

Journal of Nonlinear Functional Analysis

Available online at http://jnfa.mathres.org

THE EXISTENCE OF ENTROPY SOLUTIONS FOR NONLINEAR DEGENERATE ELLIPTIC EQUATIONS

ALBO CARLOS CAVALHEIRO

Department of Mathematics, State University of Londrina, Londrina, Brazil

Abstract. In this article, we prove the existence of entropy solutions for the Dirichlet problem

$$\begin{cases} -\operatorname{div}[\mathscr{A}(x,\nabla u)\,\omega_1 + \mathscr{B}(x,u,\nabla u)\,\omega_2] = f(x), & \text{in } \Omega, \\ u(x) = 0, & \text{on } \partial\Omega, \end{cases}$$

where Ω is a bounded open set of \mathbb{R}^N , $N \ge 2$ and $f \in L^1(\Omega)$. An example is provided to support our result. **Keywords.** Nonlinear degenerate elliptic equations; Entropy solutions; Weighted Sobolev spaces.

1. Introduction

The main purpose of this paper is to establish the existence of entropy solutions for the following Dirichlet problem

$$\begin{cases} Lu(x) = f(x), & \text{in } \Omega, \\ u(x) = 0, & \text{on } \partial\Omega, \end{cases}$$
 (P)

where

$$Lu = -\operatorname{div}[\mathscr{A}(x, \nabla u) \omega_1 + \mathscr{B}(x, u, \nabla u) \omega_2], \tag{1.1}$$

 $\Omega \subset \mathbb{R}^N$ is a bounded open set, ω_1 and ω_2 are two weight functions (i.e., a locally integrable function on \mathbb{R}^N such that $0 < \omega_j(x) < \infty$ (j=1,2) a.e. $x \in \mathbb{R}^N$) which represent the degeneration (or singularity) in equation (1.1), $1 < q < p < \infty$, $f \in L^1(\Omega)$, the functions $\mathscr{A} : \Omega \times \mathbb{R}^N \to \mathbb{R}^N$ and $\mathscr{B} : \Omega \times \mathbb{R}^N \to \mathbb{R}^N$ satisfies the following conditions:

- **(H1)** $x \mapsto \mathscr{A}(x, \xi)$ is measurable on Ω for all $\xi \in \mathbb{R}^N$, $\xi \mapsto \mathscr{A}(x, \xi)$ is continuous on \mathbb{R}^N for almost all $x \in \Omega$.
- **(H2)** There exists a constant $\theta_1 > 0$ such that

$$\langle \mathscr{A}(x,\xi) - \mathscr{A}(x,\xi'), (\xi - \xi') \rangle \ge \theta_1 |\xi - \xi'|^p,$$

E-mail addresses: accava@gmail.com.

Received August 11, 2020; Accepted September 9, 2020.

whenever $\xi, \xi' \in \mathbb{R}^N$, $\xi \neq \xi'$, and $\mathscr{A}(x, \xi) = (\mathscr{A}_1(x, \xi), ..., \mathscr{A}_N(x, \xi))$ (where $\langle .,. \rangle$ denotes here the Euclidian scalar product in \mathbb{R}^N).

- **(H3)** $\langle \mathscr{A}(x,\xi), \xi \rangle \geq \lambda_1 |\xi|^p$, where λ_1 is a positive constant.
- **(H4)** $|\mathscr{A}(x,\xi)| \le K_1(x) + h_1(x) |\xi|^{p/p'}$, where K_1 and h_1 are nonnegative functions with $h_1 \in L^{\infty}(\Omega)$ and $K_1 \in L^{p'}(\Omega, \omega_1)$ (with 1/p + 1/p' = 1).
- **(H5)** $x \mapsto \mathcal{B}(x, s, \xi)$ is measurable on Ω for all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^N$, $(s, \xi) \mapsto \mathcal{B}(x, s, \xi)$ is continuous on $\mathbb{R} \times \mathbb{R}^N$ for almost all $x \in \Omega$.
- **(H6)** $\langle \mathscr{B}(x,s,\xi) \mathscr{B}(x,s',\xi'), \xi \xi' \rangle > 0$, whenever $\xi, \xi' \in \mathbb{R}^N, \xi \neq \xi'$.
- **(H7)** $\langle \mathscr{B}(x,s,\xi), \xi \rangle \ge \lambda_2 |\xi|^q$, with $1 < q < p < \infty$, and $\lambda_2 > 0$.
- **(H8)** $|\mathscr{B}(x,s,\xi)| \le K_2(x) + g_1(x)|s|^{q/q'} + g_2(x)|\xi|^{q/q'}$, where K_2 , g_1 and g_2 are nonnegative functions with $g_1 \in L^{\infty}(\Omega)$, $g_2 \in L^{\infty}(\Omega)$ and $K_2 \in L^{q'}(\Omega, \omega_2)$ (with 1/q + 1/q' = 1).

The notion of entropy solutions was introduced in [1] where the authors studied the non-degenerate elliptic equation -div(a(x,Du)) = f(x) with $f \in L^1(\Omega)$. In [2], the author studied the degenerate elliptic equation Lu = f, where L is a degenerate elliptic operator in divergence

form (i.e., $Lu = -\sum_{i,j=1}^{n} D_j(a_{ij}(x)D_iu)$) and $f \in L^1(\Omega)$. In [3] ,the author studied the case when

 $\mathscr{A}(x,\xi)\equiv 0$ (i.e., $Lu=-\operatorname{div}(\mathscr{B}(x,u,\nabla u)\,\omega)$). Note that, in the proof of our main result, many ideas have been adapted from [1], [2] and [3]. For degenerate partial differential equations, i.e., the equations with various types of singularities in the coefficients, it is natural to look for solutions in weighted Sobolev spaces (see, e.g., [4, 5, 6, 7, 8, 9]). A class of weights, which is particularly well understood, is the class of A_p weights that was introduced by Muckenhoupt in the early 1970's (see [10]).

In this paper, we propose to solve problem (P) by approximation with variational solutions. We take $f_n \in C_0^{\infty}(\Omega)$ such that $f_n \to f$ in $L^1(\Omega)$, and find a solution $u_n \in W_0^{1,p}(\Omega, \omega_1)$ for the problem with right-hand side f_n and G_n .

2. Definitions and basic results

Let Ω be an open set in \mathbb{R}^n . By the symbol $\mathscr{W}(\Omega)$, we denote the set of all measurable, a.e., in Ω positive and finite functions $\omega = \omega(x)$, $x \in \Omega$. Elements of $\mathscr{W}(\Omega)$ will be called *weight functions*. Every weight ω gives rise to a measure on the measurable subsets of \mathbb{R}^n through integration. This measure will be denoted by μ . Thus, $\mu(E) = \int_E \omega(x) \, dx$ for measurable sets $E \subset \mathbb{R}^n$.

Definition 2.1. Let $1 \le p < \infty$. A weight ω is said to be an A_p -weight if there is a positive constant $C = C(p, \omega)$ such that, for every ball $B \subset \mathbb{R}^N$,

$$\left(\frac{1}{|B|} \int_{B} \omega \, dx\right) \left(\frac{1}{|B|} \int_{B} \omega^{1/(1-p)} \, dx\right)^{p-1} \le C \text{ if } p > 1,$$

$$\left(\frac{1}{|B|} \int_{B} \omega \, dx\right) \left(\text{ess} \sup_{x \in B} \frac{1}{\omega}\right) \le C, \text{ if } p = 1,$$

where |.| denotes the *N*-dimensional Lebesgue measure in \mathbb{R}^N .

If $1 < q \le p$, then $A_q \subset A_p$ (see [7, 8, 11] for more details about A_p -weights). As an example of an A_p -weight, the function $\omega(x) = |x|^{\alpha}$, $x \in \mathbb{R}^N$, is in A_p if and only if $-N < \alpha < N(p-1)$ (see [9], Chapter IX, Corollary 4.4). If $\varphi \in BMO(\mathbb{R}^N)$, then $\omega(x) = e^{\alpha \varphi(x)} \in A_2$ for some $\alpha > 0$ (see [12]).

Remark 2.2. If $\omega \in A_p$, 1 , then

$$\left(\frac{|E|}{|B|}\right)^p \le C \frac{\mu(E)}{\mu(B)}$$

for all measurable subsets E of B (see 15.5 strong doubling property in [8]). Therefore, if $\mu(E) = 0$, then |E| = 0. Thus, if $\{u_n\}$ is a sequence of functions defined in B and $u_n \rightarrow u$ μ -a.e. then $u_n \rightarrow u$ a.e.. The measure μ and the Lebesgue measure |.| are mutually absolutely continuous, i.e., they have the same zero sets ($\mu(E) = 0$ if and only if |E| = 0). So, there is no need to specify the measure when using the ubiquitous expression almost everywhere and almost every, both abbreviated a.e.

Definition 2.3. Let ω be a weight. We denote by $L^p(\Omega, \omega)$ $(1 \le p < \infty)$ the Banach space of all measurable functions f defined in Ω for which

$$||f||_{L^p(\Omega,\omega)} = \left(\int_{\Omega} |f|^p \omega dx\right)^{1/p} < \infty.$$

We denote $[L^{p'}(\Omega, \omega)]^N = L^{p'}(\Omega, \omega) \times ... \times L^{p'}(\Omega, \omega)$.

Remark 2.4. If $\omega \in A_p$, $1 , then since <math>\omega^{-1/(p-1)}$ is locally integrable, we have $L^p(\Omega, \omega) \subset L^1_{loc}(\Omega)$ (see [12, Remark 1.2.4]). It thus makes sense to talk about the weak derivatives of functions in $L^p(\Omega, \omega)$.

Definition 2.5. Let $\Omega \subset \mathbb{R}^N$ a bounded open set, 1 , <math>k a nonnegative integer and $\omega \in A_p$. We denote by $W^{k,p}(\Omega,\omega)$, the weighted Sobolev spaces, the set of all functions $u \in L^p(\Omega,\omega)$ with weak derivatives $D^{\alpha}u \in L^p(\Omega,\omega)$, $1 \le |\alpha| \le k$. The norm in the space $W^{k,p}(\Omega,\omega)$ is defined by

$$||u||_{W^{k,p}(\Omega,\omega)} = \left(\int_{\Omega} |u|^p \omega \, dx + \sum_{1 \leq |\alpha| \leq k} \int_{\Omega} |D^{\alpha}u|^p \omega \, dx\right)^{1/p}.$$

We also define the space $W_0^{k,p}(\Omega,\omega)$ as the closure of $C_0^{\infty}(\Omega)$ with respect to the norm

$$\|u\|_{W_0^{k,p}(\Omega,\omega)} = \left(\sum_{1 \le |\alpha| \le k} \int_{\Omega} |D^{\alpha}u|^p \omega dx\right)^{1/p}.$$

The dual space of $W_0^{1,p}(\Omega,\omega)$ is the space $[W_0^{1,p}(\Omega,\omega)]^*=W^{-1,p'}(\Omega,\omega)$,

$$W^{-1,p'}(\Omega,\omega) = \{T = f - \operatorname{div}(G) : G = (g_1,...,g_N), \frac{f}{\omega}, \frac{g_j}{\omega} \in L^{p'}(\Omega,\omega)\}.$$

It is evident that a weight function ω , which satisfies $0 < C_1 \le \omega(x) \le C_2$, for a.e. $x \in \Omega$ (where C_1 and C_2 are constants), gives nothing new (the space $W^{k,p}(\Omega,\omega)$ and is then identical with the classical Sobolev space $W^{k,p}(\Omega)$). Consequently, we shall be interested in all above such weight function ω which either vanish somewhere in $\Omega \cup \partial \Omega$ or increase to infinity (or both).

We need the following basic result.

Theorem 2.6. (The weighted Sobolev inequality) Let $\Omega \subset \mathbb{R}^N$ be a bounded open set and let ω be an A_p -weight, $1 . Then there exist positive constants <math>C_{\Omega}$ and δ such that, for all $u \in W_0^{1,p}(\Omega,\omega)$ and $1 \le \eta \le N/(N-1) + \delta$,

$$||u||_{L^{\eta_p}(\Omega,\omega)} \le C_{\Omega} ||\nabla u||_{L^p(\Omega,\omega)}. \tag{2.1}$$

Proof. Its suffices to prove the inequality for functions $u \in C_0^{\infty}(\Omega)$ (see [6, Theorem 1.3]). To extend the estimates (2.1) to arbitrary $u \in W_0^{1,p}(\Omega,\omega)$, we let $\{u_m\}$ be a sequence of $C_0^{\infty}(\Omega)$ functions tending to u in $W_0^{1,p}(\Omega,\omega)$. Applying estimates (2.1) to differences $u_{m_1} - u_{m_2}$, we see that $\{u_m\}$ will be a Cauchy sequence in $L^{\eta p}(\Omega,\omega)$. Consequently the limit function u will lie in the desired spaces and satisfy (2.1).

Definition 2.7. Let $\omega \in A_p$, $1 . We say that <math>u \in \mathcal{T}_0^{1,p}(\Omega,\omega)$ if $T_k(u) \in W_0^{1,p}(\Omega,\omega)$, for all k > 0, where the function $T_k : \mathbb{R} \to \mathbb{R}$ is defined by

$$T_k(s) = \begin{cases} s, & \text{if } |s| \le k \\ k & \text{sign}(s), & \text{if } |s| > k. \end{cases}$$

Remark 2.8. (i) Note that, for given h > 0 and k > 0,

$$T_h(u - T_k(u)) = \begin{cases} 0, & \text{if } |u| \le k \\ (|u| - k) \operatorname{sign}(u), & \text{if } k < |u| \le k + h \\ h \operatorname{sign}(u), & \text{if } |u| > k + h. \end{cases}$$

And if $\alpha \in \mathbb{R}$, $\alpha \neq 0$, then $T_k(\alpha u) = \alpha T_{k/|\alpha|}(u)$.

(ii) If $u \in W_{loc}^{1,1}(\Omega, \omega)$ then

$$\nabla T_k(u) = \chi_{\{|u| < k\}} \nabla u,$$

where χ_E denotes the characteristic function of a measurable set $E \subset \mathbb{R}^N$.

Definition 2.9. Let $f \in L^1(\Omega)$ and $u \in \mathcal{T}_0^{1,p}(\Omega,\omega)$. We say that u is an entropy solution to problem (P) if

$$\int_{\Omega} \langle \mathscr{A}(x, \nabla u), \nabla T_k(u - \varphi) \rangle \omega_1 dx + \int_{\Omega} \langle \mathscr{B}(x, u, \nabla u), \nabla T_k(u - \varphi) \rangle \omega_2 dx$$

$$= \int_{\Omega} f T_k(u - \varphi) dx, \tag{2.2}$$

for all k > 0 and all $\varphi \in W_0^{1,p}(\Omega, \omega_1) \cap L^{\infty}(\Omega)$.

We recall that the gradient of u which appears in (2.2) is defined as in [2, Remark 2.8], that is, $\nabla u = \nabla T_k(u)$ on the set where |u| < k.

Remark 2.10. Note that if $u_1, u_2 \in W_0^{1,p}(\Omega, \omega)$ then

$$\varphi = T_k(u_1 + u_2) \in W_0^{1,p}(\Omega, \omega) \cap L^{\infty}(\Omega)$$

and

$$\nabla \varphi = \nabla T_k(u_1 + u_2) = \nabla (u_1 + u_2) \chi_{\{|u_1 + u_2| < k\}}.$$

Definition 2.11. Let $1 \le p < \infty$ and let ω be a weight function. We define the weighted Marcinkiewicz space $\mathcal{M}^p(\Omega, \omega)$ as the set of measurable functions $f : \Omega \to \mathbb{R}$ such that the function

$$\Gamma_f(k) = \mu(\{x \in \Omega : |f(x)| > k\}), k > 0,$$

satisfies an estimate of the form $\Gamma_f(k) \le Ck^{-p}$, $0 < C < \infty$.

Remark 2.12. (a) If $1 < q < p < \infty$ and $\Omega \subset \mathbb{R}^N$ is a bounded set, then

$$L^p(\Omega, \omega) \subset \mathcal{M}^p(\Omega, \omega)$$
, and $\mathcal{M}^p(\Omega, \omega) \subset L^q(\Omega, \omega)$

(the proof follows the lines of [13, Theorem 2.18.8]).

(b) If $\frac{\omega_2}{\omega_1} \in L^r(\Omega, \omega_1)$, where r = p/(p-q) (and r' = p/q), then $\mathcal{M}^p(\Omega, \omega_1) \subset \mathcal{M}^q(\Omega, \omega_2)$. In fact, we have for all $A \subset \mathbb{R}^N$ measurable set

$$\mu_{2}(A) = \int_{A} \omega_{2} dx$$

$$= \int_{A} \frac{\omega_{2}}{\omega_{1}} \omega_{1} dx$$

$$\leq \left(\int_{A} \omega_{1} dx \right)^{1/r'} \left(\int_{A} \left(\frac{\omega_{2}}{\omega_{1}} \right)^{r} \omega_{1} dx \right)^{1/r}$$

$$= \left[\mu_{1}(A) \right]^{1/r'} \| \omega_{2} / \omega_{1} \|_{L^{r}(\Omega_{1}, \omega_{1})}.$$

Hence $\mu_2(A) \leq C_r [\mu_1(A)]^{1/r'}$, where $C_r = \|\omega_2/\omega_1\|_{L^r(\Omega,\omega_1)}$. Therefore, if $\Omega_{f,k} = \{x \in \Omega : |f(x)| > k\}$, $\Gamma_f^{(1)}(k) = \mu_1(\Omega_{f,k})$, $\Gamma_f^{(2)}(k) = \mu_2(\Omega_{f,k})$ and $f \in \mathcal{M}^p(\Omega,\omega_1)$ (that is, $\mu_1(\Omega_{f,k}) \leq Ck^{-p}$), then

$$\Gamma_f^{(2)}(k) = \mu_2(\Omega_{f,k})
\leq C_r [\mu_1(\Omega_{f,k})]^{1/r'}
\leq C_r (Ck^{-p})^{1/r'}
= C_r C^{1/r'} k^{-q},$$

that is, $f \in \mathcal{M}^q(\Omega, \omega_2)$

(c) If $\frac{\omega_2}{\omega_1} \in L^r(\Omega, \omega_1)$ (where r = p/(p-q), $1 < q < p < \infty$), then

$$||u||_{L^{q}(\Omega,\omega_{2})} \leq C_{p,q} ||u||_{L^{p}(\Omega,\omega_{1})},$$

where $C_{p,q} = \|\omega_2/\omega_1\|_{L^r(\Omega,\omega_1)}^{1/q}$. In fact, by Hölder's inequality, we obtain

$$\begin{aligned} \|u\|_{L^{q}(\Omega,\omega_{2})}^{q} &= \int_{\Omega} |u|^{q} \, \omega_{2} \, dx = \int_{\Omega} |u|^{q} \, \frac{\omega_{2}}{\omega_{1}} \, \omega_{1} \, dx \\ &\leq \left(\int_{\Omega} |u|^{q \, p/q} \, \omega_{1} \, dx \right)^{q/p} \left(\int_{\Omega} \left(\omega_{2}/\omega_{1} \right)^{p/(p-q)} \, \omega_{1} \, dx \right)^{(p-q)/p} \\ &= \|u\|_{L^{p}(\Omega,\omega_{1})}^{q} \|\omega_{2}/\omega_{1}\|_{L^{r}(\Omega,\omega_{1})}. \end{aligned}$$

Hence,

$$||u||_{L^{q}(\Omega,\omega_{2})} \leq C_{p,q}||u||_{L^{p}(\Omega,\omega_{1})}.$$

Lemma 2.13. [2, Lemma 3.3] Let $u \in \mathcal{T}_0^{1,p}(\Omega,\omega)$ and $\omega \in A_p$, 1 , be such that

$$\frac{1}{k} \int_{\{|u| < k\}} |\nabla u|^p \omega \, dx \le M,\tag{2.3}$$

for every k > 0. Then $u \in \mathcal{M}^{p_1}(\Omega, \omega)$, where $p_1 = (p-1)$. More precisely, there exists C > 0 such that $\Gamma_u(k) \leq CMk^{-p_1}$.

Lemma 2.14. [2, Lemma 3.4] Let $u \in \mathcal{T}_0^{1,p}(\Omega,\omega)$, where $\omega \in A_p$, 1 , be such that

$$\frac{1}{k} \int_{\{|u| < k\}} |\nabla u|^p \boldsymbol{\omega} \, dx \le M,$$

for every k > 0. Then $|\nabla u| \in \mathcal{M}^{p_2}(\Omega, \omega)$, where $p_2 = p p_1/(p_1 + 1)$ (with $p_1 = (p - 1)$). More precisely, there exists C > 0 such that $\Gamma_{|\nabla u|}(k) \leq CM k^{-p_2}$.

Lemma 2.15. Let $\omega \in A_p$, $1 and a sequence <math>\{u_n\}$, $u_n \in W_0^{1,p}(\Omega, \omega)$ satisfies (i) $u_n \rightharpoonup u$ in $W_0^{1,p}(\Omega, \omega)$ and μ -a.e. in Ω ;

(ii)
$$\int_{\Omega} \langle \mathscr{B}(x, u_n, \nabla u_n) - \mathscr{B}(x, u_n, \nabla u), \nabla(u_n - u) \rangle \omega dx \to 0 \text{ with } n \to \infty.$$

Then $u_n \rightarrow u$ in $W_0^{1,p}(\Omega, \omega)$.

Proof. The proof of this lemma follows the lines of Lemma 5 in [14].

3. Main Result

In this section, we prove the main result of this paper.

Theorem 3.1. Let $\omega_1 \in A_p$, $\omega_2 \in \mathcal{W}(\Omega)$, $1 < q < p < \infty$, with $\frac{\omega_2}{\omega_1} \in L^r(\Omega, \omega_1)$ (where r = p/(p-q)) and the conditions (H1)-(H8) be satisfied. Then there exists an entropy solutions u of problem (P). Moreover, $u \in \mathcal{M}^{p_1}(\Omega, \omega_1)$ and $|\nabla u| \in \mathcal{M}^{p_2}(\Omega, \omega_1)$, with $p_1 = (p-1)$ and $p_2 = p_1 \, p/(p_1+1)$.

Proof. Considering a sequence $\{f_n\}$, $f_n \in C_0^{\infty}(\Omega)$,

$$f_n \rightarrow f \text{ in } L^1(\Omega) \text{ and } ||f_n||_{L^1(\Omega)} \leq ||f||_{L^1(\Omega)}.$$

For each *n*, there exists a solution $u_n \in W_0^{1,p}(\Omega,\omega_1)$ of the Dirichlet problem

$$(P_n) \left\{ \begin{array}{c} -\mathrm{div}[\mathscr{A}(x,\nabla u_n)\,\omega_1 + \mathscr{B}(x,u_n,\nabla u_n)\,\omega_2] = f_n(x) \text{ in } \Omega, \\ u_n(x) = 0 \text{ on } \partial\Omega, \end{array} \right.$$

(by Theorem 1.1 in [15]), that is,

$$\int_{\Omega} \langle \mathscr{A}(x, \nabla u_n), \nabla \varphi \rangle \, \omega_1 \, dx + \int_{\Omega} \langle \mathscr{B}(x, u_n, \nabla u_n), \nabla \varphi \rangle \, \omega_2 \, dx = \int_{\Omega} f_n \varphi \, dx, \tag{3.1}$$

for all $\varphi \in W_0^{1,p}(\Omega, \omega_1)$. For $\varphi = T_k(u_n)$, we obtain from (3.1) that

$$\int_{\Omega} \langle \mathscr{A}(x, \nabla u_n), \nabla T_k(u_n) \rangle \, \omega_1 \, dx + \int_{\Omega} \langle \mathscr{B}(x, u_n, \nabla u_n), \nabla T_k(u_n) \rangle \, \omega_2 \, dx$$

$$= \int_{\Omega} f_n T_k(u_n) \, dx. \tag{3.2}$$

From (H3) and Remark 2.8 (ii), we have

$$\int_{\Omega} \langle \mathscr{A}(x, \nabla u_n), \nabla T_k(u_n) \rangle \omega_1 dx = \int_{\Omega} \langle \mathscr{A}(x, \nabla T_k(u_n), \nabla T_k(u_n)) \rangle \omega_1 dx$$

$$\geq \lambda_1 \int_{\Omega} |\nabla T_k(u_n)|^p \omega_1 dx.$$

By use of (H7), we have

$$\int_{\Omega} \langle \mathscr{B}(x, u_n, \nabla u_n), \nabla T_k(u_n) \rangle \omega_2 dx$$

$$= \int_{\Omega} \langle \mathscr{B}(x, u_n, \nabla T_k(u_n)), \nabla T_k(u_n) \rangle \omega_2 dx$$

$$\geq \lambda_2 \int_{\Omega} |\nabla T_k(u_n)|^q \omega_2 dx > 0$$

and we also have

$$\left| \int_{\Omega} f_n T_k(u_n) \, dx \right| \leq \int_{\Omega} |f_n| |T_k(u_n)| \, dx \leq k \|f_n\|_{L^1(\Omega)} \leq k \|f\|_{L^1(\Omega)}.$$

In view of (3.2), we obtain

$$\lambda_1 \int_{\Omega} |\nabla T_k(u_n)|^p \omega_1 dx + \lambda_2 \int_{\Omega} |\nabla T_k(u_n)|^q \omega_2 dx \leq k \|f\|_{L^1(\Omega)}.$$

Then, if $C_1 = ||f||_{L^1(\Omega)}/\lambda_1$, then

$$\int_{\Omega} |\nabla T_k(u_n)|^p \omega_1 \, dx \le \frac{k}{\lambda_1} ||f||_{L^1(\Omega)} = C_1 k, \text{ for all } k > 0.$$
(3.3)

By use of Lemma 2.13 and Lemma 2.14, we have that the sequence $\{u_n\}$ is bounded in $\mathcal{M}^{p_1}(\Omega, \omega_1)$ (with $p_1 = (p-1)$ and $\{|\nabla u_n|\}$ is bounded in $\mathcal{M}^{p_2}(\Omega, \omega_1)$ (with $p_2 = p_1 \, p/(p_1+1)$). Moreover, $\{u_n\}$ is a Cauchy sequence in μ_1 -measure. Consequently, there exist a function u and a subsequence, that we will still denote by $\{u_n\}$, such that

$$u_n \to u \text{ a.e. in } \Omega.$$
 (3.4)

Using (3.3) and (3.4), we have

$$T_k(u_n) \rightharpoonup T_k(u)$$
 weakly in $W_0^{1,p}(\Omega, \omega_1)$,
 $T_k(u_n) \to T_k(u)$ strongly in $L^p(\Omega, \omega_1)$ and a.e. in Ω , (3.5)

for all k > 0. Hence $T_k(u) \in W_0^{1,p}(\Omega, \omega_1)$. Furthermore, from the weak lower semicontinuity of the norm $W_0^{1,p}(\Omega, \omega_1)$, we have that (3.3) still holds for u, that is,

$$\int_{\Omega} |\nabla T_k(u)|^p \omega_1 dx \leq C_1 k.$$

Applying Lemma 2.13 and Lemma 2.14, we have that $u \in \mathcal{M}^{p_1}(\Omega, \omega_1)$ (with $p_1 = (p-1)$) and $|\nabla u| \in \mathcal{M}^{p_2}(\Omega, \omega_1)$ (with $p_2 = p_1 p/(p_1+1)$).

• We need to shown that $T_k(u_n) \to T_k(u)$ strongly in $W_0^{1,p}(\Omega,\omega_1)$, for all k > 0.

Letting h > k and applying (3.1) with function $\varphi_n = T_{2k}(u_n - T_h(u_n) + T_k(u_n) - T_k(u))$, we get

$$\int_{\Omega} \langle \mathscr{A}(x, \nabla u_n), \nabla \varphi_n \rangle \, \omega_1 \, dx + \int_{\Omega} \langle \mathscr{B}(x, u_n, \nabla u_n), \nabla \varphi_n \rangle \, \omega_2 \, dx$$

$$= \int_{\Omega} f_n \varphi_n \, dx. \tag{3.6}$$

If M = 4k + h, then $\nabla \varphi_n = 0$ for $|u_n| > M$. Hence, since condition (H7) implies that $\mathcal{B}(x, s, 0) = 0$ and condition (H3) implies that $\mathcal{A}(x, 0) = 0$, we can write (3.6) in the form

$$\int_{\Omega} \langle \mathscr{A}(x, \nabla T_{M}(u_{n})), \nabla \varphi_{n} \rangle \omega_{1} dx + \int_{\Omega} \langle \mathscr{B}(x, T_{M}(u_{n}), \nabla T_{M}(u_{n})), \nabla \varphi_{n} \rangle \omega_{2} dx
= \int_{\Omega} f_{n} \varphi_{n} dx.$$
(3.7)

In the left-hand side of (3.7), we have

$$\int_{\Omega} \langle \mathscr{A}(x, \nabla T_{M}(u_{n})), \nabla T_{2k}(u_{n} - T_{h}(u_{n}) + T_{k}(u_{n}) - T_{k}(u)) \rangle \omega_{1} dx
+ \int_{\Omega} \langle \mathscr{B}(x, T_{M}(u_{n}), \nabla T_{M}(u_{n})), \nabla T_{2k}(u_{n} - T_{h}(u_{n}) + T_{k}(u_{n}) - T_{k}(u)) \rangle \omega_{2} dx
= \int_{\{|u_{n}| \leq k\}} \langle \mathscr{A}(x, \nabla T_{M}(u_{n})), \nabla T_{2k}(u_{n} - T_{h}(u_{n}) + T_{k}(u_{n}) - T_{k}(u)) \rangle \omega_{1} dx
+ \int_{\{|u_{n}| \leq k\}} \langle \mathscr{B}(x, T_{M}(u_{n}), \nabla T_{M}(u_{n})), \nabla T_{2k}(u_{n} - T_{h}(u_{n}) + T_{k}(u_{n}) - T_{k}(u)) \rangle \omega_{2} dx
+ \int_{\{|u_{n}| > k\}} \langle \mathscr{A}(x, \nabla T_{M}(u_{n})), \nabla T_{2k}(u_{n} - T_{h}(u_{n}) + T_{k}(u_{n}) - T_{k}(u)) \rangle \omega_{1} dx
+ \int_{\{|u_{n}| > k\}} \langle \mathscr{B}(x, T_{M}(u_{n}), \nabla T_{M}(u_{n})), \nabla T_{2k}(u_{n} - T_{h}(u_{n}) + T_{k}(u_{n}) - T_{k}(u)) \rangle \omega_{2} dx.$$
(3.8)

(a)
$$|u_n| \le k$$
. Since $k > k$, if $|u_n| \le k < k$, then $T_h(u_n) = T_k(u_n) = u_n$. Hence, $u_n - T_h(u_n) + T_k(u_n) - T_k(u) = u_n - T_k(u)$.

We also have $|u_n - u| \le 2k$. Since $\nabla T_M(u_n) = \nabla T_k(u_n)$ (because $|u_n| \le k < M$), we obtain

$$\begin{split} &\int_{\{|u_n| \le k\}} \langle \mathscr{A}(x, \nabla T_M(u_n)), \nabla T_{2k}(u_n - T_h(u_n) + T_k(u_n) - T_k(u)) \rangle \, \omega_1 \, dx \\ &= \int_{\{|u_n| \le k\}} \langle \mathscr{A}(x, \nabla T_k(u_n)), \nabla (T_k(u_n) - T_k(u)) \, \omega_1 dx \\ &= \int_{\Omega} \langle \mathscr{A}(x, \nabla T_k(u_n)), \nabla (T_k(u_n) - T_k(u)) \rangle \, \omega_1 dx. \end{split}$$

and

$$\int_{\{|u_n| \le k\}} \langle \mathscr{B}(x, T_M(u_n), \nabla T_M(u_n)), \nabla T_{2k}(u_n - T_h(u_n) + T_k(u_n) - T_k(u)) \rangle \omega_2 dx$$

$$= \int_{\{|u_n| \le k\}} \langle \mathscr{B}(x, T_k(u_n), \nabla T_k(u_n)), \nabla (T_k(u_n) - T_k(u)) \omega_2 dx$$

$$= \int_{\Omega} \langle \mathscr{B}(x, T_k(u_n), \nabla T_k(u_n)), \nabla (T_k(u_n) - T_k(u)) \rangle \omega_2 dx.$$

(b) $|u_n| > k$. Since u_n , $T_k(u_n)$ and $T_k(u)$ are in $W_0^{1,p}(\Omega, \omega_1)$, if $|u_n - T_h(u_n) + T_k(u_n) - T_k(u)| \le 2k$, then

$$\nabla T_{2k}(u_n - T_h(u_n) + T_k(u_n) - T_k(u)) = \nabla (u_n - T_h(u_n) + T_k(u_n) - T_k(u))$$

$$= \nabla u_n - \nabla T_h(u_n) + \nabla T_k(u_n) - \nabla T_k(u)$$

$$= \nabla u_n - \nabla T_h(u_n) - \nabla T_k(u)$$

(because $\nabla T_k(u_n) = 0$ if $|u_n| > k$). There are two possible cases as follows:

(i) If $k < |u_n| < h$, then $\nabla T_h(u_n) = \nabla u_n$. It follows that

$$\nabla T_{2k}(u_n - T_h(u_n) + T_k(u_n) - T_k(u)) = -\nabla T_k(u);$$

(ii) If $h < |u_n| \le M$, then $\nabla T_h(u_n) = 0$. It follows that

$$\nabla T_{2k}(u_n - T_h(u_n) + T_k(u_n) - T_k(u)) = \nabla u_n - \nabla T_k(u) = \nabla T_M(u_n) - \nabla T_k(u).$$

Since $\langle \mathscr{A}(x,\xi), \xi \rangle \ge \lambda_1 |\xi|^p \ge 0$ and $\langle \mathscr{B}(x,s,\xi), \xi \rangle \ge \lambda_2 |\xi|^q \ge 0$, in both cases, we obtain $\langle \mathscr{A}(x,\nabla T_M(u_n)), \nabla T_{2k}(u_n - T_h(u_n) + T_k(u_n) - T_k(u)) \rangle$ $\ge -\langle \mathscr{A}(x,\nabla T_M(u_n), \nabla T_k(u)) \rangle$ $> -|\mathscr{A}(x,\nabla T_M(u_n))||\nabla T_k(u)|.$

and

$$\langle \mathscr{B}(x, T_M(u_n), \nabla T_M(u_n)), \nabla T_{2k}(u_n - T_h(u_n) + T_k(u_n) - T_k(u)) \rangle$$

$$\geq -\langle \mathscr{B}(x, T_M(u_n), \nabla T_M(u_n), \nabla T_k(u)) \rangle$$

$$\geq -|\mathscr{B}(x, T_M(u_n), \nabla T_M(u_n))||\nabla T_k(u)|.$$

Therefore we obtain from (3.8) that

$$\int_{\Omega} \langle \mathscr{A}(x, \nabla T_{M}(u_{n})), \nabla T_{2k}(u_{n} - T_{h}(u_{n}) + T_{k}(u_{n}) - T_{k}(u)) \rangle \omega_{1} dx$$

$$+ \int_{\Omega} \langle \mathscr{B}(x, T_{M}(u_{n}), \nabla T_{M}(u_{n})), \nabla T_{2k}(u_{n} - T_{h}(u_{n}) + T_{k}(u_{n}) - T_{k}(u)) \rangle \omega_{2} dx$$

$$= \int_{\{|u_{n}| \leq k\}} \langle \mathscr{A}(x, \nabla T_{M}(u_{n})), \nabla T_{2k}(u_{n} - T_{h}(u_{n}) + T_{k}(u_{n}) - T_{k}(u)) \rangle \omega_{1} dx$$

$$+ \int_{\{|u_{n}| \leq k\}} \langle \mathscr{B}(x, T_{M}(u_{n}), \nabla T_{M}(u_{n})), \nabla T_{2k}(u_{n} - T_{h}(u_{n}) + T_{k}(u_{n}) - T_{k}(u)) \rangle \omega_{2} dx$$

$$+ \int_{\{|u_{n}| > k\}} \omega \langle \mathscr{B}(x, \nabla T_{M}(u_{n})), \nabla T_{2k}(u_{n} - T_{h}(u_{n}) + T_{k}(u_{n}) - T_{k}(u)) \rangle \omega_{1} dx$$

$$+ \int_{\{|u_{n}| > k\}} \omega \langle \mathscr{B}(x, T_{M}(u_{n}), \nabla T_{M}(u_{n})), \nabla T_{2k}(u_{n} - T_{h}(u_{n}) + T_{k}(u_{n}) - T_{k}(u)) \rangle \omega_{2} dx$$

$$\geq \int_{\Omega} \langle \mathscr{A}(x, \nabla T_{k}(u_{n})), \nabla T_{k}(u_{n}) - T_{k}(u) \omega_{1} dx$$

$$+ \int_{\Omega} \langle \mathscr{B}(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})), \nabla T_{k}(u_{n}) - T_{k}(u) \rangle \omega_{2} dx$$

$$- \int_{\{|u_{n}| > k\}} |\mathscr{A}(x, \nabla T_{M}(u_{n}))| |\nabla T_{k}(u)| \omega_{1} dx$$

$$- \int_{\{|u_{n}| > k\}} |\mathscr{B}(x, T_{M}(u_{n}), \nabla T_{M}(u_{n}))| |\nabla T_{k}(u)| \omega_{2} dx.$$

By use of (3.7), we obtain

$$\int_{\Omega} \langle \mathscr{A}(x, \nabla T_{k}(u_{n})) - \mathscr{A}(x, \nabla T_{k}(u)), \nabla (T_{k}(u_{n}) - T_{k}(u)) \rangle \omega_{1} dx
+ \int_{\Omega} \langle \mathscr{B}(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) - \mathscr{B}(x, T_{k}(u_{n}), \nabla T_{k}(u)), \nabla (T_{k}(u_{n}) - T_{k}(u)) \rangle \omega_{2} dx
\leq \int_{\{|u_{n}| > k\}} |\mathscr{A}(x, \nabla T_{M}(u_{n}))| |\nabla T_{k}(u)| \omega_{1} dx
+ \int_{\{|u_{n}| > k\}} |\mathscr{B}(x, T_{M}(u_{n}), \nabla T_{M}(u_{n}))| |\nabla T_{k}(u)| \omega_{2} dx
+ \int_{\Omega} f_{n} T_{2k} (u_{n} - T_{h}(u_{n}) + T_{k}(u_{n}) - T_{k}(u)) dx
- \int_{\Omega} \langle \mathscr{A}(x, \nabla T_{k}(u)), \nabla (T_{k}(u_{n}) - T_{k}(u)) \rangle \omega_{1} dx
- \int_{\Omega} \langle \mathscr{B}(x, T_{k}(u_{n}), \nabla T_{k}(u)), \nabla (T_{k}(u_{n}) - T_{k}(u)) \rangle \omega_{2} dx.$$
(3.9)

Considering the test function $\psi_n = T_{2k}(u_n - T_h(u_n))$ in (3.1), we have

$$\int_{\Omega} \langle \mathscr{A}(x, \nabla u_n), \nabla \psi_n \rangle \omega_1 dx + \int_{\Omega} \langle \mathscr{B}(x, u_n, \nabla u_n), \nabla \psi_n \rangle \omega_2 dx = \int_{\Omega} f_n \psi_n dx,$$

and using (3.3), we obtain

$$\int_{\Omega} |\nabla T_{2k}(u_n - T_h(u_n))|^p \omega_1 dx \le C_1(2k+1), \text{ for all } k \ge 1.$$

Now using the fact that $T_{2k}(u_n - T_h(u_n)) \rightharpoonup T_{2k}(u - T_h(u))$ weakly in $W_0^{1,p}(\Omega, \omega_1)$ (by (3.5) and Remark 2.8 (i)), we have

$$\int_{\Omega} |\nabla T_{2k}(u - T_h(u))|^p \omega_1 dx \le C_1(2k+1). \tag{3.10}$$

Letting $\eta = 1$ in Theorem 2.6, we find that

$$\int_{\Omega} |T_{2k}(u - T_h(u))|^p \omega_1 dx \leq C_{\Omega} \int_{\Omega} |\nabla T_{2k}(u - T_h(u))|^p \omega_1 dx$$

$$\leq C_{\Omega} C_1 (2k+1).$$

Moreover, from Lebesgue's theorem, we obtain

$$\lim_{h\to\infty}\int_{\Omega}f\,T_{2k}(u-T_h(u))\,dx=0.$$

We can fix a positive real number h_{ε} sufficiently large to have

$$\int_{\Omega} f T_{2k}(u - T_{h_{\varepsilon}}(u)) dx \le \varepsilon. \tag{3.11}$$

Letting $h = h_{\varepsilon}$ in (3.9) (and $M = M_{\varepsilon} = 4k + h_{\varepsilon}$), we have the following.

(i) By use of (H4) and (3.3), we have

$$\int_{\Omega} |\mathscr{A}(x, \nabla T_{M}(u_{n}))|^{p'} \omega_{1} dx$$

$$\leq \int_{\Omega} \left(K_{1}(x) + h_{1}(x) |\nabla T_{M}(u_{n})|^{p/p'} \right)^{p'} \omega_{1} dx$$

$$\leq C \left[\int_{\Omega} K_{1}^{p'}(x) \omega_{1} dx + \int_{\Omega} h_{1}^{p'}(x) |\nabla T_{M}(u_{n})|^{p} \omega_{1} dx \right]$$

$$\leq C \left(\|K_{1}\|_{L^{p'}(\Omega,\omega_{1})}^{p'} + \|h_{1}\|_{L^{\infty}(\Omega)}^{p'} \int_{\Omega} |\nabla T_{M}(u_{n})|^{p} \omega_{1} dx \right)$$

$$\leq C \left(\|K_{1}\|_{L^{p'}(\Omega,\omega_{1})}^{p'} + \|h_{1}\|_{L^{\infty}(\Omega)}^{p'} M C_{1} \right),$$

that is, $|\mathscr{A}(x, \nabla T_M(u_n))|$ is bounded in $L^{p'}(\Omega, \omega_1)$.

(ii) By use of (H8), Theorem 2.6 (with $\eta = 1$), Remark 2.12 (c) and (3.3), we have

$$\int_{\Omega} |\mathcal{B}(x, T_{M}(u_{n}), \nabla T_{M}(u_{n}))|^{q'} \omega_{2} dx
\leq \int_{\Omega} \left(K_{2}(x) + g_{1}(x) |T_{M}(u_{n})|^{q/q'} + g_{2}(x) |\nabla T_{M}(u_{n})|^{q/q'} \right)^{q'} \omega_{2} dx
\leq C \left[\int_{\Omega} K_{2}^{q'}(x) \omega_{2} dx + \int_{\Omega} g_{1}^{q'}(x) |T_{M}(u_{n})|^{q} \omega_{2} dx \right]
+ \int_{\Omega} g_{2}^{q'}(x) |\nabla T_{M}(u_{n})|^{q} \omega_{2} dx \right]
\leq C \left(||K_{2}||_{L^{q'}(\Omega,\omega_{2})}^{q'} + ||g_{1}||_{L^{\infty}(\Omega)}^{q'} \int_{\Omega} |T_{M}(u_{n})|^{q} \omega_{2} dx \right)
+ ||g_{2}||_{L^{\infty}(\Omega)}^{q'} \int_{\Omega} |\nabla T_{M}(u_{n})|^{q} \omega_{2} dx \right)
\leq C \left(||K_{2}||_{L^{q}(\Omega,\omega_{2})}^{q'} + ||g_{1}||_{L^{\infty}(\Omega)}^{q'} C_{p,q}^{q} ||T_{M}(u_{n})||_{L^{p}(\Omega,\omega_{1})}^{q} \right)
+ ||g_{2}||_{L^{\infty}(\Omega)}^{q'} C_{p,q}^{q} ||\nabla T_{M}(u_{n})||_{L^{p}(\Omega,\omega_{1})}^{q} \right)
\leq C \left(||K_{2}||_{L^{q}(\Omega,\omega_{2})}^{q'} + ||g_{1}||_{L^{\infty}(\Omega)}^{q'} C_{p,q}^{q} C_{\Omega}^{q} |||\nabla T_{M}(u_{n})||_{L^{p}(\Omega,\omega_{1})}^{q} \right)
+ ||g_{2}||_{L^{\infty}(\Omega)}^{q'} C_{p,q}^{q} |||\nabla T_{M}(u_{n})||_{L^{p}(\Omega,\omega_{1})}^{q} \right)
\leq C \left(||K_{2}||_{L^{q}(\Omega,\omega_{2})}^{q'} + ||g_{1}||_{L^{\infty}(\Omega)}^{q'} C_{p,q}^{q} C_{\Omega}^{q} (MC_{1})^{q/p} + ||g_{2}||_{L^{\infty}(\Omega)}^{q'} C_{p,q}^{q} (MC_{1})^{q/p} \right)$$

that is, $|\mathscr{B}(x, T_M(u_n), \nabla T_M(u_n))|$ is bounded in $L^{q'}(\Omega, \omega_2)$. Moreover, $\chi_{\{|u_n|>k\}}|\nabla T_k(u)| \to 0$ in $L^p(\Omega, \omega_1)$ as $n \to \infty$. We also have $\chi_{\{|u_n|>k\}}|\nabla T_k(u)| \to 0$ in $L^q(\Omega, \omega_2)$ as $n \to \infty$. Therefore,

$$\lim_{n \to \infty} \int_{\{|u_n| > k\}} |\mathscr{A}(x, \nabla T_M(u_n))| |\nabla T_k(u)| \,\omega_1 \, dx = 0, \tag{3.12}$$

$$\lim_{n \to \infty} \int_{\{|u_n| > k\}} |\mathscr{B}(x, T_M(u_n), \nabla T_M(u_n))| |\nabla T_k(u)| \,\omega_2 \, dx = 0. \tag{3.13}$$

Furthermore,

$$T_{2k}(u_n - T_h(u_n) + T_k(u_n) - T_k(u)) \rightharpoonup T_{2k}(u - T_h(u)),$$

weakly in $W_0^{1,p}(\Omega,\omega_1)$, as $n\to\infty$. Hence, passing to the limit in (3.9) and using (3.5), (3.11), (3.12) and (3.13), we have

$$\begin{split} &\lim_{n\to\infty} \left[\int_{\Omega} \left\langle \mathscr{A}(x, \nabla T_k(u_n)) - \mathscr{A}(x, \nabla T_k(u)), \nabla (T_k(u_n) - T_k(u)) \right\rangle \omega_1 \, dx \right. \\ &+ \int_{\Omega} \left\langle \mathscr{B}(x, T_k(u_n), \nabla T_k(u_n)) - \mathscr{B}(x, T_k(u_n), \nabla T_k(u)), \nabla (T_k(u_n) - T_k(u)) \right\rangle \omega_2 \, dx \right] \\ &\leq \int_{\Omega} f T_{2k}(u - T_{h_{\varepsilon}}(u)) \, dx \\ &\leq \varepsilon, \end{split}$$

for all $\varepsilon > 0$, that is,

$$\begin{split} &\int_{\Omega} \left\langle \mathscr{A}(x, \nabla T_k(u_n)) - \mathscr{A}(x, \nabla T_k(u)), \nabla (T_k(u_n) - T_k(u)) \right\rangle \omega_1 \, dx \\ &+ \int_{\Omega} \left\langle \mathscr{B}(x, T_k(u_n), \nabla T_k(u_n)) - \mathscr{B}(x, T_k(u_n), \nabla T_k(u)), \nabla (T_k(u_n) - T_k(u)) \right\rangle \omega_2 \, dx \\ &\to 0, \text{ as } n \to \infty. \end{split}$$

By use of (H2),
$$\langle \mathscr{A}(x,\xi) - \mathscr{A}(x,\xi'), (\xi-\xi') \rangle \geq \theta_1 | \xi - \xi'|^p \geq 0$$
 and (H6), we obtain
$$0 \leq \int_{\Omega} \langle \mathscr{A}(x,\nabla T_k(u_n)) - \mathscr{A}(x,\nabla T_k(u)), \nabla (T_k(u_n) - T_k(u)) \rangle \omega_1 dx$$
$$\leq \int_{\Omega} \langle \mathscr{A}(x,\nabla T_k(u_n)) - \mathscr{A}(x,\nabla T_k(u)), \nabla (T_k(u_n) - T_k(u)) \rangle \omega_1 dx$$
$$+ \int_{\Omega} \langle \mathscr{B}(x,T_k(u_n),\nabla T_k(u_n)) - \mathscr{B}(x,T_k(u_n),\nabla T_k(u)), \nabla (T_k(u_n) - T_k(u)) \rangle \omega_2 dx.$$

Hence,

$$\int_{\Omega} \langle \mathscr{A}(x, \nabla T_k(u_n)) - \mathscr{A}(x, \nabla T_k(u)), \nabla (T_k(u_n) - T_k(u)) \rangle \omega_1 dx \rightarrow 0$$

as $n \to \infty$. Analogously, we obtain

$$\int_{\Omega} \langle \mathscr{B}(x, T_k(u_n), \nabla T_k(u_n)) - \mathscr{B}(x, T_k(u_n), \nabla T_k(u)), \nabla (T_k(u_n) - T_k(u)) \rangle \omega_2 dx \to 0$$

as $n \to \infty$. Applying Lemma 2.15, we get

$$T_k(u_n) \to T_k(u) \tag{3.14}$$

strongly in $W_0^{1,p}(\Omega,\omega_1)$ for every k>0. Moreover (by Remark 2.12 (c)), we also have that

$$T_k(u_n) \to T_k(u) \tag{3.15}$$

strongly in $W_0^{1,q}(\Omega, \omega_2)$ for every k > 0. This convergence implies that, for every fixed k > 0,

$$\mathscr{A}(x, \nabla T_k(u_n)) \to \mathscr{A}(x, \nabla T_k(u)),$$
 (3.16)

in
$$(L^{p'}(\Omega, \omega_1))^N = L^{p'}(\Omega, \omega_1) \times ... \times L^{p'}(\Omega, \omega_1)$$
 and

$$\mathscr{B}(x, T_k(u_n), \nabla T_k(u_n)) \to \mathscr{B}(x, T_k(u), \nabla T_k(u))$$
 (3.17)

in
$$(L^{q'}(\Omega, \omega_2))^N = L^{q'}(\Omega, \omega_2) \times ... \times L^{q'}(\Omega, \omega_2)$$
.

• Finally, we need to shown that u is an entropy solution to Dirichlet problem (P). Let us take $\psi_n = T_k(u_n - \varphi)$ as test function in (3.1), with $\varphi \in W_0^{1,p}(\Omega, \omega_1) \cap L^{\infty}(\Omega)$. We obtain

$$\int_{\Omega} \langle \mathscr{A}(x, \nabla u_n), \nabla \psi_n \rangle \, \omega_1 \, dx + \int_{\Omega} \langle \mathscr{B}(x, u_n, \nabla u_n), \nabla \psi_n \rangle \, \omega_2 \, dx = \int_{\Omega} f_n \psi_n \, dx. \tag{3.18}$$

If $M = k + \|\varphi\|_{L^{\infty}(\Omega)}$ and n > M, then

$$\int_{\Omega} \mathscr{A}(x, \nabla u_n), \nabla T_k(u_n - \varphi) \rangle \omega_1 dx + \int_{\Omega} \mathscr{B}(x, u_n, \nabla u_n), \nabla T_k(u_n - \varphi) \rangle \omega_2 dx
= \int_{\Omega} \langle \mathscr{A}(x, \nabla T_M(u_n)), \nabla T_k(u_n - \varphi) \rangle \omega_1 dx
+ \int_{\Omega} \langle \mathscr{B}(x, T_M(u_n), \nabla T_M(u_n)), \nabla T_k(u_n - \varphi) \rangle \omega_2 dx.$$

It follows from (3.18) that

$$\int_{\Omega} \langle \mathscr{A}(x, \nabla T_{M}(u_{n})), \nabla T_{k}(u_{n} - \varphi) \rangle \omega_{1} dx
+ \int_{\Omega} \langle \mathscr{B}(x, T_{M}(u_{n}), \nabla T_{M}(u_{n})), \nabla T_{k}(u_{n} - \varphi) \rangle \omega_{2} dx
= \int_{\Omega} f_{n} T_{k}(u_{n} - \varphi) dx.$$
(3.19)

Therefore, passing to the limit as $n \to \infty$ in (3.19), and using (3.5), (3.16) and (3.17), we obtain

$$\int_{\Omega} \langle \mathscr{A}(x, \nabla u), \nabla T_k(u - \varphi) \rangle \omega_1 dx + \int_{\Omega} \langle \mathscr{B}(x, u, \nabla u), \nabla T_k(u - \varphi) \rangle \omega_2 dx = \int_{\Omega} f T_k(u - \varphi) dx,$$

for all $\varphi \in W_0^{1,p}(\Omega, \omega_1) \cap L^{\infty}(\Omega)$ and for each k > 0. Therefore u is an entropy solutions of problem (P). This completes the proof.

Example 3.2. Let $\Omega = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$. Consider the weight functions $\omega_1(x,y) = (x^2 + y^2)^{-1/2}$, $\omega_2(x,y) = (x^2 + y^2)^{-1/3}$ ($\omega_1 \in A_4$, $\omega_2 \in A_3$, p = 4 and q = 3), $f(x,y) = \frac{\cos(xy)}{(x^2 + y^2)^{1/3}}$ and

$$\mathscr{A}: \Omega \times \mathbb{R}^2 \to \mathbb{R}^2,$$
$$\mathscr{A}((x,y),\xi) = h(x,y) |\xi|^2 \xi,$$

where $h(x,y) = 2e^{(x^2+y^2)}$, and

$$\mathscr{B}: \Omega \times \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2,$$
$$\mathscr{B}((x,y),\eta,\xi) = g_2(x,y) |\xi| \xi,$$

where $g_2(x,y) = 2 + \cos(x^2 + y^2)$. from Theorem 3.1, the problem

$$(P) \begin{cases} -\operatorname{div}[\mathscr{A}((x,y),\nabla u) \, \omega_1(x,y) + \mathscr{B}((x,y),u,\nabla u) \, \omega_2(x,y)] = \frac{\cos(xy)}{(x^2+y^2)^{1/3}} \text{ in } \Omega \\ u(x,y) = 0 \text{ in } \partial \Omega \end{cases}$$

has an entropy solution.

REFERENCES

- [1] P. Bélinan, L.Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J.L. Vasquez, An L¹ theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1995), 241-273.
- [2] A.C. Cavalheiro, The solvability of Dirichlet problem for a class of degenerate elliptic equations with L^1 -data, Appl. Anal. 85 (2006), 941-961.
- [3] A.C. Cavalheiro, Existence of entropy solutions for degenerate quasilinear elliptic equations, Complex. Var. Elliptic Equ. 53 (2008), 945-956.
- [4] A.C. Cavalheiro, Topics on Degenerate Elliptic Equations, Lambert Academic Publishing, Germany, 2018.
- [5] V. Chiadò Piat, F.S. Cassano, Relaxation of degenerate variational integrals, Nonlinear Anal. 22 (1994), 409-429.
- [6] E. Fabes, C. Kenig, R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Commun. Partial Differential Equations 7 (1982), 77-116.
- [7] J. Garcia-Cuerva, J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, vol. 116, North-Holland Mathematics Studies, 1985.
- [8] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monographs, Clarendon Press, 1993.
- [9] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, San Diego, 1986.
- [10] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Am. Math. Soc. 165 (1972), 207-226.
- [11] B.O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Lecture Notes in Math., vol. 1736, Springer-Verlag, 2000.
- [12] E. Stein, Harmonic Analysis, Princeton University Press, 1993.
- [13] A. Kufner, O. John, S. Fučík, Function Spaces, Noordhoof International Publishing, Leyden 1977.
- [14] L. Boccardo, F. Murat, J.P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl. 152 (1988), 183-196.
- [15] A.C. Cavalheiro, Existence results for a class of nonlinear degenerate elliptic equations, Maroccan J. Pure Appl. Anal. 5 (2019), 164-178.