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ANALYSIS OF A FRACTIONAL ORDER MATHEMATICAL MODEL FOR
TUBERCULOSIS WITH OPTIMAL CONTROL

RUIQING SHI∗, JIANING REN, CUIHONG WANG

School of Mathematics and Computer Science, Shanxi Normal University, Linfen 041000, China

Abstract. In this paper, a fractional-order mathematical model with control is constructed to describe the
transmission of tuberculosis. Two cases are considered: the constant control and the optimal control. In
the former case, the stability conditions of the disease-free equilibrium and the endemic equilibrium are
obtained. In the second case, optimal control theory is applied to the corresponding model. The optimal
control formula is derived by use of the Hamiltonian function and the Pontryagin’s Maximum Principle.
In addition, some numerical simulations are performed to support our analytic results.
Keywords. Fractional order; Tuberculosis; Basic reproduction number; Stability; Optimal control.

1. INTRODUCTION

Tuberculosis is an infectious respiratory disease caused by mycobacterium tuberculosis. De-
spite advances in technology, tuberculosis (TB) remains one of the world top 10 causes of death.
Recent data suggest that the global incidence of TB is rising, and this is mainly because of its
association with the human immunodeficiency virus (HIV) [1]. In 2017, 10 million people were
infected with TB, and 1.6 million died from the disease (including 0.3 million with HIV). End-
ing the TB epidemic by 2030 is among the health targets of the Sustainable Development Goals
[2].

The human immune response limits the proliferation of bacteria after the initial infection.
As a result, most infected people remain latent throughout their lives, with about 10% of those
infected eventually developing active TB. The average incubation period (non-infectious) for
TB can range from a few months to several decades [3]. Because of treatment and prevention
methods are so different, it is critical to accurately classify the TB situation. Tuberculosis, of
course, can be treated with drugs [4]. But most high-incidence patients also use only existing
TB vaccines, Calmette-Guérin. And its effectiveness in preventing TB is controversial [5]. In
recent years, treatment has become difficult due to the emergence of drug-resistant strains of
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Mtb [6, 7]. The cure rate of ordinary tuberculosis patient is more than 90%. However, the cure
rate of multidrug resistant tuberculosis patient is only about 50%, and the treatment cycle is as
long as 18-24 months [2]. So, in addition to controlling TB in terms of treatment, it needs to be
controlled in other ways.

Recently, the theoretical analysis of fractional differential equations and the study of numer-
ical methods have become the focus of people’s attention. Fractional calculus is a method to
extend the classical integral order calculus to real or complex order [8, 9, 10, 11, 12]. Fractional
derivative is a good mathematical tool to describe the memory and genetic characteristics of
complex systems [13]. At present, there are more than six definitions of fractional derivative,
among which Riemann-Liouville and Caputo derivatives are the most commonly used [14]. As
we all know, in the case of time fractional Caputo derivative, the initial conditions are expressed
by the values of the unknown function and its integer derivative with clear physical meaning
[15]. So, we will adapt the Caputo’s definition in our paper. In recent years, fractional differen-
tial equations also have been widely used in physics, chemistry, electricity, biology, economics,
epidemiology and other fields [16, 17, 18, 19, 20].

It is known that mathematical models play a crucial role in many dynamics and control, in-
cluding epidemics of malaria and tuberculosis [21, 22, 23, 24, 25]. Moreover, the enormous
public health burden of TB requires the use of mathematical models to understand the dynam-
ics of transmission and to identify effective control strategies. Particularly, in [26], Sweilam
and Mekhlafi studied optimal control for fractional general nonlinear multi-strain tuberculosis
model. The results show that the fractional-order model can describe more complex dynamical
processes than the integer model, and can easily include memory effects that exist in the real
world. In recent years, more and more scholars studied the optimal control of fractional order,
for example [27, 28, 29, 30]. The aim of this paper is to investigate the best control methods to
minimize the number of active, infectious and latent TB patients, taking into account the cost
of treating TB patients.

Recently, Liu and Zhang [31] investigated the following tuberculosis model:



dS
dt

= Λ−βS(I +ρ1T )− (µ + p)S,
dV
dt

= pS−ρ2βV (I +ρ1T )−µV,
dL
dt

= lβS(I +ρ1T )+ρ2βV (I +ρ1T )− (µ +δ )L+ρT,
dI
dt

= (1− l)βS(I +ρ1T )+δL− (µ + ε + γ)I,
dT
dt

= γI− (µ +ρ)T,

N(t) = S(t)+V (t)+L(t)+ I(t)+T (t).

(1.1)

In the model above, the incidence rate was bilinear. Incidence is a very important factor in
infectious disease models, the most commonly used contact rate are bilinear incidence and stan-
dard incidence. Between these two contact rates, there is a more realistic saturation contact rate
[32, 33]. Because it contains behavioral changes and population effects of infected individuals,
the unbounded exposure rate can be prevented by selecting appropriate parameters. Saturation
rates were used in many epidemic models; see, for example, [34, 35].
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Thus, based on the integer order tuberculosis model (1.1), we put forward an improved frac-
tional order tuberculosis infection model with saturating incidence rate as follows:

DαS(t) = Λ− βSI
1+θ1I

−ρ1βST − (µ + p)S,

DαV (t) = pS− ρ2βV I
1+θ2I

−ρ1ρ2βV T −µV,

DαL(t) =
lβSI

1+θ1I
+ρ1lβST +

ρ2βV I
1+θ2I

+ρ1ρ2βV T − (µ +δ )L+ρT,

Dα I(t) =
(1− l)βSI

1+θ1I
+(1− l)ρ1βST +δL− (µ + ε + γ)I,

DαT (t) = γI− (µ +ρ)T,

(1.2)

where ρ1 < 1, and ρ2 < 1. Obviously, the biologically feasible region of the above system (1.2)
is

Ω =

{
(S, V, L, I, T ) ∈ R5

+ : S≤ Λ

µ + p
, V ≤ Λp

µ(µ + p)
, N ≤ Λ

µ

}
.

In Eq. (1.2) Dα (0 < α < 1) denotes Caputo fractional differential operator, and the model
are based on the following scenarios:

(H1) S(t), V (t), L(t), I(t) and T (t) represent susceptible population, vaccinated population,
population infected with TB in latent (asymptomatic) stage, population infected with TB in the
active stage and treated population infected with TB, respectively.

(H2) We assumed that vaccinated individuals could also be infected.
(H3) We assumed that that treated individuals also had the ability to infect others during

treatment.
(H4) Due to drug resistance, reinfection may also occur after treatment and enter the incuba-

tion period.
The descriptions of parameters are listed in Table 1, and some parameter values are take from

[36, 37, 38].

TABLE 1. Description of the parameters for system (1.2)

Parameters Description Default value
Λ the recruitment of the susceptible class 1428 person year−1

β the disease transmission coefficient (0, 1)
ρ1 the infectiousness among individuals with active TB who are treated 0.25
ρ2 the reduction in risk of infection due to vaccination (0, 1)
µ the natural death rate 0.014 year−1

l susceptible individuals who acquire infection and move to latent TB class (0, 1)
δ the rate of individuals leave class L for class I (0, 1)
ε the death rate due to disease (0.1, 1)
p the vaccination rate (0, 1)
ρ the rate of successfully treated individuals and return to latent TB class (0.1, 1)
γ the rate of infectious individuals who are treated (0, 1)
θ1, θ2 half-saturation constant (0,1)

The paper is organized as follows. In Section 2, we introduce some definitions and lemmas
for fractional-order differential equations. In Section 3, we study the existence and stability
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of equilibrium points and numerical simulations. In Section 4, we present the formulation of
the optimal control problems and investigate the existence of an optimal control function and
derive an optimal system characterizing the optimal control and numerical simulations. In the
last section, Section 5, some conclusions and discussions are provided.

2. PRELIMINARIES

For convenience, we list some of the basic definitions and lemmas of the fractional calculus.
In fractional-order calculus, there are many fractional-order integration and fractional-order
differentiation that have been defined, for example, the Grunwald-Letnikov (GL) definition, the
Riemann-Liouville (RL) definition and the Caputo definition. Since the initial condition is the
same as the form of integral differential equation, we will adopt the definition of Caputo in this
paper.

Definition 2.1. [15] The Riemann-Liouville fractional integral of order α > 0 for a function
f : R+→ R is defined by

0D−α
t f (t) =

1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ds, t ≥ 0.

Based on this definition of Riemann-Liouville fractional integral, the fractional-order deriva-
tive in Riemann-Liouville sense and Caputo sense are given below.

Definition 2.2. [15] The Riemann-Liouville fractional derivative of order α > 0 for a function
f : R+→ R is defined by

RL
0 Dα

t f (t) =
dk

dtk (0D−(k−α)
t f (t)) =

1
Γ(k−α)

dk

dtk

∫ t

0
(t− s)k−α−1 f (s)ds, t ≥ 0,

where k−1≤ α < k, k ∈ N and Γ(·) is the Gamma function, that is,

Γ(α) =
∫ +∞

0
tα−1e−tdt.

In particular, if 0 < α < 1, then

RL
0 Dα

t f (t) =
1

Γ(1−α)

d
dt

∫ t

0
(t− s)−α f (s)ds.

Definition 2.3. [15] The Caputo fractional derivative of order α > 0 for a function f : R+→ R
is defined by

C
0 D−α

t f (t) =0 D−(k−α)
t f (k)(t) =

1
Γ(k−α)

∫ t

0
(t− s)k−α−1 f (k)(s)ds, t ≥ 0,

where k− 1 ≤ α < k, k ∈ N and f (m)(t) is the m-order derivative of f(t). In particular, if
0 < α < 1, then

C
0 D−α

t f (t) =
1

Γ(1−α)

∫ t

0

f
′
(s)

(t− s)α
ds.

Theorem 2.4. [39] Consider the following commensurate fractional-order system:

dαx
dtα

= f (x), x(0) = x0,
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with 0<α < 1 and x∈Rn. The equilibrium points of the above system are calculated by solving
the equation: f (x) = 0. These points are locally asymptotically stable if all eigenvalues λi of

the Jacobian matrix evaluated at the equilibrium points satisfy the inequality: |arg(λi)|>
απ

2
.

3. QUALITATIVE ANALYSIS OF SYSTEM (1.2)

3.1. The reproduction number and the existence of equilibriums. The basic reproduction
number R0 means that the expected number of new infections generated by a single infected
person during his/her entire period of infectiousness when introduced in a completely suscepti-
ble population, which can be derived by using the next generation operator technique [40, 41].
From this method, we get the basic reproduction number of system (1.2) as follows

R0 = ρ(FV−1) =
β (µ +ρ + γρ1)(δρ2V 0 +δS0 +µ(1− l)S0)

(µ +δ )(µ +ρ)(µ + ε)+(µ +δ +ρ)µγ
,

where ρ(·) represents the spectral radius. The matrixes F , and V are given by

F =

 0 β (lS0 +ρ2V 0) ρ1β (lS
0
+ρ2V 0)

0 (1− l)βS0 (1− l)ρ1βS0

0 0 0

 , V =

 µ +δ 0 −ρ

−δ b2 µ + ε + γ

0 −γ µ +ρ

 ,

where S0 =
Λ

µ + p
, and V 0 =

Λp
µ(µ + p)

.

The equilibriums of model (1.2) are obtained by solving the algebraic system

Λ− βSI
1+θ1I

−ρ1βST − (µ + p)S = 0,

pS− ρ2βV I
1+θ2I

−ρ1ρ2βV T −µV = 0,

lβSI
1+θ1I

+ρ1lβST +
ρ2βV I
1+θ2I

+ρ1ρ2βV T − (µ +δ )L+ρT = 0,

(1− l)βSI
1+θ1I

+(1− l)ρ1βST +δL− (µ + ε + γ)I = 0,

γI− (µ +ρ)T = 0.

By simple calculation, we obtain two equilibriums of system (1.2), namely,
(1) disease-free equilibrium E0 =

(
S0, V 0, 0, 0, 0

)
;

(2) endemic equilibrium E∗ = (S∗, V ∗, L∗, I∗, T ∗), where

S∗ =
Λ(1+θ1I∗)

β I∗+(1+θ1I∗)(ρ1β
γ

µ+ρ
I∗+µ + p)

, V ∗ =
pS∗(1+θ2I∗)

ρ2β I∗+(1+θ2I∗)(ρ1ρ2βT ∗+µ)
,

L∗ =
1

µ +δ

(
lβS∗I∗

1+θ1I∗
+ρ1lβS∗T ∗+

ρ2βV ∗I∗

1+θ2I∗
+ρ1ρ2βV ∗T ∗+ρT ∗

)
, T ∗ =

γ

µ +ρ
I∗,

and I∗ is determined by the following equation

A1I4 +A2I3 +A3I2 +A4I +A5 = 0, (3.1)
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where

A1 = θ1θ2ρ
2
1 ρ2β

2
(

γ

µ +ρ

)2 1
µ(µ + p)

> 0,

A2 = −
θ1θ2ρ2

1 ρ2β 2γ2Λ[µ(1− l)+δ ]

µ(µ + p)(µ +ρ)[(µ +δ )(µ +ρ)(µ + ε)+(µ +δ +ρ)µγ]

− ρ1βγθ1

µ(µ + p)(µ +ρ)

(
ρ2β +

ρ1ρ2βγ

µ +ρ
+µθ2

)
+

ρ1βγρ2δθ2

µ(µ + p)(µ +ρ)

[
β +

ρ1βγ

µ +ρ
+θ1(µ + p)

]
,

A3 = −
ρ1βΛγ[µ(1− l)+δ ]

[
ρ2βθ2

(
1+ ρ1γ

µ+ρ

)
+θ1

(
ρ2β + ρ1ρ2βγ

µ+ρ
+µθ2

)]
µ(µ + p)[(µ +δ )(µ +ρ)(µ + ε)+(µ +δ +ρ)µγ]]

− θ1θ2ρ1ρ2β pΛγδ

µ(µ + p)[(µ +δ )(µ +ρ)(µ + ε)+(µ +δ +ρ)µγ]

+
1

µ(µ + p)

[
β +ρ1

βγ

µ +ρ
+θ1(µ + p)

](
ρ2β +ρ1ρ2

βγ

µ +ρ
+µθ2

)
+

1
µ(µ + p)

[
µθ1ρ1

βγ

µ +ρ
+θ2ρ1ρ2

βγ

µ +ρ
(µ + p)

]
,

A4 = −
βΛ[µ(1− l)+δ ]

(
ρ2β +ρ1ρ2

βγ

µ+ρ
+µθ2

)
(µ +ρ +ρ1γ)

µ(µ + p)[(µ +δ )(µ +ρ)(µ + ε)+(µ +δ +ρ)µγ]

−βΛ{θ1µρ1γ[µ(1− l)+δ ]+θ1ρ2 pδ (µ +ρ)+ρ1ρ2 pγδ (θ1 +θ2)}
µ(µ + p)[(µ +δ )(µ +ρ)(µ + ε)+(µ +δ +ρ)µγ]]

+
1

µ(µ + p)

{
µ

(
β +ρ1

βγ

µ +ρ
+θ1(µ + p)

)
+(µ + p)

(
ρ2β +

ρ1ρ2βγ

µ +ρ
+µθ2

)}
,

A5 = 1−R0.

If R0 > 1, then Descartes rule of sign ensures that the above Eq.(3.1) possesses at least one
positive root.

3.2. The stability of the equilibriums. The Jacobian matrix of system (1.2) reads as

J =


a11 0 0 a14 −ρ1βS
p a22 0 a24 −ρ1ρ2βV

a31 a32 −(µ +δ ) a34 a35
a41 0 δ a44 (1− l)ρ1βS
0 0 0 γ −(µ +ρ)

 ,

where

a11 =−
β I

1+θ1I
−ρ1βT − (µ + p), a14 =−

βS
(1+θ1I)2 ,

a22 =−
ρ2β I

1+θ2I
−ρ1ρ2βT −µ, a24 =−

ρ2βV
(1+θ2I)2 ,

a31 =
lβ I

1+θ1I
+ρ1lβT , a32 =

ρ2β I
1+θ2I

+ρ1ρ2βT ,

a34 =
lβS

(1+θ1I)2 +
ρ2βV

(1+θ2I)2 , a35 = ρ1lβS+ρ1ρ2βV +ρ,

a41 =
(1− l)β I
1+θ1I

+(1− l)ρ1βT , a44 =
(1− l)βS
(1+θ1I)2 − (µ + ε + γ).
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The Jacobian matrix of system (1.2) at equilibrium point E0 is

J(E0)=


−(µ + p) 0 0 −βS0 −ρ1βS0

p −µ 0 −ρ2βV 0 −ρ1ρ2βV 0

0 0 −(µ +δ ) lβS0 +ρ2βV 0 ρ1(lβS0 +ρ2βV 0)+ρ

0 0 δ (1− l)βS0− (µ + ε + γ) (1− l)ρ1βS0

0 0 0 γ −(µ +ρ)

 .

The corresponding characteristic equation of the above matrix is

(λ +µ + p)(λ +µ)(λ 3 +a1λ
2 +a2λ +a3) = 0.

It is obvious that two eigenvalues can be directly obtained: λ1 =−(µ + p)< 0, λ2 =−µ < 0,
and the other eigenvalues are determined by the following equation

Q(λ ) = λ
3 +a1λ

2 +a2λ +a3 = 0,

where

a1 = (µ +ρ)+(µ +δ )+(µ + ε + γ)− (1− l)βS0,

a2 = −(2µ +ρ +δ )[(1− l)βS0− (µ + ε + γ)]− (1− l)γρ1βS0

−δβ (lS0 +ρ2V0)+(µ +ρ)(µ +δ ),
a3 = 1−R0.

Let D(Q) denote the discriminant of a polynomial Q(λ ) = λ 3 +a1λ 2 +a2λ +a3. From [42,
Proposition 1], we get

D(Q) = 18a1a2a3 +(a1a2)
2−4a3a3

1−4a3
2−27a3

3.

Then the following properties can be obtained from [42, Proposition 1].

Proposition 3.1. The equilibrium E0 is asymptotically stable if one of the following conditions
holds for polynomial Q and D(Q):

(1)D(Q)> 0, a1 > 0, a3 > 0 and a1a2 > a3,
(2)D(Q)< 0, a1 ≥ 0, a2 ≥ 0, a3 ≥ 0 and α < 2

3 ,
(3)D(Q)< 0, a1 > 0, a2 > 0, a1a2 = a3 and α ∈ (0,1).

Next, we discuss the global asymptotic stability of the disease-free equilibrium.

Theorem 3.2. If R0 ≤ 1, then the disease-free equilibrium E0 of system (1.2) is global asymp-
totically stable within Ω.

Proof. Consider the following Lyapunov function

V = δL+(µ +δ )I +AT,
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where A =
δρ1lβS0 +ρ1ρ2βV 0 +ρ +(µ +δ )(1− l)ρ1βS0

µ +ρ
. Then,

Dα
t V |(1.2)

= δ

[
lβSI

1+θ1I
+ρ1lβST +

ρ2βV I
1+θ2I

+ρ1ρ2βV T − (µ +δ )L+ρT
]

+(µ +δ )

[
(1− l)βSI

1+θ1I
+(1− l)ρ1βST +δL− (µ + ε + γ)I

]
+A[γI− (µ +ρ)T ]

≤ δ [lβSI +ρ1lβST +ρ2βV I +ρ1ρ2βV T − (µ +δ )L+ρT ]
+(µ +δ ) [(1− l)βSI +(1− l)ρ1βST +δL− (µ + ε + γ)I]+A[γI− (µ +ρ)T ]

≤
[
δ lβS0 +δρ2βV 0 +(µ +δ )(1− l)βS0− (µ +δ + γ)+Aγ

]
I

+[δρ1lβS0 +ρ1ρ2βV 0 +ρ +(µ +δ )(1− l)ρ1βS0−A(µ +ρ)]T
=

[
δ lβS0 +δρ2βV 0 +(µ +δ )(1− l)βS0− (µ +δ + γ)+Aγ

]
I

=
(µ +δ )(µ +ρ)(µ + ε)+µγ(µ +δ +ρ)

µ +ρ
(R0−1)I.

If R0 ≤ 1, then Dα
t V |(1.2)≤ 0. Further, it is obvious that the invariant set of {(S, V, L, I, T )∈

Ω : Dα
t V |(1.2) = 0} is the singleton {E0}. Therefore, it follows from LaSalle invariance principle

that E0 is globally stable if R0 ≤ 1. �

Now let us study the stability of the endemic equilibrium. The Jacobian matrix at equilibrium
E∗ is

J =


b11 0 0 b14 −ρ1βS∗

p b22 0 b24 −ρ1ρ2βV ∗

b31 b32 −(µ +δ ) b34 b35
b41 0 δ b44 (1− l)ρ1βS∗

0 0 0 γ −(µ +ρ),


where

b11 =−
β I∗

1+θ1I∗
−ρ1βT ∗− (µ + p), b14 =−

βS∗

(1+θ1I∗)2 ,

b22 =−
ρ2β I∗

1+θ2I∗
−ρ1ρ2βT ∗−µ, b24 =−

ρ2βV ∗

(1+θ2I∗)2 ,

b31 =
lβ I∗

1+θ1I∗
+ρ1lβT ∗, b32 =

ρ2β I∗

1+θ2I∗
+ρ1ρ2βT ∗,

b34 =
lβS∗

(1+θ1I∗)2 +
ρ2βV ∗

(1+θ2I∗)2 , b35 = ρ1lβS∗+ρ1ρ2βV ∗+ρ,

b41 =
(1− l)β I∗

1+θ1I∗
+(1− l)ρ1βT ∗, b44 =

(1− l)βS∗

(1+θ1I∗)2 − (µ + ε + γ).

and the corresponding characteristic equation is

λ
5 +B1λ

4 +B2λ
3 +B3λ

2 +B4λ +B5 = 0, (3.2)
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where

B1 =
(1− l)βS∗

(1+θ1I∗)2 +
pS∗

V ∗
+

Λ

S∗
+µ +δ +ρ− ε− γ,

B2 = (µ +ρ)

[
(1− l)βS∗

(1+θ1I∗)2 − (µ + ε + γ)

]
− (1− l)ρ1βγS∗

+(µ +δ )

[
(1− l)βS∗

(1+θ1I∗)2 +ρ− ε− γ

]
−δβ

[
lS∗

(1+θ1I∗)2 +
ρ2V ∗

(1+θ2I∗)2

]
+

(1− l)β 2S∗

(1+θ1I∗)2

(
I∗

1+θ1I∗
+ρ1T ∗

)
+

pΛ

V ∗

+

(
pS∗

V ∗
+

Λ

S∗

)[
(1− l)βS∗

(1+θ1I∗)2 +µ +δ +ρ− ε− γ

]
,

B3 =

(
µ +δ +

pS∗

V ∗

){
(µ +ρ)

[
(1− l)βS∗

(1+θ1I∗)2 − (µ + ε + γ)

]
− (1− l)ρ1βγS∗

}
−δβ

(
µ +ρ + pS∗

V ∗

)[
lS∗

(1+θ1I∗)2 +
ρ2V ∗

(1+θ2I∗)2

]
−δρ1βγ(lS∗+ρ2V ∗)−δρ

+
pS∗

V ∗
(µ +δ )

[
(1− l)βS∗

(1+θ1I∗)2 +ρ− ε− γ

]
+

δρ2
2 β 2V ∗

(1+θ2I∗)2

(
I∗

1+θ2I∗
+ρ1T ∗

)
+β

2S∗
(

I∗

1+θ1I∗
+ρ1T ∗

)[δ l +(1− l)(µ +δ + pS∗
V ∗ )

(1+θ1I∗)2

+(1− l)
(

µ +ρ

(1+θ1I∗)2 +ρ1γ

)]
,

B4 =

[
pS∗

V ∗
(µ +δ )+

Λ

S∗

]{
(µ +ρ)

[
(1− l)βS
(1+θ1I∗)2 − (µ + ε + γ)

]
− (1− l)ρ1βγS

}
−δβ

[
lS∗

(1+θ1I∗)2 +
ρ2V ∗

(1+θ2I∗)2

][
pS∗

V ∗
(µ +ρ)+

Λ

S∗

]
−δ pS∗

V ∗
[ρ1βγ(lS∗+ρ2V ∗)−ρ]+

Λ(µ +δ )

S∗

[
(1− l)βS∗

(1+θ1)2 +ρ− ε− γ

]
+δρ2β

2
(

I∗

1+θ2I∗
+ρ1T ∗

)[
ρ2V ∗

(1+θ2I∗)2 +
pS∗

(1+θ1I∗)2

]
+β

2S∗
(

I∗

1+θ2I∗
+ρ1T ∗

)[
µ +ρ

(1+θ1I∗)2 +ρ1γ

][
δ l +(1− l)

(
µ +δ +

pS∗

V ∗

)]
+

Λp
V ∗

+
pβ 2(S∗)2

(1+θ1I∗)2

(
I∗

1+θ1I∗
+ρ1T ∗

)
[(1− l)µ +δ ],

B5 =
Λp
V ∗

{
(µ +ρ)(µ +δ )

[
(1− l)βS∗

(1+θ1)2 − (µ + ε + γ)

]
− (µ +δ )(1− l)ρ1βγS∗

}
+

δΛp
V ∗

{
β (µ +ρ)

[
lS∗

(1+θ1I∗)2 +
ρ2V ∗

(1+θ2I∗)2

]
−ρ1βγ(lS∗+ρ2V ∗)−ρ

}
+δρ2β

2
(

I∗

1+θ2I∗
+ρ1T ∗

){
pS∗
[

µ +ρ

(1+θ1I∗)2 +ρ1γ

]
+

Λρ2V ∗

S∗

[
µ +ρ

(1+θ2I∗)2 +ρ1γ

]}
+

pβ 2(S∗)2

V ∗

(
I∗

1+θ1I∗
+ρ1T ∗

)
[(1− l)µ +δ ]

[
µ +ρ

(1+θ1I∗)2 +ρ1γ

]
.
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Proposition 3.3. The endemic equilibrium is locally asymptotically stable if all eigenvalues
λi, (i = 1,3...5) of characteristic equation (3.2) satisfy the inequality: |arg(λi)|>

απ

2
.

3.3. Numerical simulations. In this section, we will illustrate the existence and stability of the
equilibrium of system (1.2) via numerical simulations.
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Fig. 1. (a)-(d) are the time series of the system (1.2), which show that the disease-free equilibrium E0 is
global asymptotically stable for α = 0.9.

Example 3.4. For the following set of parameters: β = 0.00002 person−1year−1, r2 = 0.1,
l = 0.5, δ = 0.368 year−1, ε = 0.8 year−1, p = 0.5, ρ = 0.5 year−1, γ = 0.1, θ1 = 0.2, θ2 =
0.2. In this case, R0 = 0.3141 < 1, and the disease-free equilibrium E0 = (S0, V 0, 0, 0, 0) =
(2.778×103, 9.922×104, 0, 0, 0).

Fig.1 shows that when R0 < 1, the equilibrium E0 is stable for different initial values. This is
in accordance with our Theorem 3.2.

Example 3.5. For the following set of parameters: β = 0.0009 person−1year−1, r2 = 0.1, l =
0.9, δ = 0.368 year−1, ε = 0.5 year−1, p = 0.5, ρ = 0.7 year−1, γ = 0.2, θ1 = 0.2, θ2 = 0.2,
and α = 1,0.5,0.4.

From Fig.2, we observe a relaxation process (sub-growth phenomena like sub-diffusion pro-
cess) when 0 < α < 1. It show that the influence of order cannot be ignored.

Example 3.6. For the following set of parameters: β = 0.00005 person−1year−1, r2 = 0.1, l =
0.5, δ = 0.368 year−1, ε = 0.17 year−1, p = 0.5, ρ = 0.7 year−1. γ = 0.1.

(1) θ2 = 0, Fig.3.1 shows the dynamics with the initial value [S(0), V (0), L(0), I(0), T (0)]
= [2000, 1800, 1800, 800, 300] for θ1 = 0, 0.2.

(2) θ1 = 0, Fig.3.2 shows the dynamics with the initial value [S(0), V (0), L(0), I(0), T (0)]
= [2000, 1800, 1800, 800, 300] for θ2 = 0, 0.2.

From Fig.3.1 and Fig.3.2, we can see that the parameter θ1 and θ2 is sensitive to the system.
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Fig. 2. (a)-(d) are the time series of the system (1.2), which show that the endemic equilibrium E∗ is
local asymptotically stability. (the initial conditions: [2000, 3800, 1800, 800, 300])
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Fig. 3.1. (a)-(d) are the time series of system (1.2), which show that the influence of θ1 when α = 0.9.
(the initial conditions: [2000, 1800, 1800, 800, 300]).

4. THE OPTIMAL CONTROL PROBLEM

In this section, the initial model is extended to include an optimal control problem for the
transmission dynamics of tuberculosis. The goal is to show that time-dependent anti-TB control
technologies can be implemented at minimal cost. In order to understand under what circum-
stances tuberculosis can be controlled or reduced, we implemented the optimal control theory.
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Fig. 3.2. (a)-(d) are the time series of system (1.2), which show that the influence of θ2 when α = 0.9.
(the initial conditions: [2000, 1800, 1800, 800, 300])

Three intervention strategies, called controls, are included in system (1.2). We used u1(t) in-
stead of a constant vaccination rate p; u2(t) was used to replace the fixed rate of successful
treatment ρ; use u3(t) instead of fixed treatment rate γ .

Now, we describe the fractional order equations of the controlled model:

DαS(t) = Λ− βSI
1+θ1I

−ρ1βST − (µ +u1(t))S,

DαV (t) = u1(t)S−
ρ2βV I
1+θ2I

−ρ1ρ2βV T −µV,

DαL(t) =
lβSI

1+θ1I
+ρ1lβST +

ρ2βV I
1+θ2I

+ρ1ρ2βV T − (µ +δ )L+u2(t)T,

Dα I(t) =
(1− l)βSI

1+θ1I
+(1− l)ρ1βST +δL− (µ + ε +u3(t))I,

DαT (t) = u3(t)I− (µ +u2(t))T.

(4.1)

The optimal control problem of objective (cost) function is given:

J(u1, u2, u3) =
∫ t f

0

[
B1L(t)+B2I(t)+B3T (t)+B4u4

1 +B5u2
2 +B6u2

3
]

dt,

Bi(i = 1,2, · · · ,6) are the weight constants and control measures of infected TB patients. Be-
cause of the size and importance of the target feature, they can be selected to balance the cost
factor.

We hypothesize that there may be practical limitations on the maximum rate at which indi-
viduals can be vaccinated or treated over a period of time and achieve treatment success. We
seek optimal controls u1, u2 and u3 in U such that

minJ(u1, u2, u3), (4.2)

where U = {(u1, u2, u3)|ui are Lebesgue integrable, 0 ≤ ui ≤ uimax, i = 1,2,3} is the control
set.
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4.1. The existence of an optimal control. In this section, we will study the sufficient condition
for the existence of an optimal control of our system (4.1). We refer to Theorem III 4.1 and its
Corollary in [43].

For convenience, let ~x = [S, V, L, I, T ]T and ~u = [u1, u2 ,u3]
T denote the vector of system

states variables and controls variables, respectively.

Theorem 4.1. There exists an optimal control (u∗1, u∗2, u∗3) to problem (4.2).

Proof. From Theorem III 4.1 and its Corollary in [43], we let r(t,~x,~u) be the right-hand side of
(4.1). We need to proof the following conditions are satisfied:

(1) r is of class C1 and there exists a constant M such that

|r(t,0,0)| ≤M, |r~x(t,~x,~u)| ≤M(1+ |~u|), |r~u(t,~x,~u)| ≤M;

(2) The admissible set F of all solutions to system (4.1) with corresponding control in U is
nonempty;

(3) r(t,~x,~u) = a(t,~x)+b(t,~x)~u;
(4) The control set Ũ = [0,u1max]× [0,u2max]× [0,u3max] is closed, convex and compact;
(5) The integrand of the objective functional is convex in Ũ .
Denote

r(t,~x,~u) =


Λ− βSI

1+θ1I −ρ1βST − (µ +u1)S

u1S− ρ2βV I
1+θ2I −ρ1ρ2βV T −µV

lβSI
1+θ1I +ρ1lβST + ρ2βV I

1+θ2I +ρ1ρ2βV T − (µ +δ )L+u2T
(1−l)βSI

1+θ1I +(1− l)ρ1βST +δL− (µ + ε +u3)I
u3I− (µ +u2)T

 .

Obviously, r is of class C1 and |r(t,0,0)|= Λ. And we have

|r~x(t,~x,~u)|=

∣∣∣∣∣∣∣∣∣∣


c11 0 0 c14 −ρ1βS
p c22 0 c24 −ρ1ρ2βV

c31 a32 −(µ +δ ) c34 c35
c41 0 δ c44 (1− l)ρ1βS
0 0 0 γ −(µ +ρ)

∣∣∣∣∣∣∣∣∣∣

 ,

where

c11 =−
β I

1+θ1I
−ρ1βT − (µ + p), c14 =−

βS
(1+θ1I)2 ,

c22 =−
ρ2β I

1+θ2I
−ρ1ρ2βT −µ, c24 =−

ρ2βV
(1+θ2I)2 ,

c31 =
lβ I

1+θ1I
+ρ1lβT , c32 =

ρ2β I
1+θ2I

+ρ1ρ2βT ,

c34 =
lβS

(1+θ1I)2 +
ρ2βV

(1+θ2I)2 , c35 = ρ1lβS+ρ1ρ2βV +ρ,

c41 =
(1− l)β I
1+θ1I

+(1− l)ρ1βT , c44 =
(1− l)βS
(1+θ1I)2 − (µ + ε + γ).
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and

|r~u(t,~x,~u)|=

∣∣∣∣∣∣∣∣∣∣


−S 0 0
S 0 0
0 T 0
0 0 −I
0 −T I


∣∣∣∣∣∣∣∣∣∣
.

Since S, V, L, I, T are bounded, then condition (1) holds, which further implies that condition
(2) holds.

In addition, through simple calculation shows that condition (3) satisfies. And obviously
condition (4) is satisfied. According to Theorem 3.1 in [44], condition (5) is satisfied. �

4.2. Characterization of an optimal control. Next, we obtain the necessary conditions to
utilize Pontryagin’s Maximum Principle [45, 46] and find the optimal solution.

Note that the Hamiltonian function for our problem is given by:

H(S,V,L, I,T,u1,u2,u3,λ )

= B1L(t)+B2I(t)+B3T (t)+B4u4
1 +B5u2

2 +B6u2
3

+ λ1

[
Λ− βSI

1+θ1I
−ρ1βST − (µ +u1)S

]
+ λ2

[
u1S− ρ2βV I

1+θ2I
−ρ1ρ2βV T −µV

]
+ λ3

[
lβSI

1+θ1I
+ρ1lβST +

ρ2βV I
1+θ2I

+ρ1ρ2βV T − (µ +δ )L+u2T
]

+ λ4

[
(1− l)βSI

1+θ1I
+(1− l)ρ1βST +δL− (µ + ε +u3)I

]
+ λ5[u3I− (µ +u2)T ],

where, λ = (λ1, λ2, λ3, λ4, λ5) is known as adjoint variable.

Theorem 4.2. Let S∗,V ∗,L∗, I∗,T ∗ be optimal state solutions with associated optimal control
variable (u∗1, u∗2, u∗3) for the optimal control problem (4.1)-(4.2). Then there exist adjoint vari-
ables λi, for i = 1,2, · · · ,5, satisfying

dλ1
dt = λ1β I

1+θ1I +λ1ρ1βT +λ1(µ +u1)−λ2u1− λ3lβ I
1+θ1I −λ3ρ1lβT − λ4(1−l)β I

1+θ1I −λ4(1− l)ρ1β I,
dλ2
dt = λ2ρ2β I

1+θ2I +λ2ρ1ρ2βT +λ2µ− λ3ρ2β I
1+θ2I −λ3ρ1ρ2βT,

dλ3
dt =−B1 +λ3(µ +δ )−λ4δ ,

dλ4
dt =−B2 +

λ1βS
(1+θ1I)2 +

λ2ρ2βV
(1+θ2I)2 − λ3lβS

(1+θ1I)2 −
λ3ρ2βV
(1+θ2I)2 −

λ4(1−l)βS
(1+θ1I)2 +λ4(µ + ε +u3)−λ5u3,

dλ5
dt =−B3 +λ1ρ1βS+λ2ρ1ρ2βV −λ3ρ1lβS−λ3ρ1ρ2βV
−λ3u2−λ4(1− l)ρ1βS+λ5(µ +u2).

with transversal conditions (or boundary conditions)

λi(t f ) = 0, i = 1,2, · · · ,5.
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Furthermore, optimal control u∗i ,(i = 1,2,3) is given by

u∗1 = min

{
max

{
0,
(
(λ1−λ2)S∗

4B4

) 1
3
}
, u1max

}
,

u∗2 = min
{

max
{

0,
(λ5−λ3)T ∗

2B5

}
, u2max

}
,

u∗3 = min
{

max
{

0,
(λ4−λ5)T ∗

2B6

}
, u3max

}
.

(4.3)

Proof. In order to determine adjoint equations and transversal conditions, we use Hamiltonian.
The adjoint system can be derived from Pontryagin’s Maximum Principle

dλ1
dt =−∂H

∂S ,
dλ2
dt =−∂H

∂V ,
dλ3
dt =−∂H

∂L ,
dλ4
dt =−∂H

∂ I ,
dλ5
dt =−∂H

∂T ,

with λi(t f ) = 0. Let
∂H
∂u1

=
∂H
∂u2

=
∂H
∂u3

= 0, we can get the formula of Eq.(4.3). �

4.3. Numerical simulations. In this section, we discuss the numerical simulation of model
(4.1) with the cost function of the optimal control strategy.

Example 4.3. For the following set of parameters: β = 0.003 person−1year−1, r2 = 0.2, l =
0.9, δ = 0.00368 year−1, ε = 0.17 year−1, θ1 = 0.2, θ2 = 0.2.

As expected, the results shown in Fig.4(c) clearly indicate that the optimal control results
are very effective in the control of patients infected with latent TB; In Fig.4(e), the number of
people receiving treatment dropped sharply in the first four years, and then dropped sharply,
this is due to treatment that controls u3 to zero after 4 years. And Fig.4 shows a slight increase
in the intervention strategy after 4 years.

Example 4.4. For the following set of parameters: β = 0.003 person−1year−1, r2 = 0.2, l =
0.9, δ = 0.00368 year−1, ε = 0.17 year−1, θ1 = 0.2, θ2 = 0.2.

Fig.5 shows that the optimal control of system (4.1) is bang-bang type, and no singular solu-
tion is found.

5. DISCUSSION

In this paper, a fractional-order tuberculosis model with incomplete treatment was con-
structed and investigated. In Section 3, we obtained the basic reproduction number R0, and
the sufficient conditions for the existence and stability of E0 and E∗. If R0 < 1, then the disease-
free equilibrium E0 of system (1.2) is global asymptotically stable within Ω; If R0 > 1, then
the endemic equilibrium appears and is local asymptotically stable under certain conditions. In
Section 4, we presented the formulation of the optimal control problems, investigated the exis-
tence of an optimal control function and derived an optimal system characterizing the optimal
control. Through numerical simulation, we have the following results.
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Fig. 4. (a)-(e) are the time series of the system (4.1), which show that with and without controls for
α = 1 and 0.9, weight constants are B1 = 20, B2 = 100, B3 = 200, B4 = 100, B5 = 8000, B6 = 150. (the
initial conditions: [4500, 3000, 4000, 500, 480], the red and ′−′ line: α=1, with control; the blue and
′− .− .′ line: α=0.9 with control; the black and ′−−′ line: α=1 without control; the green and ′...′ line:

α=0.9 without control)
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Fig. 5. Three optimal control strategies profiles weight constants are B1 = 20, B2 = 100, B3 = 200, B4 =
100, B5 = 8000, B6 = 150 (the initial conditions: [4500, 3000, 4000, 500, 480]).

♦ Fig.1 shows that the disease-free equilibrium E0 of system (1.2) is indeed globally stable
when R0 < 1.

♦ Fig.2 shows that the endemic equilibrium E∗ system (1.2) is local globally stable.
♦ Fig.3.1 and Fig.3.2 show that the impact of θ1 and θ2 on the system is crucial.
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♦ Fig.4 shows that vaccination and treatment strategies effectively reduce the spread of TB
diseases, especially we can use the lowest cost to obtain the maximum disease control.

Remark 5.1. If α = 1 and θ1 = θ2 = 0, then system (1.2) degenerates to the model in [31].

In this paper, the effect of time delay is not considered, and we leave it as our future work.
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