LINEAR CONVERGENCE OF AN ITERATIVE ALGORITHM FOR SOLVING THE MULTIPLE-SETS SPLIT EQUALITY PROBLEM

MEILING FENG, LUOYI SHI*, RUDONG CHEN

Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, China

Abstract. In this paper, we propose a subgradient projection algorithm for solving the multiple-sets split equality problem (MSSEP), and investigate its linear convergence. We involve the bounded linear regularity for the MSSEP, and construct several sufficient conditions to ensure the linear convergence of our proposed algorithm. One of the highlights of our algorithm is that metric projections onto given feasibility sets are easily calculated (that is, the projections onto half-spaces). Some numerical results are provided to illustrate the validity of our proposed algorithm.

Keywords. Linear convergence; Bounded linear regularity; Multiple-sets split equality problem; Subgradient projection algorithm.

2010 Mathematics Subject Classification. 47H05, 90C33.

1. INTRODUCTION

Let $H_1$, $H_2$, and $H_3$ be three real Hilbert spaces. Let $C$ and $Q$ be nonempty closed and convex subsets of $H_1$ and $H_2$, respectively. Let $A : H_1 \to H_3$ and $B : H_2 \to H_3$ be bounded and linear operators. The split equality problem (in short, SEP), as a generalization of the split feasibility problem, was proposed by Moudafi [1], which is formulated as

finding $x \in C$ and $y \in Q$ such that $Ax = By$. \hspace{1cm} (1.1)

This class of problem has received much attention due to its broad applications, such as, intensity-modulated radiation therapy, decomposition methods for partial differential equations, and applications in game theory, etc.

Recently, various algorithms were introduced to solve the split equality problem. In 2013, Byrne and Moudafi [2] proposed the following algorithms:
The general structure of the paper is as follows. In Section 2, we involve the concept of bounded linear regularity for the MSSEP (1.3) and present some relevant definitions and lemmas which will be needed
for our convergence analysis. In Section 3, we propose a subgradient projection algorithm and give its linear convergence. In Section 4, some numerical results are presented to illustrate the validity of our proposed algorithm.

2. Preliminaries

Let $H$ be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$, respectively. $I$ denotes the identity operator on $H$. For a set $S \subset H$, $\text{int}S$ denotes the interior of $S$. We denote by $B$ and $\overline{B}$ to the unit open metric ball and unit closed metric ball with center at origin, respectively, that is,

$$B := \{ v \in H : \|v\| < 1 \} \quad \text{and} \quad \overline{B} := \{ v \in H : \|v\| \leq 1 \}.$$ 

For an element $w \in H$ and a set $S \subset H$, the classical metric projection of $w$ onto $S$ and the distance from $w$ onto $S$, denoted by $P_S(w)$ and $d_S(w)$, respectively, which are defined by

$$P_S(w) := \arg\min\{\|w - v\| : v \in S\} \quad \text{and} \quad d_S(w) := \inf\{\|w - v\| : v \in S\}.$$ 

The following lemma presents several important properties of the projection operator.

Lemma 2.1. [15] Let $C$ be a closed, convex, and nonempty subset of $H$. Then, for any $x, y \in H$ and $z \in C$,

(i) $\langle x - P_Cx, z - P_Cx \rangle \leq 0$;

(ii) $\|P_Cx - P_Cy\|^2 \leq \langle P_Cx - P_Cy, x - y \rangle$;

(iii) $\|P_Cx - z\|^2 \leq \|x - z\|^2 - \|P_Cx - x\|^2$.

Let $G : H \to H$ be a bounded linear operator. The kernel of $G$ is denoted by $\ker G = \{ x \in H : Gx = 0 \}$, and the orthogonal complement of $\ker G$ is denoted by $(\ker G) ^\perp = \{ y \in H : \langle x, y \rangle = 0 \text{ for any } x \in \ker G \}$. It is known that both $\ker G$ and $(\ker G) ^\perp$ are closed subspaces of $H$.

The aim of this section is to construct several sufficient conditions to ensure the linear convergence of the subgradient projection algorithm for MSSEP (1.3). Throughout this section, we use $\Gamma$ to denote the solution set of MSSEP (1.3), that is,

$$\Gamma := S \cap G^{-1}(0) = \{ w \in S : Gw = 0 \},$$

and assume that the MSSEP is consistent. Thus, $\Gamma$ is a nonempty closed and convex set.

Recall that a sequence $\{w_k\}$ in $H$ is said to be converge linearly to its limit $w$ (with rate $\beta \in [0, 1)$) if there exists $\alpha > 0$ and a positive integer $N$ such that

$$\|w_k - w\| \leq \alpha \beta^k \quad \text{for all } k \geq N.$$ 

Next, we will give the concept of bounded linear regularity.

Definition 2.2. [16] Let $\{S_i\}_{i \in I}$ be a family of closed convex subsets of a real Hilbert space $H$ and $S = \bigcap_{i \in I} S_i \neq \emptyset$. The family $\{S_i\}_{i \in I}$ is said to be boundedly linearly regular if, for each $r > 0$, there exists a constant $\gamma > 0$ such that

$$d_S(w) \leq \gamma \sup\{d_S(w) : i \in I\} \quad \text{for all } w \in rB.$$ 

Lemma 2.3. [17] Let $\{S_i\}_{i \in I}$ be a family of closed convex subsets of a real Hilbert space $H$. If $S_i \cap \text{int}(\bigcap_{j \in \Lambda \setminus \{i\}} S_j) \neq \emptyset$, then the family $\{S_i\}_{i \in I}$ is boundedly linearly regular.
Definition 2.4. The MSSEP is said to satisfy bounded linear regularity property if, for each \( r > 0 \), there exists a constant \( \tau_r > 0 \) such that
\[
\tau_r d_r(w) \leq \max\{d_S(w), \|Gw\|\} \quad \text{for all } w \in rB. \tag{2.1}
\]

Lemma 2.5. [18] Let \( G : H \to H_3 \) be a bounded linear operator. Then \( G \) is injective and has closed range if and only if \( G \) is bounded below, i.e., there exists a positive constant \( \gamma \) such that \( \|Gw\| \geq \gamma \|w\| \) for all \( w \in H \).

Lemma 2.6. Let \( \{S, \ker G\} \) be boundedly linearly regular and \( G \) has closed range. Then the MSSEP (1.3) satisfies the bounded linear regularity property.

Proof. Since \( \{S, \ker G\} \) is boundedly linearly regular, for any \( r > 0 \), there exists \( \tau_r > 0 \) such that
\[
d_{\Gamma}(w) = d_{S \cap \ker G}(w) \leq \tau_r \max\{d_S(w), d_{\ker G}(w)\} \quad \text{for all } w \in rB. \tag{2.2}
\]

Since \( G \) restricted to \( (\ker G)^\perp \) is injective and has closed range, it follows from Lemma 2.5 that there exists \( v > 0 \) such that
\[
\|Gw_1\| \geq v \|w_1\| \quad \text{for all } w_1 \in (\ker G)^\perp.
\]

Hence,
\[
d_{G^{-1}(0)}(w) \leq \frac{1}{v} \|Gw\| \quad \text{for all } w \in H. \tag{2.3}
\]

Combining (2.2) and (2.3), we obtain
\[
d_r(w) \leq \tau_r \max\{d_S(w), \frac{1}{v} \|Gw\|\} \quad \text{for all } w \in rB.
\]

Next, the proof is divided into two cases.

Case 1: suppose that \( \frac{1}{v} < 1 \). Then
\[
d_r(w) \leq \tau_r \max\{d_S(w), \frac{1}{v} \|Gw\|\} \leq \tau_r \max\{d_S(w), \|Gw\|\} \quad \text{for all } w \in rB.
\]

That is,
\[
\frac{1}{\tau_r} d_r(w) \leq \max\{d_S(w), \|Gw\|\} \quad \text{for all } w \in rB.
\]

Case 2: suppose that \( \frac{1}{v} \geq 1 \). Then
\[
d_r(w) \leq \tau_r \max\{d_S(w), \frac{1}{v} \|Gw\|\} \leq \frac{\tau_r}{v} \max\{d_S(w), \|Gw\|\} \quad \text{for all } w \in rB.
\]

That is,
\[
\frac{v}{\tau_r} d_r(w) \leq \max\{d_S(w), \|Gw\|\} \quad \text{for all } w \in rB.
\]

The proof is complete. \( \square \)

Now, we are in a position to present the definition of subdifferential which is vital for constructing linear convergence later.

Definition 2.7. [17] Let \( f : H \to R \) be a convex function. The subdifferential of \( f \) at \( x \) is defined as
\[
\partial f(x) := \{\xi \in H : f(y) \geq f(x) + \langle \xi, y - x \rangle \text{ for all } y \in H\}.
\]
Lemma 2.8. [17] Let $f : H \to R$ be a convex function, $x_0 \in H$, and $f$ be subdifferentiable at $x_0$. Suppose that $C = \{x \in H : f(x) \leq 0\}$ is nonempty for any $g(x_0) \in \partial f(x_0)$, and define $S$ by

$$S := C(f, x_0, g(x_0)) := \{x \in H : f(x_0) + \langle g(x_0), x - x_0 \rangle \leq 0\}.$$  

Then,

(i) $C \subseteq S$. If $g(x_0) \neq 0$, then $S$ is a halfspace; otherwise, $S = H$;

(ii) $P_S(x_0) = x_0 - \frac{\max \{f(x_0), 0\}}{\|g(x_0)\|} g(x_0)$;

(iii) $d_S(x_0) = \frac{\max \{f(x_0), 0\}}{\|g(x_0)\|}$.

The following equality and concept of Fejér monotone sequence is essential.

Lemma 2.9. [15] Let $\{x_n\}_{n \in I}$ be a finite family in $H$, and $\{\lambda_n\}_{n \in I}$ be a finite family in $R$ with $\sum_{n \in I} \lambda_n = 1$. Then the following equality holds:

$$\|\sum_{n \in I} \lambda_n x_n \|^2 = \sum_{n \in I} \lambda_n \|x_n\|^2 - \frac{1}{2} \sum_{n \in I} \sum_{m \in I} \lambda_n \lambda_m \|x_n - x_m\|^2, \quad n \geq 2.$$  

Definition 2.10. [15] Let $C$ be a nonempty subset of $H$, and $\{x_k\}$ be a sequence in $H$. $\{x_k\}$ is said to be Fejér monotone with respect to $C$, if

$$\|x_{k+1} - z\| \leq \|x_k - z\|, \quad \forall z \in C.$$  

Obviously, a Fejér monotone sequence $\{x_k\}$ is bounded and $\lim_{k \to \infty} \|x_k - z\|$ exists.

3. Main results

In this section, we will propose the subgradient projection algorithm and show that the algorithm converges linearly to a solution of MSSEP (1.3). Without loss of generality, the sets $C_i$ and $Q_j$ could be expressed as

$$C_i := \{x \in H_1 : c_i(x) \leq 0\},$$  

and

$$Q_j := \{y \in H_2 : q_j(y) \leq 0\},$$  

where $c_i : H_1 \to R$ and $q_j : H_2 \to R$ are convex functions, for all $i, j = 1, 2, \cdots, t$ ($t$ is positive integer). Suppose that both $c_i$ and $q_j$ are subdifferentiable on $H_1$ and $H_2$, respectively, and that $\partial c_i$ and $\partial q_j$ are bounded operators (i.e., bounded on bounded sets). Define:

$$C_{i,k} := \{x \in H_1 : c_i(x_k) + \langle \xi_{i,k}, x - x_k \rangle \leq 0\},$$  

where $\xi_{i,k} \in \partial c_i(x_k)$, $i = 1, 2, \cdots, t$, and

$$Q_{j,k} := \{y \in H_2 : q_j(y_k) + \langle \eta_{j,k}, y - y_k \rangle \leq 0\},$$  

where $\eta_{j,k} \in \partial q_j(y_k)$, $j = 1, 2, \cdots, t$.

Obviously, $C_i \subseteq C_{i,k}$ and $Q_j \subseteq Q_{j,k}$ for all $k \in N$ and $i, j = 1, 2, \cdots, t$. Notice that $C_{i,k}$ and $Q_{j,k}$ are half-spaces and therefore the corresponding metric projections have closed forms. Since $C_{i,k}$ and $Q_{j,k}$ have specific forms, the metric projections onto $C_{i,k}$ and $Q_{j,k}$ can be calculated directly (see the Lemma 2.8).

Let $S_i = C_i \times Q_i$ and $S_{i,k} = C_{i,k} \times Q_{i,k}$ for all $k \in N$ and $i = 1, 2, \cdots, t$. Then, we have $S_i \subseteq S_{i,k}$. and $S_{i,k}$ is half-space for all $k \in N$ and $i = 1, 2, \cdots, t$;
Dang [19] defined the proximity function \( p(x,y) \) of the MSSEP (1.2) as follows:

\[
p(x,y) := \frac{1}{2} \sum_{i=1}^{r} \alpha_i \| P_{C_i} x - x \|^2 + \frac{1}{2} \sum_{j=1}^{r} \lambda_j \| P_{Q_j} y - y \|^2 + \frac{1}{2} \| Ax - By \|^2 ,
\]

where \( \alpha_i > 0 \) for all \( i = 1, 2, \cdots, t \) and \( \lambda_j > 0 \) for all \( j = 1, 2, \cdots, r \) with \( \sum_{i=1}^{r} \alpha_i + \sum_{j=1}^{r} \lambda_j = 1 \). \( C_i \) and \( Q_j \) are defined by (3.1) and (3.2), respectively. Hence, the function \( p(x,y) \) is convex and differentiable with gradient

\[
\nabla p(x,y) = \left( \sum_{i=1}^{r} \alpha_i (x - P_{C_i} x) + A^* (Ax - By) , \sum_{j=1}^{r} \lambda_j (y - P_{Q_j} y) - B^* (Ax - By) \right)^T .
\]

They constructed following iterative algorithm for the MSSEP (1.2):

\[
\begin{align*}
\begin{cases}
x_{k+1} = P_{\Omega_1}[x_k - \gamma(\sum_{i=1}^{r} \alpha_i (x_k - P_{C_i} x_k) + A^* (Ax_k - By_k))] , \\
y_{k+1} = P_{\Omega_2}[y_k - \gamma(\sum_{j=1}^{r} \lambda_j (y_k - P_{Q_j} y_k) - B^* (Ax_k - By_k))] ,
\end{cases}
\tag{3.3}
\end{align*}
\]

where

\[
\gamma \in (0, \min\{\frac{1}{4\|A\|^2}, \frac{1}{2}, \frac{1}{4\|B\|^2}\}) ,
\]

\( \Omega_1 \subset H_1 \) and \( \Omega_2 \subset H_2 \) are auxiliary simple sets.

Now, we use the modification of (3.3) to give our subgradient projection algorithm for the MSSEP (1.3).

**Algorithm 3.1.** For an arbitrarily initial point \( w_0 = (x_0, y_0) \in H \), the sequence \( \{w_{k+1}\} \) is generated by

\[
w_{k+1} = w_k - \gamma_k \left( \sum_{i=1}^{r} \alpha_i (w_k - P_{S_i,k} w_k) + G^* G w_k \right) ,
\tag{3.4}
\]

or component-wise

\[
\begin{align*}
\begin{cases}
x_{k+1} = x_k - \gamma_k \left( \sum_{i=1}^{r} \alpha_i (x_k - P_{C_i,k} x_k) + A^* (Ax_k - By_k) \right) , \\
y_{k+1} = y_k - \gamma_k \left( \sum_{j=1}^{r} \lambda_j (y_k - P_{Q_j,k} y_k) - B^* (Ax_k - By_k) \right) ,
\end{cases}
\end{align*}
\]

where, at each iteration \( k \):

(i) \( 0 < \lim_{k \to \infty} \gamma_k \leq \lim_{k \to \infty} \gamma_k < \min\{1, \frac{1}{\|G\|}\} \);  

(ii) \( \{\alpha_i\}_{i=1}^{r} \subset (0, +\infty) \) and \( \sum_{i=1}^{r} \alpha_i = 1 \).

**Theorem 3.2.** Let the MSSEP (1.3) satisfy the bounded linear regularity property, and the sequence \( \{w_k\} \) be defined by Algorithm 3.1. If the following conditions are satisfied:

(a) \( \{w_k\} \) is linearly focusing, that is, there exists \( \beta > 0 \) such that

\[
\beta d_S(w_k) \leq d_{S_i,k}(w_k) \quad \text{for any} \ i \in \{1, 2, \cdots, t\} ;
\]

(b) There is \( w = (x,y) \in S_0 \) such that \( c_r(x) < 0, q_r(y) < 0, r \in \{1, 2, \cdots, t\} \setminus \{i\} \), i.e., \( S_i \cap \text{int}( \bigcap_{r \in \Gamma \setminus \{i\}} S_r ) \neq \emptyset \) \( (\Gamma = \{1, 2, \cdots, t\}) \).

Then, \( \{w_k\} \) converges linearly to a solution of MSSEP (1.3).
Proof. First, we will show that the sequence \( \{w_k\} \) is Fejér monotone with respect to \( \Gamma \).

Taking \( \bar{w} \in \Gamma \), one has \( G\bar{w} = 0 \), and

\[
\|w_{k+1} - \bar{w}\|^2 \\
= \|w_k - \gamma_k (\sum_{i=1}^t \alpha_i (w_k - P_{S_i,k}w_k) + G^*Gw_k) - \bar{w}\|^2 \\
= \|w_k - \bar{w}\|^2 - 2\gamma_k \langle w_k - \bar{w}, \sum_{i=1}^t \alpha_i (w_k - P_{S_i,k}w_k) + G^*Gw_k \rangle \\
+ \gamma_k^2 \sum_{i=1}^t \alpha_i (w_k - P_{S_i,k}w_k) + G^*Gw_k \|^2 \\
\leq \|w_k - \bar{w}\|^2 + 2\gamma_k^2 \sum_{i=1}^t \alpha_i (w_k - P_{S_i,k}w_k) \|w_k - \bar{w}\|^2 + 2\gamma_k^2 \|G^*Gw_k\|^2 \\
- 2\gamma_k \langle w_k - \bar{w}, \sum_{i=1}^t \alpha_i (w_k - P_{S_i,k}w_k) \rangle - 2\gamma_k \langle w_k - \bar{w}, G^*Gw_k \rangle.
\]

By Lemma 2.9, we have

\[
\| \sum_{i=1}^t \alpha_i (w_k - P_{S_i,k}w_k) \|^2 \\
= \sum_{i=1}^t \alpha_i \|w_k - P_{S_i,k}w_k\|^2 - \frac{1}{2} \sum_{i=1}^t \sum_{j=1}^t \alpha_i \alpha_j \| (w_k - P_{S_i,k}w_k) - (w_k - P_{S_j,k}w_k) \|^2 \\
\leq \sum_{i=1}^t \alpha_i \|w_k - P_{S_i,k}w_k\|^2.
\]

Hence,

\[
\|w_{k+1} - \bar{w}\|^2 \leq \|w_k - \bar{w}\|^2 + 2\gamma_k^2 \sum_{i=1}^t \alpha_i \|w_k - P_{S_i,k}w_k\|^2 + 2\gamma_k^2 \|G^*Gw_k\|^2 \\
- 2\gamma_k \langle w_k - \bar{w}, \sum_{i=1}^t \alpha_i (w_k - P_{S_i,k}w_k) \rangle - 2\gamma_k \langle w_k - \bar{w}, G^*Gw_k \rangle.
\]  

(3.5)

From the properties of the projection operator (i.e., Lemma 2.1) and the definition of the adjoint operator, we get the following estimations:

\[
\langle w_k - \bar{w}, \sum_{i=1}^t \alpha_i (w_k - P_{S_i,k}w_k) \rangle = \sum_{i=1}^t \alpha_i \langle w_k - \bar{w}, w_k - P_{S_i,k}w_k \rangle \\
= \sum_{i=1}^t \alpha_i (\langle w_k - P_{S_i,k}w_k, w_k - P_{S_i,k}w_k \rangle + \langle P_{S_i,k}w_k - \bar{w}, w_k - P_{S_i,k}w_k \rangle) \\
= \sum_{i=1}^t \alpha_i (\|w_k - P_{S_i,k}w_k\|^2 + \langle P_{S_i,k}w_k - \bar{w}, w_k - P_{S_i,k}w_k \rangle) \\
\geq \sum_{i=1}^t \alpha_i \|w_k - P_{S_i,k}w_k\|^2,
\]

and

\[
\langle w_k - \bar{w}, G^*Gw_k \rangle = \langle Gw_k - G\bar{w}, Gw_k \rangle = \|Gw_k\|^2.
\]  

(3.7)
Substituting (3.6) and (3.7) into (3.5), we obtain

\[ \|w_{k+1} - \bar{w}\|^2 \leq \|w_k - \bar{w}\|^2 + 2\gamma_k \sum_{i=1}^{I} \alpha_i \|w_k - P_{S_i,k}w_k\|^2 + 2\gamma_k^2 \|G^* Gw_k\|^2 \]
\[ - 2\gamma_k \sum_{i=1}^{I} \alpha_i \|w_k - P_{S_i,k}w_k\|^2 - 2\gamma_k \|Gw_k\|^2 \] \hspace{1cm} (3.8)
\[ = \|w_k - \bar{w}\|^2 - 2\gamma_k (1 - \gamma_k) \sum_{i=1}^{I} \alpha_i \|w_k - P_{S_i,k}w_k\|^2 - 2\gamma_k (1 - \gamma_k \gamma \|G^* Gw_k\|^2) \|Gw_k\|^2. \]

According to (i) in Algorithm 3.1, we conclude from (3.8) that
\[ \|w_{k+1} - \bar{w}\| \leq \|w_k - \bar{w}\|. \]

Hence, the sequence \( \{w_k\} \) is Fejér monotone with respect to \( \Gamma \). It follows that \( \{w_k\} \) is bounded and \( \lim_{k \to \infty} \|w_k - \bar{w}\| \) exists.

Next, we show that \( \{w_k\} \) converges linearly to a solution of MSSEP (1.3).

Since \( \bar{w} \) is taken arbitrarily in \( \Gamma \), we obtain from (3.8) that
\[ d^2_F(w_{k+1}) \leq d^2_F(w_k) - 2\gamma_k (1 - \gamma_k) \sum_{i=1}^{I} \alpha_i d^2_{S_i,k}(w_k) - 2\gamma_k (1 - \gamma_k \gamma \|G^* Gw_k\|^2) \|Gw_k\|^2. \] \hspace{1cm} (3.9)

Note that \( \{w_k\} \) is linearly focusing, there exists \( \beta > 0 \) such that
\[ \beta d_{S_i}(w_k) \leq d_{S_i,k}(w_k) \quad \text{for all } i \in \{1, 2, \cdots, t\}. \] \hspace{1cm} (3.10)

We see from condition (b) that \( S_i \cap \text{int}( \bigcap_{r \in F_i} S_r) \neq \emptyset \). By Lemma 2.3, we obtain that \( \{S_i\}_{i=1}^{t} \) is boundedly linearly regular. By Definition 2.2, there exists \( \tau > 0 \) such that
\[ d_S(w_k) \leq \tau \max\{d_{S_i}(w_k), i = 1, 2, \cdots, t\}, \]
that is,
\[ \frac{1}{\tau} d_S(w_k) \leq \max\{d_{S_i}(w_k), i = 1, 2, \cdots, t\}. \] \hspace{1cm} (3.11)

Substituting (3.10) and (3.11) into (3.9), we obtain
\[ d^2_F(w_{k+1}) \leq d^2_F(w_k) - 2\gamma_k (1 - \gamma_k) \sum_{i=1}^{I} \alpha_i \beta^2 d^2_{S_i}(w_k) - 2\gamma_k (1 - \gamma_k \gamma \|G^* Gw_k\|^2) \|Gw_k\|^2 \]
\[ \leq d^2_F(w_k) - 2\gamma_k (1 - \gamma_k) \alpha \beta^2 \max\{d^2_{S_i}(w_k), i \in I\} - 2\gamma_k (1 - \gamma_k \gamma \|G^* Gw_k\|^2) \|Gw_k\|^2 \] \hspace{1cm} (3.12)
\[ \leq d^2_F(w_k) - 2\gamma_k (1 - \gamma_k) \frac{\alpha \beta^2}{\tau^2} d^2_S(w_k) - 2\gamma_k (1 - \gamma_k \gamma \|G^* Gw_k\|^2) \|Gw_k\|^2, \]
where \( \alpha = \min\{\alpha_i, i = 1, 2, \cdots, t\} \) and \( I = \{1, 2, \cdots, t\} \). From (i) in Algorithm 3.1, one deduces that
\[ \lim_{k \to \infty} \inf \left( (1 - \gamma_k) \frac{\alpha \beta^2}{\tau^2} \right) > 0, \]
and
\[ \lim_{k \to \infty} \inf \left( 1 - \gamma_k \frac{\|G^* Gw_k\|^2}{\|Gw_k\|^2} \right) > 0. \]

Thus, there exist \( N \) and \( M \) such that
\[ a_1 := \inf_{k \geq N} \left( (1 - \gamma_k) \frac{\alpha \beta^2}{\tau^2} \right) > 0, \]
Since 0 < \liminf \gamma_k \leq \limsup \gamma_k < \min\{1, \frac{1}{\|G\|^2}\}, it follows that \{w_k\} is a Cauchy sequence and converges to a solution \(w^*\) of MSSEP (1.3) satisfying
\[
\|w_{k+1} - w^*\| \leq d_T(w_L)q^{\Sigma_{\gamma_{k+1}}^{\gamma}} \quad \text{for all } k \geq L.
\]

Let
\[
\delta := \max\{d_T(w_L)q^{-\Sigma_{\gamma_{k+1}}^{\gamma}}, \max\{\|w_i - w^*\|q^{-\Sigma_{\gamma_{i}}^{\gamma}}, i = 1, 2, \ldots, L\}\}.
\]
Then,
\[
\|w_k - w^*\| \leq \delta q^{\Sigma_{\gamma_k}^{\gamma}}.
\]
Hence, \{w_k\} converges linearly to \(w^*\). The proof is complete. \(\square\)

If \(t = 1\) in Algorithm 3.1, we have the iterative algorithm for solving the SEP (1.1).
**Definition 3.3.** The SEP is said to satisfy bounded linear regularity property if, for each \( r > 0 \), there exists a constant \( \tau_r > 0 \) such that

\[
\tau_r d_f(w) \leq \max\{d_S(w), \|Gw\|\} \quad \text{for all } w \in rB.
\]  

(3.15)

where \( S = C \times Q, G = [A, -B] \), and \( w = (x, y) \in C \times Q \).

**Corollary 3.4.** Let SEP (1.1) satisfy the bounded linear regularity property (i.e., (3.15) holds). For an arbitrarily initial point \( w_0 = (x_0, y_0) \in H \), the sequence \( \{w_k\} \) is defined by

\[
w_{k+1} = w_k - \gamma_k ((w_k - P_S w_k) + G^* Gw_k),
\]

(3.16)

or component-wise

\[
\begin{align*}
x_{k+1} &= x_k - \gamma_k ((x_k - P_C x_k) + A^*(Ax_k - By_k)), \\
y_{k+1} &= y_k - \gamma_k ((y_k - P_Q y_k) - B^*(Ax_k - By_k)),
\end{align*}
\]

where \( 0 < \liminf_{k \to \infty} \gamma_k \leq \limsup_{k \to \infty} \gamma_k < \min\{1, \frac{1}{\|G\|^2}\} \). Then, \( \{w_k\} \) converges linearly to a solution of SEP (1.1).

### 4. Numerical Experiments

Let \( H_1 = \mathbb{R}, H_2 = \mathbb{R}^2 \) and \( H_3 = \mathbb{R}^3, c : H_1 \to \mathbb{R} \) and \( q : H_2 \to \mathbb{R} \) are defined by

\[
c(x) = -x^2 \quad \text{and} \quad q(y) = -(y_1^2 + y_2^2) \quad \text{for all } x \in H_1, y = (y_1, y_2) \in H_2.
\]

Then \( C = \{x \in \mathbb{R} : c(x) \leq 0\} = \mathbb{R}, Q = \{y \in \mathbb{R}^2 : q(y) \leq 0\} = \mathbb{R}^2 \). Note that \( C \subseteq C_k \) and \( Q \subseteq Q_k, C_k = \mathbb{R}, Q_k = \mathbb{R}^2 \). \( A : H_1 \to H_3 \) and \( B : H_2 \to H_3 \) are defined by

\[
A(x) = (x, 0, 0) \quad \text{and} \quad B(y, z) = (y, z, 0) \quad \text{for all } (x, y, z) \in \mathbb{R}^3,
\]

respectively. Let \( S = C \times Q = \mathbb{R}^3, G = [A, -B] : H \to H_3 \) be defined by

\[
G(x, y, z) = (x - y, -z, 0) \quad \text{for all } (x, y, z) \in \mathbb{R}^3.
\]

Then \( \ker G = \{(x, x, 0) : x \in \mathbb{R}\} \neq \emptyset \), the range of \( G \) is closed, and the solution set of SEP is

\[
\Gamma = (C \times Q) \cap \ker G = \{(x, x, 0) : x \in \mathbb{R}\}.
\]

It is easy to check that the SEP satisfies the bounded linear regularity property.

Let \( w_0 = (x_0, y_0, z_0) \in C \times Q \). In view of equation (3.16), we have

\[
\begin{align*}
x_{k+1} &= (1 - \gamma_k)x_k + \gamma_k y_k, \\
y_{k+1} &= (1 - \gamma_k)y_k + \gamma_k x_k, \\
z_{k+1} &= (1 - \gamma_k)z_k.
\end{align*}
\]

In algorithm (3.16), we take \( \gamma_k = 0.4, \frac{k}{k+1} \), respectively. Then we have the following numerical results (the \( x \)-coordinate denotes the number of iterations, and the \( y \)-coordinate denotes the logarithm of the error). The whole codes were written in Wolfram Mathematica (version 9.0). All the numerical results were performed on a personal computer with Intel(R) Core(TM)2 CPU 1.66GHz and RAM 2.00GB.

We choose error to be \( 10^{-5}, 10^{-10} \), and initial value \( w_0 = (4, 8, 3), w_0 = (150, 550, 60) \), respectively.
Figure 1. Error $= 10^{-5}, x_1 = 4, y_1 = 8, z_1 = 3, w' = (6,6,0)$

Figure 2. Error $= 10^{-10}, x_1 = 4, y_1 = 8, z_1 = 3, w' = (6,6,0)$

Figure 3. Error $= 10^{-5}, x_1 = 150, y_1 = 550, z_1 = 60, w' = (350,350,0)$

Figure 4. Error $= 10^{-10}, x_1 = 150, y_1 = 550, z_1 = 60, w' = (350,350,0)$
Acknowledgement
This paper was supported by NSFC Grants No.11301379, No.11226125 and No.11671167.

REFERENCES
[12] J. Zhao, Solving split equality fixed-point problem of quasi-nonexpansive mappings without prior knowledge of operators norms, Optimization, 64 (2015), 2619-2630