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Abstract. For solving monotone variational inequalities and fixed point problems of a quasi-nonexpansive
mapping in real Hilbert spaces, we introduce two new algorithms which combine the inertial Tseng’s
extragradient method and the hybrid-projection method, respectively. Weak and strong convergence
theorems are established under some appropriate conditions. Finally, we provide some numerical exper-
iments to show the effectiveness and advantages of the proposed algorithms.
Keywords. Variational inequality; Tseng’s extragradient method; Monotone operator; Inertial method;
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1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty,
closed and convex subset of H. Let N and R be the sets of positive integers and real numbers,
respectively.

The variational inequality problem (VIP) for a mapping A on set C is to find a point x∗ ∈C
such that

〈Ax∗,x− x∗〉 ≥ 0, ∀x ∈C. (1.1)

The VIP plays an important role in a lot of real world problems, such as, single processing,
transportation, machine learning and medical imaging; see, e.g., [1, 2, 3, 4]. From now on, the
set of solutions of the VIP is denoted by V I(C,A). It is known that the VIP is equivalent to the
following fixed point problem

x∗ = PC(I−λA)x∗, (1.2)
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where PC : H →C is the metric projection and λ is a positive real number. Thus, we have the
following simple projection iterative algorithm

xn+1 = PC(I−λA)xn, (1.3)

where A : H → H is an η-strongly monotone and L-Lipschitz continuous mapping. The itera-
tion is strongly convergent under appropriate conditions of parameters. If A is inverse-strongly
monotone (see below), it is weakly convergent under some certain conditions. In order to avoid
the strong assumption on the monotonicity, Korpelevich [5] proposed the following extragradi-
ent method in 1976 {

yn = PC(xn−λAxn),
xn+1 = PC(xn−λAyn).

(1.4)

The convergence of this method only requires that the operator A is monotone and L-Lipschitz
continuous in a Hilbert space. The conditions of the extragradient method are weakened, but
this method still needs to calculate two projections from H onto its closed convex set C, and the
projection onto the nonempty closed convex subset C might be difficult to calculate.

To overcome these difficulties, various modification of the extragradient method were pro-
posed. In 2000, Tseng [6] studied the following iterative method{

yn = PC(xn−λAxn),
xn+1 = yn−λ (Ayn−Axn),

(1.5)

where A is monotone, L-Lipschitz continuous and λ ∈ (0,1/L). There is only projection on set
C in Tseng’s extragradient method. In 2011, the subgradient extragradient method (SEGM) was
proposed by Censor et al. [7]:

yn = PC(xn−λAxn),
Tn = {w ∈ H | 〈xn−λAxn− yn,w− yn〉 ≤ 0},
xn+1 = PTn(xn−λAyn),

(1.6)

where A is L-Lipschitz continuous, monotone and λ ∈ (0,1/L). In particular, the second pro-
jection onto the set C of the extragradient method is replaced by a projection onto a special
half-space, which improves the efficiency of the algorithm.

Inertial algorithms are efficient in variational inequality problems, split fixed point problems,
and equilibrium problems; see, for instance, [8, 9, 10, 11, 12] and the references therein. Next,
let us mention the inertial method, which is based upon a discrete version of a second order
dissipative dynamical system in time. In particular, Alvarez and Attouch [13] solved the prob-
lem of finding zero of a maximal monotone operator with the inertial proximal method: find
xn+1 ∈ H such that 0 ∈ λnA(xn+1)+ xn+1− xn−θn(xn− xn−1), where xn−1,xn ∈ H, θn ∈ [0,1)
and λn > 0. It also can be written in the following form:

xn+1 = JA
λn
(xn +θn(xn− xn−1)),

where JA
λn

is the resolvent of A with parameter λn and the inertia is induced by the term θn(xn−
xn−1). The advantage of the inertial method is that it can speed up the convergence of original
algorithms.



INERTIAL MODIFIED TSENG’S EXTRAGRADIENT ALGORITHMS 3

In 2017, Dong, Cho and Zhang [14] studied the following inertial projection-contraction
method 

wn = xn +αn(xn− xn−1),
yn = PC(wn−λAwn),
d(wn,yn) = (wn− yn)−λ (Awn−Ayn),
xn+1 = wn− γβnd(wn,yn),

(1.7)

for each k ≥ 1, where γ ∈ (0,2),λ > 0,

βn :=

{
ϕ(wn,yn)/‖d(wn,yn)‖2, d(wn,yn) 6= 0,
0, d(wn,yn) = 0,

(1.8)

ϕ(wn,yn) = 〈wn− yn,d(wn,yn)〉.
In 2017, Thong and Hieu [15] proposed the following algorithm

Algorithm 1.1. Step 1: Choose x0 ∈ H, γ > 0, l ∈ (0,1), and µ ∈ (0,1).
Step 2: Given the current iterate xn, compute

yn = PC(xn−λnAxn),

where λn is chosen to be the largest λ ∈ {γ,γl,γl2, . . .} satisfying

λ‖Axn−Ayn‖ ≤ µ‖xn− yn‖.

If yn = xn, then stop and xn is the solution of the variational inequality problem. Otherwise, go
to Step 3.
Step 3: Compute the new iterate xn+1 via the following iterate formula:

xn+1 = yn−λn(Ayn−Axn).

Set n := n+1 and return to Step 2.

This iterative algorithm does not need to know the knowledge of the Lipschitz constant of the
operator A. It is a new self-adaptive method. Under appropriate conditions, the sequence {xn}
generated by (1.5), (1.6), (1.7) and Algorithm 1.1 all converge weakly to an element of V I(C,A).
Since the weak convergence is not desirable, efforts have been made to various modifications
so that the strong convergence is guaranteed. In 2017, Dong et al. [16] employed the hybrid-
projection method to modify an inertial forward-backward algorithm for solving zero point
problems in Hilbert spaces:

x0,x1 ∈ H,
yn = xn +αn(xn− xn−1),
zn = (I + rnB)−1(yn− rnAyn),
Cn = {u ∈ H : ‖zn−u‖2 ≤ ‖xn−u‖2−2αn〈xn−u,xn−1− xn〉+α2

n‖xn−1− xn‖2},
Qn = {u ∈ H : 〈u− xn,x0− xn〉 ≤ 0},
xn+1 = PCn∩Qnx0.

(1.9)

They proved that {xn} converges strongly to P(A+B)−1(0)x0 under some suitable conditions.
In this paper, motivated by the above results, we present two new algorithms, which are based

on the Tseng’s extragradient method, for solving a monotone variational inequality problem and
the fixed-point problem of a quasi-nonexpansive mapping. The operator A involved in the vari-
ational inequality problem is monotone and Lipschitz continuous. We combine the inertial
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Tseng’s extragradient method with self-adaptive technique and the hybrid-projection method,
respectively. Weak and strong convergence theorems are established under some appropriate
conditions. Finally, we give numerical examples to illustrate the efficiency and advantages of
the proposed algorithms and compare with existing methods. This paper is organized as follows.
In Section 2, we recall some definitions and lemmas for sequel use. In Section 3, two conver-
gence theorems are proved. In Section 4, we perform numerical examples and comparisons.
This paper ends with a conclusion remark in Section 5

2. PRELIMINARIES

Assume that H is a real Hilbert space and C is a nonempty closed convex subset of H. In this
paper, we use the following notations:

• → denotes strong convergence.
• ⇀ denotes weak convergence.
• ωw(xn) := {x| there exists {xn j}∞

j=0⊂{xn}∞
n=0 such that xn j ⇀ x} denotes the weak clus-

ter point set of {xn}∞
n=0.

Let H be a real Hilbert space, for all x,y ∈ H and λ ∈ R, we have
‖x+ y‖2 = ‖x‖2 +‖y‖2 +2〈x,y〉;
‖λx+(1−λ )y‖2 = λ‖x‖2 +(1−λ )‖y‖2−λ (1−λ )‖x− y‖2;
‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉, ∀x,y ∈ H.

Let C be a nonempty closed convex subset of a real Hilbert space H. Then
‖PCx−PCy‖2 ≤ 〈x− y,PCx−PCy〉, ∀x,y ∈ H;
‖x−PCx‖2 +‖y−PCx‖2 ≤ ‖x− y‖2, ∀x ∈ H,y ∈C.

Given x∈H and z∈C, we have z=PCx if and only if there holds the inequality 〈x−z,y−z〉≤
0, ∀y ∈C.

Let T : H → H be the nonlinear operators. Recall the following definitions. T is said to be
nonexpansive if

‖T x−Ty‖ ≤ ‖x− y‖, ∀x,y ∈ H.

T is said to be firmly nonexpansive if

〈T x−Ty,x− y〉 ≥ ‖T x−Ty‖2, ∀x,y ∈ H.

It is easy to see that a firmly nonexpansive mapping is always nonexpansive by using the
Cauchy-Schwarz inequality. T is said to be α-averaged with 0 < α < 1 if

T = (1−α)I +αS,

where S : H → H is nonexpansive. It is obvious that Fix(S) = Fix(T ). It is easy to see that a
firmly nonexpansive mapping is 1

2 -averaged. T is said to be L-Lipschitz continuous with L≥ 0
if

‖T x−Ty‖ ≤ L‖x− y‖, ∀x,y ∈ H.

We call T a contractive mapping if 0≤ L < 1. T is said to be quasi-nonexpansive if Fix(T ) 6= /0
and

‖T x− p‖ ≤ ‖x− p‖, ∀x ∈ H, p ∈ Fix(T ).
Let A : H→ H be an operator. Recall the following definitions. A is said to be monotone if

〈x− y,Ax−Ay〉 ≥ 0, ∀x,y ∈ H.
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A is said to be η-strongly monotone with η > 0 if

〈x− y,Ax−Ay〉 ≥ η‖x− y‖2, ∀x,y ∈ H.

A is said to be v-inverse-strongly monotone (v-ism) with v > 0 if

〈x− y,Ax−Ay〉 ≥ v‖Ax−Ay‖2, ∀x,y ∈ H.

We can easily show that a v-ism mapping is 1
v -Lipschitz continuous by using the Cauchy-

Schwarz inequality.

Definition 2.1. [17] Assume that T : H → H is a nonlinear operator with Fix(T ) 6= /0. Then
I−T is said to be demiclosed at zero if for any {xn} in H the following implication holds

xn ⇀ x and (I−T )xn→ 0⇒ x ∈ Fix(T ).

If T is nonexpansive, we know that I− T is demiclosed at zero. However, there exists a
quasi-nonexpansive mapping T with the fact that I−T is not demiclosed at zero. Next, we give
an example.

Example 2.2. Let H = R and C = [0, 3
2 ]. Define the operator T on C by

T x =
{ x

2 , i f x ∈ [0,1],
xcos2πx, i f x ∈ (1, 3

2 ].

Obviously, Fix(T ) = {0}.
For any x ∈ [0,1], we have

|T x−0|= |x
2
−0| ≤ |x−0|.

On the other hand, for any x ∈ (1, 3
2 ], we have

|T x−0|= |xcos2πx−0|= |xcos2πx| ≤ |x|= |x−0|.

Thus, operator T is quasi-nonexpansive.
By taking {xn} ⊂ (1, 3

2 ] and xn→ 1 as n→ ∞, we have

|(I−T )xn|= |xn−T xn|= |xn− xn cos2πxn|= |xn| · |1− cos2πxn| → 0 (n→ ∞).

But 1 /∈ Fix(T ). We conclude that I−T is not demiclosed at zero.

Lemma 2.3. [13] Let {ϕn}, {δn} and {αn} be sequences in [0,+∞) such that

ϕn+1 ≤ ϕn +αn(ϕn−ϕn−1)+δn, ∀n≥ 1,
∞

∑
n=1

δn <+∞,

and there exists a real number α with 0≤ αn ≤ α < 1 for all n ∈ N. Then the following hold:
(i) ∑

∞
n=1[ϕn−ϕn−1]+ <+∞, where [t]+ := max{t,0};

(ii) there exists ϕ∗ ∈ [0,+∞) such that limn→∞ ϕn = ϕ∗.

Lemma 2.4. [18] (Minty). If A : C→ H is a continuous and monotone mapping, then x∗ is a
solution of the VIP if and only if x∗ is a solution of the following problem

find x ∈C such that 〈Ay,y− x〉 ≥ 0, ∀y ∈C.
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Lemma 2.5. [19] Let C be a nonempty closed and convex subset of a real Hilbert space H and
{xn} be a sequence in H. If
(i) for all x ∈C, limn→∞ ‖xn− x‖ exists;
(ii) every sequential weak cluster point of the sequence {xn} is in C,
then the sequence {xn} converges weakly to a point in C.

3. MAIN RESULTS

In this section, we propose two new iterative algorithms. We combine a modified inertial
Tseng’s extragradient method and the hybrid-projection method, respectively. The first algo-
rithm is weakly convergent while the second one is strongly convergent. They are mainly used
to solve the monotone and Lipschitz continuous variational inequality problem and the fixed-
point problem of a quasi-nonexpansive mapping in real Hilbert spaces. We assume that the op-
erator A : H→H is monotone and Lipschitz continuous, and U : H→H is quasi-nonexpansive.

3.1. Weak convergence. In this subsection, we propose the weakly convergent algorithm:
Mann-type Tseng’s extragradient algorithm, which is described as follows.

Algorithm 3.1. Initialization: Give γ > 0, l ∈ (0,1), and µ ∈ (0,1). Let x0,x1 ∈H be arbitrarily
fixed.
Iterative Steps: Calculate xn+1 as follows:
Step 1: Set wn = xn +αn(xn− xn−1), and compute

yn = PC(wn− τnAwn),

where τn is chosen to be the largest τ ∈ {γ,γl,γl2, . . .} satisfying

τ‖Awn−Ayn‖ ≤ µ‖wn− yn‖. (3.1)

Step 2: Compute
zn = yn− τn(Ayn−Awn).

Step 3: Compute
xn+1 = (1−βn)wn +βnUzn.

If wn = yn = xn+1 then wn ∈ Fix(U)∩V I(C,A). Set n := n+1 and go to step 1.

The following lemmas are important to prove the convergence of the above algorithm.

Lemma 3.2. [15] The Armijo-like search rule (3.1) is well defined and

min{γ, µl
L
} ≤ τn ≤ γ.

Lemma 3.3. If wn = yn = xn+1, then wn ∈ Fix(U)∩V I(C,A).

Proof. Since yn = PC(wn− τnAwn), and wn = yn, we have wn ∈ V I(C,A). From zn = yn−
τn(Ayn−Awn), we have yn = zn. On the other hand, if wn = yn = xn+1, we conclude from
xn+1 = (1−βn)wn+βnUzn that wn = (1−βn)wn+βnUwn. Therefore, Uwn = wn, which means
wn ∈ Fix(U). Thus, wn ∈ Fix(U)∩V I(C,A). �
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Lemma 3.4. Let {zn} be a sequence generated by Algorithm 3.1, then, for all p ∈V I(C,A), we
have

‖zn− p‖2 ≤ ‖wn− p‖2− (1−µ
2)‖wn− yn‖2.

Proof. Letting p ∈V I(C,A), we have

‖zn− p‖2 = ‖yn− p‖2 + τ
2
n‖Ayn−Awn‖2−2τn〈Ayn−Awn,yn− p〉

= ‖(yn−wn)+(wn− p)‖2 + τ
2
n‖Ayn−Awn‖2

−2τn〈Ayn−Awn,yn− p〉
= ‖yn−wn‖2 +‖wn− p‖2 +2〈yn−wn,wn− p〉+ τ

2
n‖Ayn−Awn‖2

−2τn〈Ayn−Awn,yn− p〉
= ‖yn−wn‖2 +‖wn− p‖2 +2〈yn−wn,yn− p〉
−2〈yn−wn,yn−wn〉+ τ

2
n‖Ayn−Awn‖2

−2τn〈Ayn−Awn,yn− p〉
= ‖wn− yn‖2 +‖wn− p‖2 +2〈yn−wn,yn− p〉−2‖wn− yn‖2

+τ
2
n‖Ayn−Awn‖2−2τn〈Ayn−Awn,yn− p〉

= ‖wn− p‖2−‖wn− yn‖2 +2〈yn−wn,yn− p〉+ τ
2
n‖Ayn−Awn‖2

−2τn〈Ayn−Awn,yn− p〉. (3.2)

Since yn = PC(wn− τnAwn), we find that

〈yn−wn + τnAwn,yn− p〉 ≤ 0,

which implies that
〈yn−wn,yn− p〉 ≤ −τn〈Awn,yn− p〉. (3.3)

From (3.2) and (3.3), we obtain

‖zn− p‖2 ≤ ‖wn− p‖2−‖wn− yn‖2−2τn〈Awn,yn− p〉+ τ
2
n‖Ayn−Awn‖2

−2τn〈Ayn−Awn,yn− p〉
= ‖wn− p‖2−‖wn− yn‖2 + τ

2
n‖Ayn−Awn‖2−2τn〈Ayn,yn− p〉

= ‖wn− p‖2−‖wn− yn‖2 + τ
2
n‖Ayn−Awn‖2

−2τn〈Ayn−Ap,yn− p〉−2τn〈Ap,yn− p〉
≤ ‖wn− p‖2−‖wn− yn‖2 + τ

2
n‖Ayn−Awn‖2

≤ ‖wn− p‖2− (1−µ
2)‖yn−wn‖2.

Therefore,
‖zn− p‖2 ≤ ‖wn− p‖2− (1−µ

2)‖yn−wn‖2, ∀p ∈V I(C,A).

This completes the proof. �

Theorem 3.5. Let A : H → H be a monotone and L-Lipschitz continuous mapping, and let
U : H → H be a quasi-nonexpansive mapping. Let {αn} be a non-decreasing real sequence
such that 0 ≤ αn ≤ α ≤ 1

4 and {βn} is a real sequence such that 0 < β ≤ βn ≤ 1
2 . Assume

that I−U is demiclosed at zero. Then the sequence {xn} generated by Algorithm 3.1 converges
weakly to an element of Fix(U)∩V I(C,A).
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Proof. Let p ∈ Fix(U)∩V I(C,A). From Lemma 3.4, we have

‖zn− p‖2 ≤ ‖wn− p‖2− (1−µ
2)‖wn− yn‖2.

This implies that
‖zn− p‖2 ≤ ‖wn− p‖2.

Thus,

‖xn+1− p‖2 = ‖(1−βn)(wn− p)+βn(Uzn− p)‖2

= (1−βn)‖wn− p‖2 +βn‖Uzn− p‖2−βn(1−βn)‖Uzn−wn‖2

≤ (1−βn)‖wn− p‖2 +βn‖zn− p‖2−βn(1−βn)‖Uzn−wn‖2

≤ (1−βn)‖wn− p‖2 +βn‖wn− p‖2−βn(1−βn)‖Uzn−wn‖2

= ‖wn− p‖2−βn(1−βn)‖Uzn−wn‖2. (3.4)

Since xn+1 = (1−βn)wn +βnUzn, we have

Uzn−wn =
1
βn

(xn+1−wn). (3.5)

Combining (3.4) with (3.5), and borrowing βn ≤ 1
2 , we have

‖xn+1− p‖2 ≤ ‖wn− p‖2− 1−βn

βn
‖xn+1−wn‖2

≤ ‖wn− p‖2−‖xn+1−wn‖2. (3.6)

Note that

‖wn− p‖2 = ‖(1+αn)(xn− p)−αn(xn−1− p)‖2

= (1+αn)‖xn− p‖2−αn‖xn−1− p‖2

+αn(1+αn)‖xn− xn−1‖2 (3.7)

and

‖xn+1−wn‖2 = ‖xn+1− xn‖2 +α
2
n‖xn− xn−1‖2−2αn〈xn+1− xn,xn− xn−1〉

≥ ‖xn+1− xn‖2 +α
2
n‖xn− xn−1‖2

−2αn‖xn+1− xn‖ · ‖xn− xn−1‖
≥ ‖xn+1− xn‖2 +α

2
n‖xn− xn−1‖2−αn‖xn+1− xn‖2

−αn‖xn− xn−1‖2

= (1−αn)‖xn+1− xn‖2 +(α2
n −αn)‖xn− xn−1‖2. (3.8)

Since the sequence {αn} is non-decreasing, we conclude from (3.6), (3.7) and (3.8) that

‖xn+1− p‖2 ≤ (1+αn)‖xn− p‖2−αn‖xn−1− p‖2 +αn(1+αn)‖xn− xn−1‖2

−(1−αn)‖xn+1− xn‖2− (α2
n −αn)‖xn− xn−1‖2

= (1+αn)‖xn− p‖2−αn‖xn−1− p‖2− (1−αn)‖xn+1− xn‖2

+[αn(1+αn)− (α2
n −αn)]‖xn− xn−1‖2

≤ (1+αn+1)‖xn− p‖2−αn‖xn−1− p‖2− (1−αn)‖xn+1− xn‖2

+2αn‖xn− xn−1‖2,
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which implies that

‖xn+1− p‖2−αn+1‖xn− p‖2 +2αn+1‖xn+1− xn‖2

≤ ‖xn− p‖2−αn‖xn−1− p‖2 +2αn‖xn− xn−1‖2

+2αn+1‖xn+1− xn‖2− (1−αn)‖xn+1− xn‖2

= ‖xn− p‖2−αn‖xn−1− p‖2 +2αn‖xn− xn−1‖2

+(2αn+1−1+αn)‖xn+1− xn‖2.

Putting Γn := ‖xn− p‖2−αn‖xn−1− p‖2 +2αn‖xn− xn−1‖2, we have

Γn+1−Γn ≤ (2αn+1−1+αn)‖xn+1− xn‖2.

Since 0≤ αn ≤ α ≤ 1
4 , we have −(2αn+1−1+αn)≥ δ , where δ = 1

4 . Thus, we have Γn+1−
Γn ≤−δ‖xn+1− xn‖2, where δ = 1

4 . It implies that the sequence {Γn} is non-increasing. Note
that

Γn = ‖xn− p‖2−αn‖xn−1− p‖2 +2αn‖xn− xn−1‖2

≥ ‖xn− p‖2−αn‖xn−1− p‖2

and

Γn+1 = ‖xn+1− p‖2−αn+1‖xn− p‖2 +2αn+1‖xn+1− xn‖2

≥ −αn+1‖xn− p‖2.

From 0≤ αn ≤ α , we have

‖xn− p‖2 ≤ αn‖xn−1− p‖2 +Γn

≤ α‖xn−1− p‖2 +Γ1

≤ . . .

≤ α
n‖x0− p‖2 +(1+ · · ·+α

n−1)Γ1

≤ α
n‖x0− p‖2 +

Γ1

1−α
,

which implies that sequence {xn} is bounded. Hence,

−Γn+1 ≤ αn+1‖xn− p‖2

≤ α‖xn− p‖2

≤ α
n+1‖x0− p‖2 +

αΓ1

1−α

and

δ

k

∑
n=1
‖xn+1− xn‖2 ≤ Γ1−Γk+1

≤ Γ1 +α
k+1‖x0− p‖2 +

αΓ1

1−α

= α
k+1‖x0− p‖2 +

Γ1

1−α

≤ ‖x0− p‖2 +
Γ1

1−α
,



10 M. TIAN, G. XU

which means ∑
∞
n=1 ‖xn+1− xn‖2 <+∞, and limn→∞ ‖xn+1− xn‖= 0. Since αn ≤ α , we have

‖xn+1−wn‖ ≤ ‖xn+1− xn‖+α‖xn− xn−1‖.
It follows that limn→∞ ‖xn+1−wn‖= 0. In view of

‖xn+1− p‖2 ≤ (1+αn)‖xn− p‖2−αn‖xn−1− p‖2− (1−αn)‖xn+1− xn‖2

+2αn‖xn− xn−1‖2

≤ (1+αn)‖xn− p‖2−αn‖xn−1− p‖2 +2αn‖xn− xn−1‖2,

we have limn→∞ ‖xn− p‖2 = l. It follows that limn→∞ ‖wn− p‖2 = l and limn→∞ ‖xn−wn‖2 = 0.
Observe that

‖xn+1− p‖2 ≤ (1−βn)‖wn− p‖2 +βn‖zn− p‖2−βn(1−βn)‖Uzn−wn‖2

≤ (1−βn)‖wn− p‖2 +βn‖zn− p‖2,

that is,

‖zn− p‖2 ≥ ‖xn+1− p‖2−‖wn− p‖2

βn
+‖wn− p‖2.

From the fact that the sequence {βn} is bounded, we have

liminf
n→∞

‖zn− p‖2 ≥ lim
n→∞
‖wn− p‖2 = l

and
limsup

n→∞

‖zn− p‖2 ≤ lim
n→∞
‖wn− p‖2 = l.

It follows that limn→∞ ‖zn− p‖2 = l and limn→∞ ‖yn−wn‖= 0. From

‖zn− yn‖ = ‖yn− τn(Ayn−Awn)− yn‖
= τn‖Awn−Ayn‖
≤ µ‖wn− yn‖,

we have ‖zn− yn‖ ≤ µ‖wn− yn‖ and limn→∞ ‖zn− yn‖= 0. It follows that

lim
n→∞
‖zn−wn‖ ≤ lim

n→∞
(‖zn− yn‖+‖yn−wn‖) = 0,

which implies limn→∞ ‖zn−wn‖= 0 and limn→∞ ‖Uzn−wn‖= 0. Since

lim
n→∞
‖Uzn− zn‖ ≤ lim

n→∞
(‖Uzn−wn‖+‖wn− zn‖) = 0,

we have limn→∞ ‖Uzn− zn‖ = 0. Since {xn} is bounded, there exists a subsequence {xnk} of
{xn} and q ∈ H such that xnk ⇀ q. So, we have wnk ⇀ q and znk ⇀ q. Since znk ⇀ q and I−U
is demiclosed at zero, we have q ∈ Fix(U). By ynk = PC(wnk − τnkAwnk) and the monotonicity
of A, we get

0 ≤ 〈ynk−wnk + τnkAwnk ,x− ynk〉, ∀x ∈C

= 〈ynk−wnk ,x− ynk〉+ τnk〈Awnk ,x− ynk〉, ∀x ∈C

= 〈ynk−wnk ,x− ynk〉+ τnk〈Awnk ,wnk− ynk〉+ τnk〈Awnk ,x−wnk〉, ∀x ∈C

≤ 〈ynk−wnk ,x− ynk〉+ τnk〈Awnk ,wnk− ynk〉+ τnk〈Ax,x−wnk〉, ∀x ∈C.

From Lemma 3.2, we assume that the limit of {τnk} exists. By taking the limit, we get 〈Ax,x−
q〉 ≥ 0, ∀x ∈C. It follows that q ∈ Fix(U)∩V I(C,A). By Lemma 2.5, we get the conclusion



INERTIAL MODIFIED TSENG’S EXTRAGRADIENT ALGORITHMS 11

that the sequence {xn} converges weakly to an element of Fix(U)∩V I(C,A). This completes
the proof. �

3.2. Strong convergence. In this section, we introduce a strong convergence algorithm which
was based on the inertial hybrid method and the Mann-type Tseng’s extragradient algorithm.

Let H be a Hilbert space. Let C be a nonempty closed convex subset of H. Let A : H→H be
a mapping, and let U : H→ H be a quasi-nonexpansive mapping.

Algorithm 3.6. Let x0,x1 ∈ H be arbitrarily fixed. Calculate xn+1 as follows:

wn = xn +αn(xn− xn−1),
yn = PC(wn− τnAwn),
zn = yn− τn(Ayn−Awn),
vn = (1−βn)wn +βnUzn,
Cn = {u ∈ H : ‖vn−u‖2 ≤ ‖xn−u‖2−2αn〈xn−u,xn−1− xn〉+α2

n‖xn−1− xn‖2},
Qn = {u ∈ H : 〈u− xn,x1− xn〉 ≤ 0},
xn+1 = PCn∩Qnx1,

(3.9)

for each n≥ 1, where τn > 0. If yn = wn, then calculate xn+1 and the next iterative process steps;
otherwise, set n := n+1 and go to (3.9) to calculate the next iterate xn+2.

Theorem 3.7. Let H be a real Hilbert space, and let C be a nonempty closed convex subset
of H. Let A : H → H be a monotone and L-Lipschitz continuous mapping, and let U be a
quasi-nonexpansive mapping. Assume that Fix(U)∩V I(C,A) is nonempty, and {αn} is non-
decreasing real sequence such that 0≤ αn ≤ α < 1, {βn} ⊂ [a,b]⊂ (0,1), and 0 < τ ≤ τn ≤ 1

L .
Assume that I−U is demiclosed at zero. Then the sequence {xn} generated by Algorithm 3.6
converges strongly to x∗ = PFix(U)∩V I(C,A)x1.

Proof. The proof is split into four steps.

Step 1. Prove that Fix(U)∩V I(C,A)⊂Cn∩Qn for each n ∈ N.
Obviously, Cn and Qn are self-spaces for each n ∈ N. Let u ∈ Fix(U)∩V I(C,A), we obtain

‖vn−u‖2 = (1−βn)‖wn−u‖2 +βn‖Uzn−u‖2−βn(1−βn)‖Uzn−wn‖2

≤ (1−βn)‖wn−u‖2 +βn‖zn−u‖2−βn(1−βn)‖Uzn−wn‖2

≤ (1−βn)‖wn−u‖2 +βn‖wn−u‖2−βn(1−βn)‖Uzn−wn‖2

≤ ‖wn−u‖2.

By use of the expression of wn, we have

‖wn−u‖2 = ‖xn−u‖2−2αn〈xn−u,xn−1− xn〉+α
2
n‖xn−1− xn‖2.

It follows that

‖vn−u‖2 ≤ ‖xn−u‖2−2αn〈xn−u,xn−1− xn〉+α
2
n‖xn−1− xn‖2.

Therefore, u ∈Cn for each n ∈ N. So, Fix(U)∩V I(C,A) ⊂Cn for each n ∈ N. For n = 1, we
have Q1 = H and hence Fix(U)∩V I(C,A) ⊂C1∩Q1. Assume that xk is given and Fix(U)∩
V I(C,A)⊂Ck∩Qk for some k ∈ N. It follows that

〈y− xk+1,x1− xk+1〉 ≤ 0, ∀y ∈ Fix(U)∩V I(C,A).
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Thus, it implies that Fix(U)∩V I(C,A) ⊂ Qk+1. So, Fix(U)∩V I(C,A) ⊂ Ck+1 ∩Qk+1. By
introduction, we obtain Fix(U)∩V I(C,A)⊂Cn∩Qn for each n ∈ N.

Step 2. Prove that {xn} is bounded. In view of 〈y−xn,x1−xn〉 ≤ 0, ∀y∈Qn, we have xn =PQnx1
and hence ‖xn−x1‖ ≤ ‖x1−y‖, ∀y∈Qn. Since Fix(U)∩V I(C,A)⊂Qn, we obtain ‖xn−x1‖ ≤
‖x1− y‖, ∀y ∈ Fix(U)∩V I(C,A). Since xn+1 ∈ Qn, we have ‖xn− x1‖ ≤ ‖xn+1− x1‖. Thus,
limn→∞ ‖xn− x1‖ exists. It implies that {xn} is bounded.

Step 3. Prove that ωw(xn)⊂ Fix(U)∩V I(C,A).
By use of xn = PQnx1, and xn+1 ∈ Qn, we have

‖xn+1− xn‖2 ≤ ‖xn+1− x1‖2−‖xn− x1‖2.

Therefore, xn+1−xn→ 0, as n→∞. Note that ‖wn−xn‖= αn‖xn−xn−1‖ and {xn} is bounded,
we obtain wn− xn→ 0, as n→ ∞. Since xn+1 ∈Cn, we have

‖vn− xn+1‖2 ≤ ‖xn− xn+1‖2 +2αn‖xn− xn+1‖‖xn−1− xn‖+α
2
n‖xn−1− xn‖2.

Thus vn− xn+1→ 0, as n→ ∞ and vn−wn→ 0, as n→ ∞. Since vn = (1−βn)wn +βnUzn, we
have Uzn−wn =

1
βn
(vn−wn) and Uzn−wn→ 0, as n→ ∞. Since

‖vn−u‖2−‖wn−u‖2 = ‖wn− vn‖2−2〈wn−u,wn− vn〉.

we have ‖vn−u‖2−‖wn−u‖2→ 0, as n→ ∞. Observe that

‖vn−u‖2 = ‖(1−βn)(wn−u)+βn(Uzn−u)‖2

= (1−βn)‖wn−u‖2 +βn‖Uzn−u‖2−βn(1−βn)‖Uzn−wn‖2

≤ (1−βn)‖wn−u‖2 +βn‖zn−u‖2.

Thus, ‖zn−u‖2−‖wn−u‖2 ≥ 1
βn
(‖vn−u‖2−‖wn−u‖2). It follows that

‖zn−u‖2−‖wn−u‖2 ≤ 0.

Therefore, ‖zn− u‖2−‖wn− u‖2→ 0, as n→ ∞ and ‖wn− yn‖ → 0, as n→ ∞. Thus, ‖zn−
wn‖ → 0, as n→ ∞ and Uzn− zn→ 0, as n→ ∞. Since {xn} is bounded, there exists a subse-
quence {xnk} of {xn} and q ∈ H such that xnk ⇀ q. So, we have wnk ⇀ q and znk ⇀ q. Since
znk ⇀ q and I−U is demiclosed at zero, we have q ∈ Fix(U). From the facts that wnk ⇀ q,
ynk = PC(wnk− τnkAwnk) and A is monotone, we get

0 ≤ 〈ynk−wnk + τnkAwnk ,x− ynk〉
= 〈ynk−wnk ,x− ynk〉+ τnk〈Awnk ,x− ynk〉+ τnk〈Awnk ,x−wnk〉
≤ 〈ynk−wnk ,x− ynk〉+ τnk〈Awnk ,wnk− ynk〉+ τnk〈Ax,x−wnk〉, ∀x ∈C.

We assume that the limit of {τnk} exists. By taking the limit, we get 〈Ax,x− q〉 ≥ 0, ∀x ∈ C.
By Lemma 2.5, we have q ∈ V I(C,A). Thus, q ∈ Fix(U)∩V I(C,A). Therefore, we obtain
ωw(xn)⊂ Fix(U)∩V I(C,A).

Step 4. Prove that xn→ x∗, as n→ ∞.
Since the norm is convex and lower semicontinuity and z ∈ Fix(U)∩V I(C,A), it follows that

‖x1− x∗‖ ≤ ‖x1− z‖ ≤ liminf
i→∞

‖xni− x1‖ ≤ limsup
i→∞

‖xni− x1‖ ≤ ‖x1− x∗‖.
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Thus,
lim
i→∞
‖xni− x1‖= ‖x1− z‖= ‖x1− x∗‖.

Since x∗ = PFix(U)∩V I(C,A)x1, we have z = x∗. So, limn→∞ ‖xn− x1‖ = ‖x1− x∗‖. Since xn ⇀
x∗, n→ ∞, we obtain xn− x1 ⇀ x∗− x1. Since the space is Hilbert, we can obtain xn− x1→
x∗− x1. Thus, xn→ x∗, n→ ∞. The proof is completed. �

4. NUMERICAL EXPERIMENTS

In this section, we consider some numerical examples to illustrate the efficiency and advan-
tages of our algorithms in comparisons with Algorithm 3.1 [20], the extragradient method and
the gradient method. The projections over C are computed effectively by the function quad prog
in Matlab 7.0 Optimization Toolbox.

In the following, we give the following examples.

Example 4.1. Let C = [−2,5], and H = R. Let A : R→ R be defined by Ax := x+ sinx and
U : R→ R be defined by Ux := x

2 sinx. For all x,y ∈ H, we have

‖Ax−Ay‖= ‖x+ sinx− y− siny‖ ≤ ‖x− y‖+‖sinx− siny‖ ≤ 2‖x− y‖,
and

〈Ax−Ay,x− y〉= (x+ sinx− y− siny)(x− y) = (x− y)2 +(sinx− siny)(x− y)≥ 0.

Thus, ‖Ax−Ay‖ ≤ L‖x−y‖, where L = 2 and 〈Ax−Ay,x−y〉 ≥ 0. So, A is L-Lipschitz contin-
uous and monotone. It is easy to find that V I(C,A) = {0}. If x 6= 0 and Ux = x, then x = x

2 sinx,
and sinx = 2, which is impossible. So, we obtain x = 0, which implies Fix(U) = {0}. For all
x ∈ R, we have

‖Ux−0‖= ‖x
2

sinx‖ ≤ ‖x
2
‖< ‖x‖= ‖x−0‖,

which implies that U is quasi-nonexpansive. Letting x = 2π and y = 3π

2 , we have

‖Ux−Uy‖= ‖2π

2
sin2π− 3π

4
sin

3π

2
‖= 3π

4
> ‖2π− 3π

2
‖= π

2
,

which implies that U is not a nonexpansive mapping. Since U is continuous, C is finite-
dimensional, it satisfies the demiclosed principle. We denote x∗ = 0. The numerical results
for this example are shown in Figure 1 and Table 1. The starting point is x0 = x1 = 1 ∈ R for
Algorithm 3.1. From Figure 1, we see that Algorithm 3.1 converges faster than the Algorithm
3.1 studied in [20]. For Algorithm 3.6, we choose x0 = x1 = 1,2,3∈R, respectively. Moreover,
we use ‖xn− x∗‖ ≤ 10−5 as the stopping criterion. From Table 1, it is easy to see that Algo-
rithm 3.6 converges in a shorter iterate number than the extragradient method and the gradient
method.

Example 4.2. Consider the operator U : Rm → Rm with Ux = −1
2x and a linear operator

A : Rm→Rm (m = 10,20) in the form A(x) = Mx+q [21, 22], where

M = NNT +S+D,

N is a m×m matrix, S is a m×m skew-symmetric matrix, D is a m×m diagonal matrix which
its diagonal entries are nonnegative, and q ∈ Rm is a vector. Therefore M is positive definite.
The feasible set is

C = {x = (x1, . . . ,xm) ∈Rm :−2≤ xi ≤ 5, i = 1,2, . . . ,m}.



14 M. TIAN, G. XU

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

10-300

10-200

10-100

100

D
n

=
|
|
x
n
-
x
*
|
|
2

Elapsed Time[sec]

Algo.3.1

Algo.3.1 [20]

FIGURE 1. Experiment for Example 4.1

TABLE 1. Numerical results as regards Example 4.1

x1 λ
Algo. 3.6. Extragradient method Gradient method

Iter. Time [s] Iter. Time [s] Iter. Time [s]

1
0.05 14 0.88 124 3.67 111 1.88
0.02 17 0.92 297 8.04 285 3.77
0.01 18 0.94 586 14.81 575 7.13

2
0.05 16 0.89 137 3.63 119 1.79
0.02 19 0.92 318 8.04 305 3.96
0.01 20 1.01 628 15.73 616 7.45

3
0.05 16 0.92 139 3.82 126 1.84
0.02 19 0.93 334 8.46 322 4.21
0.01 20 0.97 661 16.21 648 8.07

It is obvious that A is monotone and Lipschitz continuous. For the experiments, q is equal to
zero vector, all the entries of N, S are generated randomly and uniformly in [−2,2], and the
diagonal entries of D are in (0,2). We choose x0 = x1 = (1,1, . . . ,1) ∈Rm. Moreover, it is easy
to see that Fix(U)∩V I(C,A) = {(0,0, · · · ,0)T}. Denote x∗ = (0,0, · · · ,0)T . The results are
described in Figures 2 and 3. According to Figures 2 and 3, we see that the proposed algorithm
has the competitive advantages over the Algorithm 3.1 in [20].

Example 4.3. Let H = Rm. Define the feasible set by C = Rm and A : Rm → Rm is a linear
operator in the form Ax :=Mx and U :Rm→Rm is given by Ux :=−1

2x. for each x∈Rm, where
M = (ai, j)1≤i, j≤m is a matrix in Rm×m whose terms are given by

ai, j =


−1, if j = m+1− i and j > i,
1, if j = m+1− i and j < i,
0, otherwise.

Then A is monotone and ‖M‖-Lipschitz continuous. This is the classical example of the problem
that ordinary gradient methodes does not converge. It is easy to see that V I(C,A) = A−1(0),
the zero vector is the unique element in V I(C,A), and Fix(U)∩V I(C,A) = {(0,0, · · · ,0)T}.
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FIGURE 2. Experiment with m=10 for Example 4.2.
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FIGURE 3. Experiment with m=20 for Example 4.2.

TABLE 2. Numerical results as regards Example 4.3

m λ
Algo 3.6 Extragradient method

Iter. Time [s] Iter. Time [s]

20
0.1/‖M‖ 78 0.87 765 0.10

0.05/‖M‖ 83 0.97 3046 0.35

40
0.1/‖M‖ 65 0.92 835 0.11

0.05/‖M‖ 61 0.85 3323 0.43

80
0.1/‖M‖ 93 1.34 905 0.17

0.05/‖M‖ 99 1.41 3601 0.65

Denote x∗ = (0,0, · · · ,0)T , and take ‖xn− x∗‖ ≤ 10−1 as the stopping criterion. Choose x1 =
(1,1, · · · ,1)T for each iterative scheme and take τn = τ in the iterative scheme. Taking x0 =
(2,2, · · · ,2)T and αn = 1/2 in our iterative scheme, We show the numerical results for the case
m = 20,40,80, respectively, in Table 2.
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Example 4.4. Consider the Algorithm 3.6 in an infinite-dimensional Hilbert space H =L2([0,1])
with the inner product

〈x,y〉 :=
∫ 1

0
x(t)y(t)dt, ∀x,y ∈ H,

and the induced norm

‖x‖ := (
∫ 1

0
|x(t)|2dt)

1
2 , ∀x ∈ H.

Let the operator A : H → H be defined by (Ax)(t) = max{0,x(t)}, ∀x ∈ H. It is easy to show
that the operator A : H→ H is monotone and 1-Lipschitz continuous:

(Ax)(t) = max{0,x(t)}= x(t)+ |x(t)|
2

, ∀x ∈ H.

〈Ax−Ay,x− y〉 =
∫ 1

0
(Ax(t)−Ay(t))(x(t)− y(t))dt

=
∫ 1

0

x(t)− y(t)+ |x(t)|− |y(t)|
2

(x(t)− y(t))dt

=
∫ 1

0

1
2
[(x(t)− y(t))2 +(|x(t)|− |y(t)|)(x(t)− y(t))]dt

≥ 0.

Thus, the operator A is monotone.

‖Ax−Ay‖2 =
∫ 1

0
|Ax(t)−Ay(t)|2dt

=
∫ 1

0
|x(t)− y(t)+ |x(t)|− |y(t)|

2
|2dt

=
1
4

∫ 1

0
|x(t)− y(t)+ |x(t)|− |y(t)||2dt

≤
∫ 1

0
|x(t)− y(t)|2dt

= ‖x− y‖2.

Therefore, the operator A is 1-Lipschitz continuous. Let C := {x ∈ H : ‖x‖ ≤ 1}. The set of
solutions to the variational inequality VIP is V I(C,A) = {0} 6= /0. Let U : L2([0,1])→ L2([0,1])
be of the form (Ux)(t) =

∫ 1
0 tx(s)ds, t ∈ [0,1]. Indeed, 0 ∈ Fix(U). So Fix(U) 6= /0 and

|Ux(t)−Uy(t)|2 = |
∫ 1

0
t(x(s)− y(s))ds|2

≤ (
∫ 1

0
t|x(s)− y(s)|ds)2

≤
∫ 1

0
|x(s)− y(s)|2ds.

Hence, ‖Ux−Uy‖2 ≤ ‖x− y‖2. We have that U is nonexpansive. Since Fix(U)∩V I(C,A) =
{0} 6= /0, we denote x∗ = 0, and choose x0(t) = x1(t) = t2 and x0(t) = x1(t) = t

3 , respectively.
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TABLE 3. Numerical results as regards Example 4.4

x0 x1 ε
Algo. 3.6

Iter. Time[s]

t2 t2 10−2 21 9.59
7×10−3 23 11.04

t
3

t
3

10−2 15 2.31
7×10−3 16 2.46

TABLE 4. Numerical results as regards Example 4.5

x0 x1 ε
Algo. 3.6

Iter. Time[s]

1
5t2e−3t 1

4t2e−3t 10−3 3 4.68
7×10−4 4 5.97

cos t 3cos t
10−3 1 4.67

7×10−4 1 4.84

The numerical results are shown in Table 3. We use the condition ‖xn‖ ≤ ε to terminate Algo-
rithm 3.6. We mainly consider the iteration step and iteration time of Algorithm 3.6 to verify
its effectiveness.

Example 4.5. Suppose that H = L2([0,2π]) with norm

‖x‖= (
∫ 2π

0
|x(t)|2dt)

1
2 , ∀x ∈ H,

and inner product

〈x,y〉=
∫ 2π

0
x(t)y(t)dt, ∀x,y ∈ H.

Consider the operator A : H→ H defined by

Ax(t) =
1
2

max(0,x(t)), t ∈ [0,2π], ∀ x ∈ H.

From Example 4.4, we see that A is Lipschitz continuous and monotone on H. The feasible set
is C = {x∈H :

∫ 2π

0 (t2+1)x(t)dt ≤ 1}. It is known [23] that a projection formula on a half-space
is

PC(x) =

{
b−〈a,x〉
‖a‖2 a+ x, 〈a,x〉> b,

x, 〈a,x〉 ≤ b,

where C := {x ∈ L2([0,2π]) : 〈a,x〉 ≤ b}, 0 6= a ∈ L2([0,2π]) and b ∈ R. Let U : L2([0,2π])→
L2([0,2π]), (Ux)(t) = x(t). It is easy to see that Fix(U)∩V I(C,A) = {0} 6= /0. We choose
x0(t) = 1

5t2e−3t , x1(t) = 1
4t2e−3t and x0(t) = cos t, x1(t) = 3cos t, respectively. The numerical

results are shown in Table 4. We use the condition ‖xn+1−xn‖ ≤ ε to terminate Algorithm 3.6.

5. CONCLUSION

In this paper, we presented two new algorithms, which are based on the Tseng’s extragradient
method for solving the monotone variational inequality problem and the fixed-point problem of
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a quasi-nonexpansive mapping in a real Hilbert space. Under suitable conditions, we proved the
convergence of the Algorithms. It is worth mentioning that Algorithm 3.1 does not need to re-
quire the information of the Lipschitz constant of the operator A and only has one projection in
each iteration. Algorithm 3.6 is a strong convergence iterative method with the inertial acceler-
ation. Some numerical experiments are performed to illustrate the advantages of our algorithms
compared with existing ones.
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