettli
[1] and it is well known that EP (1.1) covers many important mathematical models, such as, nonlinear
optimization problems, variational inequality problems, nonlinear complementary problems and fixed
point problems [1, 2, 3, 4]. The EP (1.1) also generalizes the convex minimization problems which is of
great importance in almost all branches of pure and applied sciences because it can be applied in solving
many practical problems that arise in areas such as economics, transportation and engineering (see [1, 5]
and some of the references therein). In recognition of its importance and numerous applications, EP (1.1)
have been studied by many authors (see, e.g., [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) and many iterative
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methods, such as, the Proximal Point Method (PPM) [16], auxiliary problem principle method [17] and
gap function methods [18] etc, have been developed to solve EP (1.1).

Tran et al. [14] in 2008 introduced the following proximal-like iterative method also referred as the
Extragradient Methods (EGM) to solve EP (1.1) in a real Hilbert space under the assumptions that the
equilibrium bifunction is pseudomonotone and satisfies the Lipschitz-type condition. For x0 ∈C, let {xn}
and {yn} be two sequences generated as follows:{

yn = argminy∈C{λ f (xn,y)+ 1
2 ||xn− y||2},

xn+1 = argminy∈C{λ f (yn,y)+ 1
2 ||xn− y||2},

(1.2)

where λ > 0 is a suitable parameter. The EGMs have attracted much attention; see, for example, [8,
9, 11, 13, 15, 19]. The advantages of the EGM over the PPM are that it is numerically more easier to
compute and it can be used to solve EPs involving a more general class of (pseudomonotone) bifunctions.

The EGM has its own setback as it is required at each step of the iteration to solve two optimization
problems on feasible set C and to compute two values of bifunction f at two points xn and yn. These
can be very costly and can also affect the efficiency of the method if the bifunction and the feasible
set have complex structures. To overcome these drawbacks in EGM, Hieu [20] introduced a Modified
Extragradient Method (MEGM) in Hilbert spaces for approximating the solution of EP (1.1) involving
pseudomonotone bifunctions and obtained a weak convergence result. The feasible set C in the first
optimization program in MEGM is replaced by a half space Tn and therefore can be solved effectively by
using methods of convex quadratic programming ([21], Chapter 8). Also, unlike the EGM, the MEGM
only requires to compute a value of the bifunction f at current approximation yn.

The purpose of this paper is to introduce an iterative algorithm, which is suitable for finding an ele-
ment of EP( f ,C) for a pseudomonotone bifunction that satisfies the Lipschitz type condition, and obtain
a weak convergence result in the framework of 2-uniformly convex Banach spaces which are also uni-
formly smooth. The results presented in this paper extend the results of Hieu [20] from Hilbert spaces to
2-uniformly convex Banach spaces which are also uniformly smooth.

2. PRELIMINARIES

Let BE = {x ∈ E : ||x|| = 1}. A Banach space E is said to be strictly convex if for any x,y ∈ BE and
x 6= y, we have ||x+y||

2 < 1. E is said to be uniformly convex if for each ε ∈ (0,2], there exists δ > 0 such
that for any x,y ∈ BE , ||x− y|| ≥ ε implies ||x+y||

2 ≤ 1− δ . It is known that a uniformly convex Banach
space is reflexive and strictly convex. The modulus of convexity of E is the function δE : (0,2]→ [0,1]
defined by

δE(ε) := inf
{

1−
∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣ : x,y ∈ BE ;ε = ||x− y||
}
.

E is uniformly convex if and only if δE(ε) > 0 for all ε ∈ (0,2] and p-uniformly convex if there is a
Cp > 0 so that δE(ε) ≥ Cpε p for any ε ∈ (0,2]. Clearly, every p-uniformly convex Banach space is
uniformly convex; see, e.g., [22, 23] for more details.

A Banach space E is said to be smooth if the limit lim
t→0

||x+ ty||− ||x||
t

exists for all x,y∈BE . Moreover,

E is said to be uniformly smooth if the limit is attained uniformly for x,y ∈ BE . It is well known that
Hilbert and the Lebesgue Lp(1 < p≤ 2) spaces are 2-uniformly convex and uniformly smooth.
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The normalised duality mapping J : E→ 2E∗ is defined by

J(x) := {x∗ ∈ E∗ : 〈x,x∗〉= ||x||2 = ||x∗||2},∀x ∈ E.

The normalised duality mapping J possesses the following properties [24]:

(1) If E is a smooth Banach space, then J is single-valued.
(2) If E is a strictly convex Banach space, then J is one-to-one and strictly monotone.
(3) If E is a uniformly smooth Banach space, then J is uniformly norm-to-norm continuous on each

bounded subset of E.
(4) If E is a smooth, strictly convex and reflexive Banach space, then J is single-valued, one-to-one

and onto.

Let E be a reflexive, strictly convex and smooth Banach space and let J the normalised duality mapping
from E into E∗. Then J−1 is also single-valued, one-to-one, surjective, and is the duality mapping from
E∗ into E.

Let E be a smooth Banach space, Alber [25] introduced the following Lyapunov functional

φ(x,y) = ||x||2−2〈x,Jy〉+ ||y||2. (2.1)

It can be seen from the definition that φ satisfies the following conditions.

A1. (||x||− ||y||)2 ≤ φ(x,y)≤ (||x||+ ||y||)2.

A2. φ(x,y) = φ(x,z)+φ(z,y)+2〈x− z,J(z)− J(y)〉.
A3. φ(x,y) = 〈x,J(x)− J(y)〉+ 〈y− x,J(y)〉 ≤ ||x||||J(x)− J(y)||+ ||y− x||||y||.

If E is a strictly convex and smooth Banach space, then for x,y ∈ E, φ(y,x) = 0 if and only if x = y (see
Remark 2.1 in [26]).

Lemma 2.1. [26] Let E be a uniformly convex and smooth Banach space and let {xn} and {yn} be two
sequences of E. If φ(xn,yn)→ 0, and either {xn} or {yn} is bounded, then xn− yn→ 0.

Let C be a nonempty, closed and convex subset of a reflexive, strictly convex and smooth Banach space
E. Then, for each x ∈ E (see Alber [25]), there exists a unique element x0 ∈C (denoted by ΠC(x)) such
that φ(x0,x) = min

y∈C
φ(y,x). The mapping ΠC : E → C, defined by ΠC(x) = x0, is called the generalized

projection operator from E onto C and x0 is called the generalized projection of x. In a Hilbert space,
ΠC = PC (the metric projection operator).

Lemma 2.2. [26, 27] Let C be a nonempty closed and convex subset of a smooth Banach space E and
x ∈ E. Then, x0 = ΠC(x) if and only if 〈x0− y,J(x)− J(x0)〉 ≥ 0,∀y ∈C.

Lemma 2.3. [26, 27] Let E be a reflexive, strictly convex and smooth Banach space, let C be a nonempty
closed and convex subset of E and let x ∈ E. Then φ(y,ΠC(x))+φ(ΠC(x),x)≤ φ(y,x),∀y ∈C.

Lemma 2.4. [28] Let E be a 2-uniformly convex and smooth Banach space. Then, for every x,y ∈
E, φ(x,y)≥ c||x− y||2, where c > 0 is the 2-uniformly convexity constant of E.

Next we give an Opial-like inequality for the Lyapunov functional (see [29], Lemma 1). This Opial-
like inequality was proved for the more general Bregman distance (see [30], Lemma 5.1 and [31], Lemma
3). For completeness, we state and prove it for our setting here.
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Lemma 2.5. Let E be a smooth Banach space with a weakly sequentially continuous normalised duality
mapping J from E into E∗. Let {xn} be a sequence in E such that xn→ u weakly for some u ∈ E. Then

liminf
n→∞

φ(u,xn)< liminf
n→∞

φ(v,xn) ∀v ∈ E with v 6= u.

Proof.

φ(u,xn)−φ(v,xn) = ||u||2−2〈u,J(xn)〉+ ||xn||2− [||v||2−2〈v,J(xn)〉+ ||xn||2]

= ||u||2−2〈u− v,J(xn)〉− ||v||2

= ||u||2−||v||2 +2〈v−u,J(u)〉−2〈v−u,J(u)〉−2〈u− v,J(xn)〉

= −φ(v,u)+ 〈u− v,J(u)− J(xn)〉.

Since xn→ u weakly and J is weakly sequentially continuous, we have

lim
n→∞

[φ(u,xn)−φ(v,xn)] =−φ(v,u).

Consequently,

liminf
n→∞

φ(u,xn) = liminf
n→∞

[φ(u,xn)−φ(v,xn)+φ(v,xn)]

= lim
n→∞

(φ(u,xn)−φ(v,xn))+ liminf
n→∞

φ(v,xn)

= −φ(v,u)+ liminf
n→∞

φ(v,xn).

Since φ(v,u)> 0, for v 6= u, we obtain

liminf
n→∞

φ(u,xn)< liminf
n→∞

φ(v,xn).

�

The normal cone NC to a set C at a point x ∈C is defined by

NC(x) := {x∗ ∈ E∗ : 〈x− y,x∗〉 ≥ 0, ∀y ∈C}.

Let g : C→ R be a function. The subdifferential of g at x is defined by

∂g(x) = {w ∈ E∗ : g(y)−g(x)≥ 〈w,y− x〉, ∀y ∈C}.

Lemma 2.6. Let C be a nonempty convex subset of a Banach space E and g : C→R∪{+∞} be a convex,
subdifferentiable and lower semicontinuous function. Furthermore, the function g satisfies the following
regularity condition

Either int(C) 6= /0 or g is continuous at a point in C.

Then, x∗ is a solution to the following convex optimization problem min{g(x) : x ∈ C} if and only if
0 ∈ ∂g(x∗)+NC(x∗), where ∂g(.) denotes the subdifferential of g and NC(x∗) is the normal cone to C at
x∗.
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3. PROPOSED METHOD

Let E be a 2-uniformly convex Banach space which is uniformly smooth and let C be a nonempty
closed and convex subset of E. A bifunction f : E×E→ R is said to be:

i. strongly monotone on C if there exists a constant γ > 0 such that

f (x,y)+ f (y,x)≤−γ||x− y||2, ∀x,y ∈C;

ii. monotone on C if
f (x,y)+ f (y,x)≤ 0, ∀x,y ∈C;

iii. pseudomonotone on C if
f (x,y)≥ 0⇒ f (y,x)≤ 0;

It is easy to see that i⇒ ii⇒ iii. A bifunction f : E×E → R is said to satisfy Lipschitz-type condition
if there exists two constants L1 and L2 such that

f (x,y)+ f (y,z)≥ f (x,z)−L1||x− y||2−L2||y− z||2, ∀x,y,z ∈ E.

We now give the following modified subgradient extragradient iterative algorithm for the approximation
of solutions of pseudomonotone equilibrium problems in the framework of 2-uniformly convex Banach
spaces which are uniformly smooth. First, let us state the following conditions that will be required in
the analysis of our convergence result for solving EP (1.1).

Condition B:
(B1) f is pseudomonotone on C and f (x,x) = 0, for all x ∈C;
(B2) f satisfies Lipschitz-type condition on E with Lipschitz-type constants L1 and L2;
(B3) f (·,y) is sequentially weakly upper semicontinuous on C for each fixed point y∈C, i.e., if {xn} ⊂C
is a sequence converging weakly to x ∈C, then limsupn→∞ f (xn,y)≤ f (x,y);
(B4) f (x, ·) is convex and subdifferentiable on E for every fixed x ∈C;
(B5) 0 < λ < c

2L2+4L1
, where c is the 2-uniformly convexity constant of E and L1 and L2 are the two

Lipschitz-type constants of f ;
(B6) The solution set EP( f ,C) of EP (1.1) is nonempty.

It has been proved that under the conditions (B1)-(B4), the solution set EP( f ,C) of EP (1.1) is closed
and convex [14].

Algorithm 3.1. Initialization: Choose x0 ∈ E, y0 ∈C, a control parameter λ > 0, and compute

x1 = argmin
y∈C
{λ f (y0,y)+

1
2

φ(y,x0)},

y1 = argmin
y∈C
{λ f (y0,y)+

1
2

φ(y,x1)}

Iterative step for n≥ 1.
Step 1. Select wn ∈ ∂2 f (yn−1,yn) = ∂ f (yn−1, ·)(yn) and construct a half space

Tn = {z ∈ E : 〈Jxn−λwn− Jyn,z− yn〉 ≤ 0}.

Step 2. Solve two strongly convex optimization programs{
xn+1 = argminy∈Tn{λ f (yn,y)+ 1

2 φ(y,xn)},
yn+1 = argminy∈C{λ f (yn,y)+ 1

2 φ(y,xn+1)}.
(3.1)
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Stopping criterion: If yn+1 = yn = xn+1, stop. Otherwise, Set n := n+1 and go to Step 1.

4. MAIN RESULTS

Now, we are ready to give our main results.

Lemma 4.1. Let {xn} and {yn} be the two sequences generated by Algorithm 3.1.

i. λ ( f (yn,y)− f (yn,yn+1))≥ 〈Jxn+1− Jyn+1,y− yn+1〉 for all y ∈C and n≥ 0.
ii. If yn+1 = yn = xn+1, then xn+1 ∈ EP( f ,C).

iii. For all x∗ ∈ EP( f ,C), the following estimate holds

φ(x∗,xn+1) ≤ φ(x∗,xn)− (1− 2λL2

c
)φ(xn+1,yn)

−(1− 4λL1

c
)φ(yn,xn)+

4λL1

c
φ(xn,yn−1). (4.1)

Proof. i. From the definition of yn+1 and Lemma 2.6, we have that

0 ∈ ∂2λ f (yn,yn+1)+
1
2

∂1φ(yn+1,xn)+NC(yn+1).

Therefore, there exists w ∈ ∂2 f (yn,yn+1) and w̄ ∈ NC(yn+1) such that

λw+ Jyn+1− Jxn+1 + w̄ = 0.

Thus, we have from the definition of NC that

〈Jxn+1− Jyn+1,y− yn+1〉 = λ 〈w,y− yn+1〉+ 〈ŵ,y− yn+1〉

≤ λ 〈w,y− yn+1〉, ∀y ∈C. (4.2)

Again, since w ∈ ∂2 f (yn,yn+1), we have

〈w,y− yn+1〉 ≤ f (yn,y)− f (yn,yn+1), ∀y ∈C. (4.3)

Combining (4.2) and (4.3), we obtain

λ ( f (yn,y)− f (yn,yn+1))≥ 〈Jxn+1− Jyn+1,y− yn+1〉, ∀y ∈C. (4.4)

ii. If yn+1 = yn = xn+1, then from (4.4), Condition (A1) and λ > 0, we obtain f (yn,y) ≥ 0, for all
y ∈C. Thus xn+1 = yn ∈ EP( f ,C).

iii. From xn+1 ∈ Tn and the definition of Tn, we have

〈Jxn−λwn− Jyn,xn+1− yn〉 ≤ 0.

Hence

〈Jxn− Jyn,xn+1− yn〉 ≤ λ 〈wn,xn+1− yn〉. (4.5)

Moreover, since wn ∈ ∂2 f (yn−1,yn), we have

〈wn,y− yn〉 ≤ f (yn−1,y)− f (yn−1,yn), ∀y ∈ E (4.6)

Put y = xn+1. From (4.5) and (4.6), we obtain

〈Jxn− Jyn,xn+1− yn〉 ≤ λ ( f (yn−1,xn+1)− f (yn−1,yn)). (4.7)
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From the definition of xn+1 and by similar arguments as in the proof of (i), we have

λ ( f (yn,y)− f (yn,xn+1))≥ 〈Jxn− Jxn+1,y− xn+1〉, ∀y ∈ Tn.

Now, letting y = x∗, we have

λ ( f (yn,x∗)− f (yn,xn+1))≥ 〈Jxn− Jxn+1,x∗− xn+1〉. (4.8)

Since x∗ ∈ EP( f ,C), f (x∗,yn) ≥ 0. Therefore, from the pseudomonotonicity of f , we have
f (yn,x∗)≤ 0. Hence, it follows from relation (4.8) that

−λ f (yn,xn+1)≥ 〈Jxn− Jxn+1,x∗− xn+1〉.

Thus

〈Jxn− Jxn+1,xn+1− x∗〉 ≥ λ f (yn,xn+1). (4.9)

Since f is Lipschitz-type continuous, we have

f (yn,xn+1) ≥ ( f (yn−1,xn+1)− f (yn−1,yn))

−L1||yn−1− yn||2−L2||yn− xn+1||2. (4.10)

But from the triangular inequality, we have

||yn−1− yn||2 ≤ (||yn−1− xn||+ ||xn− yn||)2

≤ 2(||yn−1− xn||2 + ||xn− yn||2). (4.11)

We now have from (4.10), (4.11) and Lemma 2.4 that

f (yn,xn+1) ≥ ( f (yn−1,xn+1)− f (yn−1,yn))−2L1||yn−1− xn||2

−2L1||xn− yn||−L2||yn− xn+1||2

≥ ( f (yn−1,xn+1)− f (yn−1,yn)−
2L1

c
φ(xn,yn−1)

−2L1

c
φ(yn,xn)−

L2

c
φ(xn+1,yn). (4.12)

Therefore, from (4.7), (4.8), (4.9) and (4.12), we have

〈Jxn− Jxn+1,xn+1− x∗〉 ≥ 〈Jxn− Jyn,xn+1− yn〉−
2λL1

c
φ(xn,yn−1)

−2λL1

c
φ(yn,xn)−

λL2

c
φ(xn+1,yn). (4.13)

Observe that

〈Jxn− Jxn+1,xn+1− x∗〉= 1
2
[φ(x∗,xn)−φ(x∗,xn+1)−φ(xn+1,xn)] (4.14)

and

〈Jxn− Jyn,xn+1− yn〉 = −〈Jxn− Jyn,yn− xn+1〉

= −1
2
[φ(xn+1,xn)−φ(xn+1,yn)−φ(yn,xn)]

=
1
2
[φ(xn+1,yn)+φ(yn,xn)−φ(xn+1,xn)]. (4.15)
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Thus, from (4.13), (4.14) and (4.15), we get

φ(x∗,xn)−φ(x∗,xn+1) ≥ φ(xn+1,yn)+φ(yn,xn)−
2λL1

c
φ(xn,yn−1)

−2λL1

c
φ(yn,xn)−

λL2

c
φ(xn+1,yn), (4.16)

which implies

φ(x∗,xn+1) ≤ φ(x∗,xn)− (1− 2λL2

c
)φ(xn+1,yn)

−(1− 4λL1

c
)φ(yn,xn)+

4λL1

c
φ(xn,yn−1). (4.17)

�

Theorem 4.2. Let C be a nonempty closed and convex subset of E and f : E×E → R be a bifunction
such that Conditions (A1)-(A6) are satisfied. Then the sequences {xn} and {yn} generated by Algorithm
3.1 converge weakly to some p ∈ EP( f ,C). Moreover, p = lim

n→∞
ΠEP( f ,C)(xn).

Proof. First, we show that {xn} is bounded.
Summing up inequality (4.17) for every N ≥ 1, we obtain

φ(x∗,xN+1) ≤ φ(x∗,x0)+
4λL1

c
φ(x1,y0)

−
N

∑
n=1

(1− 2λL2

c
− 4λL1

c
)φ(xn+1,yn)

−
N

∑
n=1

(1− 4λL1

c
)φ(yn,xn). (4.18)

From (B5), we have that

1− 2λL2

c
− 4λL1

c
> 0

and consequently 1− 4λL1
c > 0. This together with inequality (4.18) gives that {φ(x∗,xN+1)} is bounded

for all N ≥ 1. Thus, {xn} is also bounded. Moreover, it follows from inequality (4.18) that
N

∑
n=1

(1− 2λL2

c
− 4λL1

c
)φ(xn+1,yn)< ∞ (4.19)

and
N

∑
n=1

(1− 4λL1

c
)φ(yn,xn)< ∞. (4.20)

Therefore, we have from (B5) that

lim
n→∞

φ(xn+1,yn) = lim
n→∞

φ(yn,xn) = 0,

which implies that

lim
n→∞
||xn+1− yn||= lim

n→∞
||yn− xn||= 0. (4.21)

Now from the triangular inequality, we have

||xn+1− xn|| ≤ ||xn+1− yn||+ ||yn− xn|| → 0,n→ ∞. (4.22)
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Also,

||yn−1− yn|| ≤ ||yn−1− xn||+ ||xn− yn|| → 0,n→ ∞. (4.23)

Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀ p. Also, since ||xni −
yni || → 0, we have yni ⇀ p. Since C is a closed and convex subset of E, we have that C is weakly
closed. Hence, it follows from {yni} ⊂C that p ∈C. Also, from (4.4), with n = ni and the Lipschitz-type
continuity of f , we have

λ f (yni ,y) ≥ λ f (yni ,yni+1)+ 〈Jxni+1− Jyni+1,y− yni+1〉

≥ λ ( f (yni−1,yni+1)− f (yni−1,yni))−λL1||yni−1− yni ||2

−λL2||yni− yni+1||2 + 〈Jxni+1− Jyni+1,y− yni+1〉. (4.24)

Again from (4.4) with n = ni−1, we obtain

λ ( f (yni−1,y)− f (yni−1,yni)≥ 〈Jxni− Jyni ,y− yni〉, ∀y ∈C.

This with y = yni+1 leads to

λ ( f (yni−1,y)− f (yni−1,yni)≥ 〈Jxni− Jyni ,yni+1− yni〉. (4.25)

Combining relations (4.24) and (4.25), we have

λ f (yni ,y) ≥ 〈Jxni− Jyni ,yni+1− yni〉

−λL1||yni−1− yni ||2−λL2||yni− yni+1||2

+〈Jxni+1− Jyni+1,y− yni+1〉, ∀y ∈C. (4.26)

Passing to the limit in (4.26) as ni → ∞ and using hypothesis (B3), (4.21) and the uniformly norm-to-
norm continuity of the normalised duality mapping J, we have f (p,y)≥ 0 for all y ∈C or p ∈ EP( f ,C).

Next, we show that xn ⇀ p. Suppose for contradiction that there is a subsequence {xn j} of {xn} such
that xn j ⇀ q and q 6= p. From (4.1) and 1− 2λL2

c −
4λL1

c > 0, we have

φ(x∗,xn+1)+
4λL1

c
φ(xn+1,yn)≤ φ(x∗,xn)+

4λL1

c
φ(xn,yn−1). (4.27)

Therefore, for all x∗ ∈ EP( f ,C), there is

lim
n→∞

(φ(x∗,xn)+
4λL1

c
φ(xn,yn−1)) ∈ R.
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Applying Lemma 2.5 twice, we obtain

lim
n→∞

(φ(p,xn)+
4λL1

c
φ(xn,yn−1)) = lim

i→∞
(φ(p,xni)+

4λL1

c
φ(xni ,yni−1))

= liminf
i→∞

φ(p,xni)< liminf
i→∞

φ(q,xni)

= lim
i→∞

(φ(q,xni)+
4λL1

c
φ(xni ,yni−1))

= lim
n→∞

(φ(q,xn)+
4λL1

c
φ(xn,yn−1))

= lim
j→∞

(φ(q,xn j)+
4λL1

c
φ(xn j ,yn j−1))

= liminf
j→∞

(φ(q,xn j)< liminf
j→∞

φ(p,xn j)

= lim
j→∞

(φ(p,xn j)+
4λL1

c
φ(xn j ,yn j−1))

= lim
n→∞

(φ(p,xn)+
4λL1

c
φ(xn,yn−1)).

This is an absurdity. Thus, we conclude that p = q.
We proceed to show that

p = lim
n→∞

ΠEP( f ,C)xn. (4.28)

Clearly,

φ(ΠEP( f ,C)xn+1,xn+1) ≤ φ(ΠEP( f ,C)xn,xn+1)

≤ φ(ΠEP( f ,C)xn,xn)+
4λL1

c
φ(xn,yn−1).

Since ∑
∞
n=1 φ(xn,yn−1)< ∞, we have

lim
n→∞

φ(ΠEP( f ,C)xn,xn) ∈ R.

Thus it follows from Lemma 2.3 that

φ(ΠEP( f ,C)xn,ΠEP( f ,C)xm) ≤ φ(ΠEP( f ,C)xn,xm)−φ(ΠEP( f ,C)xm,xm)

≤ φ(ΠEP( f ,C)xn,xm−1)−φ(ΠEP( f ,C)xm,xm)

+
4λL1

c
φ(xm−1,ym−2)

...

≤ φ(ΠEP( f ,C)xn,xn)−φ(ΠEP( f ,C)xm,xm)

+
4λL1

c

m

∑
k=n

φ(xk−1,yk−2), m > n. (4.29)

Passing to the limit in (4.29) as m,n→ ∞, we obtain

lim
n,m→∞

φ(ΠEP( f ,C)xn,ΠEP( f ,C)xm) = 0,

which implies that
lim

n,m→∞
||ΠEP( f ,C)xn−ΠEP( f ,C)xm||= 0.
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Thus {ΠEP( f ,C)xn} is a Cauchy sequence. Hence there exists the limit

lim
n→∞

ΠEP( f ,C)xn = z ∈ EP( f ,C).

From Lemma 2.2, we have

〈JΠEP( f ,C)xn− Jxn, p−ΠEP( f ,C)xn〉 ≥ 0.

Passing to the limit as n→ ∞, we obtain 〈Jz− Jp, p− z〉 ≥ 0, which implies

φ(z, p)+φ(p,z) = 2〈Jz− Jp,z− p〉 ≤ 0.

Hence z = p. �

5. APPLICATIONS

Let E be a real Banach space and let C be a nonempty, closed and convex subset of E. Let A : E→ E∗

be an operator. The variational inequality problem, (for short, V I(A,C)) associated with A and C is
defined as: find x ∈C such that

〈Ax;z− x〉 ≥ 0; ∀z ∈C. (5.1)

We denote by Γ the solution set of variational inequality (5.1).

Remark 5.1. In the special case where f (x,y) = 〈Ax,y− x〉, the EP (1.1) becomes the V I(A,C) (5.1).
Moreover Algorithm 3.1 is reduced to the following.

Algorithm 5.2. Initialization: Choose x0 ∈ E, y0 ∈C, a control parameter λ > 0, and compute

x1 = ΠCJ−1(Jx0−λAy0),

y1 = ΠCJ−1(Jx1−λAy0).

Iterative step for n≥ 1.
Step 1. construct a half space

Tn = {z ∈ E : 〈Jxn−λAyn−1− Jyn,z− yn〉 ≤ 0}.

Step 2. {
xn+1 = ΠTnJ−1(Jxn−λyn),

yn+1 = ΠCJ−1(Jxn+1−λAyn).
(5.2)

Stopping criterion: If yn+1 = yn = xn+1, stop. Otherwise, Set n := n+1 and go to Step 1.

Therefore, if we let f (x,y) = 〈Ax,y− x〉, and assume that A : E → E∗ satisfies the following condi-
tions:
(1) A is a pseudo-monotone operator on C, that is, for all x,y ∈C, 〈Ax,y− x〉 ≥ 0⇒ 〈Ay,x− y〉 ≤ 0;
(2) A is L-Lipschitz-continuous on E, that is, there exists a constant L> 0 such that ||Ax−Ay|| ≤ L||x−y||
for all x,y ∈ E (It was shown [11] that if A is a Lipschitz continuous operator, f (x,y) = 〈Ax,y− x〉〉 sat-
isfies the Lipschitz-type condition with L1 = L2 =

L
2 .

(3) A is sequentially weakly continuous on C, that is, for each sequence {xn} ⊂ C, we have that {xn}
converges weakly to x ∈ E implies {Axn} converges weakly to Ax.
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(4) The solution set of V I(A,C) (5.1) is nonempty.

Then from Lemma 4.1 and Theorem 4.2 with f (x,y) = 〈Ax,y−x〉, and A satisfying conditions (1)-(4),
we obtain the desired convergence results.
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