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DYNAMIC ANALYSIS OF COMPETING PREDATOR-PREY SYSTEMS WITH
PURE DELAYS

AHMADJAN MUHAMMADHAJI∗, XAMXINUR ABDURAHMAN

College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China

Abstract. Two classes of nonautonomous three-species Lotka-Volterra type one predator-two compet-
itive prey systems with pure discrete time delays are investigated. Some new sufficient conditions on
the boundedness, the permanence, the extinction and the global attractivity of the systems are estab-
lished by using the comparison method and the construction of suitable Lyapunov functional. Finally,
the theoretical results are illustrated by one example with numerical simulations.
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1. INTRODUCTION

It is well known that the mathematical population dynamical system is one of the important
discipline in modern applied mathematics, where population dynamical competitive systems,
population dynamical cooperative systems, population dynamical predator-prey systems be-
come the most popular topics recently. There has been a lot of studies related to the population
dynamical systems; see, e.g., [1]-[18] and the references cited therein. Most of these studies
concerned with the extinction, the permanence, the global attractivity and the existence of peri-
odic solutions and so on. For example, in [2], Lin and Lu considered the following two species
autonomous Lotka-Volterra systems with delays

ẋ1(t) = x1(t)[r1−a1x1(t)+a11x1(t− τ11)+a12x2(t− τ12)],
ẋ2(t) = x2(t)[r2−a2x2(t)+a21x1(t− τ21)+a22x2(t− τ22)].

(1.1)

They obtained some sufficient conditions for the permanence of system (1.1) for competitive
case and cooperative case respectively. In [4], Lu, Lu and Lian considered the following two
species autonomous Lotka-Volterra cooperative systems with delays

ẋ1(t) = x1(t)[r1−a1x1(t)−a11x1(t− τ11)+a12x2(t− τ12)],
ẋ2(t) = x2(t)[r2−a2x2(t)+a21x1(t− τ21)−a22x2(t− τ22)].

(1.2)
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They obtained some sufficient conditions for the permanence of system (1.2). In [7], Nakata and
Muroya studied the following two species non-autonomous Lotka-Volterra system with delays

ẋ1(t) = x1(t)[r1(t)−a1
11(t)x1(t− τ)

−a2
11(t)x1(t−2τ)+a1

12(t)x2(t− τ)],

ẋ2(t) = x2(t)[r2(t)+a0
21(t)x1(t)+a1

21(t)x1(t− τ)

−a0
22(t)x2(t)−a1

22(t)x2(t− τ)].

(1.3)

They established some sufficient conditions which ensured the system to be permanent. In
[10], Lv, Yan and Lu considered the following competitor-competitor-mutualist Lotka-Volterra
systems with pure delays

ẋ1(t) = x1(t)
(
r1(t)−a11(t)x1(t− τ11(t))

−a12(t)x2(t− τ12(t))+a13(t)x3(t− τ13(t))
)
,

ẋ2(t) = x2(t)
(
r2(t)−a21(t)x1(t− τ21(t))

−a22(t)x2(t− τ22(t))+a23(t)x3(t− τ23(t))
)
,

ẋ3(t) = x3(t)
(
r3(t)+a31(t)x1(t− τ31(t))

+a32(t)x2(t− τ32(t))−a33(t)x3(t− τ33(t))
)
.

(1.4)

They e obtained sufficient conditions for the existence of periodic solutions by Krasnosselsii’s
fixed point theorem. For the case of τii(t) ≡ 0, they also obtained the global attractivity of
positive periodic solution of system (1.4) by means of the construction of Liapunov functions.
Base on the above works, Muhammadhaji, Teng and Zhang [12] studied the following three
species non-autonomous Lotka-Volterra competitive - cooperative systems with delays

ẋ1(t) = x1(t)
[
r1(t)−a1

11(t)x1(t− τ)−a2
11(t)x1(t−2τ)

−a12(t)x2(t−2τ)+a13(t)x3(t− τ)
]
,

ẋ2(t) = x2(t)
[
r2(t)−a21(t)x1(t−2τ)−a1

22(t)x2(t− τ)

−a2
22(t)x2(t−2τ)+a23(t)x3(t− τ)

]
,

ẋ3(t) = x3(t)
[
r3(t)+a31(t)x1(t− τ)+a32(t)x2(t− τ)

−a1
33(t)x3(t)−a2

33(t)x3(t− τ)
]
.

(1.5)

They obtained some sufficient conditions on the permanence of species and the global attractiv-
ity of the system by construction of Liapunov functional and the method given in [7]. However,
the systems of (1.1), (1.2), (1.3) and (1.5) are not pure delay systems. In [10], Lv, Yan and Lu
did not consider the global attractivity of the systems for pure delay case. For example, sys-
tems ((1.1) and (1.2) include two non-delayed terms a1x1(t), and a2x2(t), system (1.3) includes
two non-delayed terms a0

21(t)x1(t) and a0
22(t)x2(t) and system (1.5) includes one non-delayed

term a1
33(t)x3(t). For that reason and based on the above works, in this, paper, we consider

the following two classes three species non-autonomous Lotka-Volterra type one predator-two
competitive prey systems with pure discrete time delays

ẋ1(t) = x1(t)
[
r1(t)−a1

11(t)x1(t− τ)−a2
11(t)x1(t−2τ)

−a12(t)x2(t−2τ)−a13(t)x3(t−2τ)
]
,

ẋ2(t) = x2(t)
[
r2(t)−a21(t)x1(t−2τ)−a1

22(t)x2(t− τ)

−a2
22(t)x2(t−2τ)−a23(t)x3(t−2τ)

]
,

ẋ3(t) = x3(t)
[
− r3(t)+a31(t)x1(t−2τ)+a32(t)x2(t−2τ)

−a1
33(t)x3(t− τ)−a2

33(t)x3(t−2τ)
]

(1.6)
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and
ẋ1(t) = x1(t)

[
r1(t)−a1

11(t)x1(t− τ)−a2
11(t)x1(t−2τ)

−a12(t)x2(t−2τ)−a13(t)x3(t−2τ)
]
,

ẋ2(t) = x2(t)
[
r2(t)−a21(t)x1(t−2τ)−a1

22(t)x2(t− τ)

−a2
22(t)x2(t−2τ)−a23(t)x3(t−2τ)

]
,

ẋ3(t) = x3(t)
[
r3(t)+a31(t)x1(t−2τ)+a32(t)x2(t−2τ)

−a1
33(t)x3(t− τ)−a2

33(t)x3(t−2τ)
]
.

(1.7)

As far as we know, the dynamic relationship between predators and preys has long been and
will continue to be one of the dominant themes in both ecology and mathematical ecology due
to its universal existence and importance [6]. In addition, an important problem in the predator-
prey theory and the related topics in mathematical ecological dynamical systems concern the
permanence, the extinction and the global attractivity of considered dynamical system. Hence,
in this paper, our main purpose is to establish some sufficient conditions on the boundedness,
the permanence, the extinction and the global attractivity for system (1.6) and system (1.7). The
method used in this paper is motivated by the work in [7] and the work in [12].

2. PRELIMINARIES

In system (1.6) and system (1.7), x1(t) and x2(t) denote the density of the two competitive
prey species at time t, respectively, and x3(t) denotes the density of the predator species at
time t. Throughout this paper, we always assume that system (1.6) and system (1.7) satisfy the
following assumption

(H1) τ is a positive constant, ri(t), (i = 1,2,3), al
11(t), al

22(t), al
33(t)(l = 1,2), a12(t), a13(t),

a21(t), a23(t), a31(t) and a32(t) are continuous, bounded and strictly positive functions on [0,∞).
Throughout this paper, for system (1.6) and system (1.7), we consider the solution with the

following initial condition

xi(t) = φi(t) for all t ∈ [−2τ,0), i = 1,2,3,

where φi(t) (i = 1,2,3) are nonnegative continuous functions defined on [−2τ,0) satisfying
φi(0)> 0 (i = 1,2,3). For a continuous and bounded function f (t) defined on [0,∞), we define
f L = inft∈[0,∞){ f (t)} and f M = supt∈[0,∞){ f (t)}. On the global attractivity of system (1.6) and
system (1.7), we have the following definition.

Definition 2.1. System (1.6) or system (1.7) is said to be global attractive if for any two positive
solutions (x1(t),x2(t),x3(t)) and (y1(t),y2(t),y3(t)) of (1.6) or system (1.7), one has

lim
t→∞

(xi(t)− yi(t)) = 0, i = 1,2,3.

Now, we present some useful lemmas.
The following three lemmas will be used in the main results on the boundedness of system

(1.6) and system (1.7).

Lemma 2.2. [7] Assume that function y(t)≥ 0 defined on [−mτ,∞), satisfies that

ẏ(t)≤ y(t)(λ −
m

∑
l=1

µ
ly(t− lτ))+D,
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where

λ > 0, µ
l ≥ 0(l = 0,1,2, · · ·m), µ =

m

∑
l=0

µ
l > 0, D≥ 0,

are constants. Then there exists a positive constant My such that

limsup
t→∞

y(t)≤My =−
D
λ
+
(D

λ
+ y∗)exp(λmτ), (2.1)

where y = y∗ is the unique positive solution of equation

y(λ −µy)+D = 0.

Lemma 2.3. [7] Assume that function y(t)≥ 0 defined on [−mτ,∞) satisfies that

ẏ(t)≥ y(t)(λ −
m

∑
l=1

µ
ly(t− lτ))+D,

where

λ > 0, µ
l ≥ 0(l = 0,1,2, · · ·m), µ =

m

∑
l=0

µ
l > 0 and D≥ 0,

are constants. If (2.1) holds, then there exists a positive constant my such that

liminf
t→∞

y(t)≥ my =
λ

µ
exp{(λ −µMy)mτ}.

Lemma 2.4. [18] Consider the following equation u̇(t) = u(t)(d1−d2u(t)), where d2 > 0, we
have (1) if d1 > 0, then limt→+∞ u(t) = d1/d2, and (2) if d1 < 0, then limt→+∞ u(t) = 0.

3. BOUNDEDNESS, PERMANENCE AND EXTINCTION

In this section, we will obtain some sufficient conditions for the boundedness of system (1.6)
and system (1.7), permanence of species x3(t) in system (1.7) and extinction of species x3(t) in
system (1.6).

Theorem 3.1. If (H1) holds, then system (1.6) is ultimately bounded.

Proof. First, we show that x1(t) is ultimately bounded. From the first equation of system (1.6),
we have

ẋ1(t)≤ x1(t)
(
rM

1 −a1L
11x1(t− τ)−a2L

11x1(t−2τ)
)
,

By Lemma 2.2, we get

limsup
t→∞

x1(t)≤M1 ,
rM

1
a1L

11 +a2L
11

exp
(
rM

1 2τ
)
.

Similar to the above discussion, for x2(t), we can obtain

limsup
t→∞

x2(t)≤M2 ,
rM

2
a1L

22 +a2L
22

exp
(
rM

2 2τ
)
.

Finally, from the above discussion, for any positive constant ε0 > 0, there exists a positive
constant T0 such that

x1(t)≤M1 + ε0, x2(t)≤M2 + ε0 for all t ≥ T0.
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Using the third equation of system (1.6), we have

ẋ3(t)≤ x3(t)
(
aM

31(M1 + ε0)+aM
32(M2 + ε0)−a1L

33x3(t− τ)−a2L
33x3(t−2τ)

)
, t ≥ T0.

Since ε0 is arbitrary, we get

limsup
t→∞

x3(t)≤M3 ,
M0

a1L
33 +a2L

33
exp
{

M02τ
}
,

where M0 = aM
31M1 +aM

32M2. This completes the proof. �

The following theorem is on the boundedness of system (1.7).

Theorem 3.2. If (H1) holds, then system (1.7) is ultimately bounded.

Proof. By use of the similar method with Theorem 3.1, we can get the desired conclusion
immediately. �

Remark 3.3. From the proof of Theorem 3.1 and Theorem 3.2, we can see that if species x1(t)
and x2(t) have positive intrinsic growth rates, then system (1.6) and system (1.7) are must be
ultimately bounded.

The following theorem is about the permanence of species x3(t) in system (1.7).

Theorem 3.4. If (H1) holds, then species x3(t) in system (1.7) is permanent.

Proof. From third equation of system (1.7), we get

ẋ3(t)≥ x3(t)
(
rL

3 −a1M
33 x3(t− τ)−a2M

33 x3(t−2τ)
)
.

By Lemma 2.3, we can obtain that

liminf
t→∞

x3(t)≥ m3 ,
rL

3

a1M
33 +a2M

33
exp
{
(rL

3 − (a1M
33 +a2M

33 )M3)τ
}
.

This completes the proof. �

Remark 3.5. We can see that if species x3(t) has a positive intrinsic growth rate, then species
x3(t) in system (1.7) must be permanent.

We also have the following result.

Corollary 3.6. Assume that (H1) holds and rL
3−aM

31M1−aM
32M2 > 0. Then the predator species

in system (1.6) goes to extinction.

4. GLOBAL ATTRACTIVITY

In this section, we will obtain the sufficient conditions for the global attractivity of system
(1.6) and system (1.7). The following theorem is about the global attractivity of system (1.6).

Theorem 4.1. Suppose that (H1) holds. Further suppose that the following (H2) holds.
(H2) There exist constants µi > 0 (i = 1,2,3) such that

liminf
t→∞

Ai(t)> 0, i = 1,2,3,
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where

A1(t) = µ1(a1
11(t)+a2

11(t))−µ1 ∑
2
l=1
∫ t

t−lτ al
11(u+ lτ)du

[
r1(t)+(a1

11(t)
+a2

11(t))M1 +a12(t)M2 +a13(t)M3
]
−µ1M1 ∑

2
l=1
∫ t+lτ

t al
11(u+ lτ)du

×al
11(t + lτ)−µ2(1+ τM2(a1M

22 +2a2M
22 ))a21(t +2τ)

−µ3(1+ τM3(a1M
33 +2a2M

33 ))a31(t +2τ),

A2(t) = µ2(a1
22(t)+a2

22(t))−µ2 ∑
2
l=1
∫ t

t−lτ al
22(u+ lτ)du

[
r2(t)+(a1

22(t)
+a2

22(t))M2 +a21(t)M1 +a23(t)M3
]
−µ2M2 ∑

2
l=1
∫ t+lτ

t al
22(u+ lτ)du

×al
22(t + lτ)−µ1(1+ τM1(a1M

11 +2a2M
11 ))a12(t +2τ)

−µ3(1+ τM3(a1M
33 +2a2M

33 ))a32(t +2τ),

and

A3(t) = µ3(a1
33(t)+a2

33(t))−µ3 ∑
2
l=1
∫ t

t−lτ al
33(u+ lτ)du

[
r3(t)+(a1

33(t)
+a2

33(t))M3 +a31(t)M1 +a32(t)M2
]
−µ3M3 ∑

2
l=1
∫ t+lτ

t al
33(u+ lτ)du

×al
33(t + lτ)−µ1(1+ τM1(a1M

11 +2a2M
11 ))a13(t +2τ)

−µ2(1+ τM2(a1M
22 +2a2M

22 ))a23(t +2τ).

Then system (1.6) is globally attractive.

Proof. Suppose that (x1(t),x2(t),x3(t)) and (y1(t),y2(t),y3(t)) are any two positive solutions
of system (1.6). From Theorem 3.1, there exist positive constants T0 and Mi (i = 1,2,3) such
that 0 < xi(t), yi(t)≤Mi, (i = 1,2,3), for all t ≥ T0. Let

W1(t) = µ1V11(t)+µ2V21(t)+µ3V31(t),

where

Vi1 = | lnxi(t)− lnyi(t)|, i = 1,2,3.

Calculating the right-upper derivative of W1(t) along system (1.6), we have

D+W1(t) = µ1sign(x1(t)− y1(t))
[
−a1

11(t)(x1(t− τ)− y1(t− τ))

−a2
11(t)(x1(t−2τ)− y1(t−2τ))−a12(t)(x2(t−2τ)

−y2(t−2τ))−a13(t)(x3(t−2τ)− y3(t−2τ))
]

+µ2sign(x2(t)− y2(t))
[
−a21(t)(x1(t−2τ)− y1(t−2τ))

−a1
22(t)(x2(t− τ)− y2(t− τ))−a2

22(t)(x2(t−2τ)− y2(t−2τ))

−a23(t)(x3(t−2τ)− y3(t−2τ))
]

+µ3sign(x3(t)− y3(t))
[
a31(t)(x1(t−2τ)− y1(t−2τ))

+a32(t)(x2(t−2τ)− y2(t−2τ))−a1
33(t)(x3(t− τ)− y3(t− τ))

−a2
33(t)(x3(t−2τ)− y3(t−2τ))

]
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= µ1sign(x1(t)− y1(t))
[
− (a1

11(t)+a2
11(t))(x1(t)− y1(t))−a12(t)(x2(t−2τ)

−y2(t−2τ))−a13(t)(x3(t−2τ)− y3(t−2τ))+
2

∑
l=1

al
11(t)

∫ t

t−lτ

(
(x1(u)− y1(u))

×
[
r1(u)−a1

11(u)y1(u− τ)−a2
11(u)y1(u−2τ)−a12(u)y2(u−2τ)

−a13(u)y3(u−2τ)
]
+ x1(u)

[
−a1

11(u)(x1(u− τ)− y1(u− τ))

−a2
11(u)(x1(u−2τ)− y1(u−2τ))−a12(u)(x2(u−2τ)− y2(u−2τ))

−a13(u)(x3(u−2τ)− y3(u−2τ))
])

du
]

+µ2sign(x2(t)− y2(t))
[
− (a1

22(t)+a2
22(t))(x2(t)− y2(t))

−a21(t)(x1(t−2τ)− y1(t−2τ))−a23(t)(x3(t−2τ)− y3(t−2τ))

+
2

∑
l=1

al
22(t)

∫ t

t−lτ

(
(x2(u)− y2(u))

[
r2(u)−a1

22(u)y2(u− τ)

−a2
22(u)y2(u−2τ)−a21(u)y1(u−2τ)−a23(u)y3(u−2τ)

]
+x2(u)

[
−a1

22(u)(x2(u− τ)− y2(u− τ))−a2
22(u)(x2(u−2τ)− y2(u−2τ))

−a21(u)(x1(u−2τ)− y1(u−2τ))−a23(u)(x3(u−2τ)− y3(u−2τ))
])

du
]

+µ3sign(x3(t)− y3(t))
[
− (a1

33(t)+a2
33(t))(x3(t)− y3(t))

+a31(t)(x1(t−2τ)− y1(t−2τ))+a32(t)(x2(t−2τ)− y2(t−2τ))

+
2

∑
l=1

al
33(t)

∫ t

t−lτ

(
(x3(u)− y3(u))

[
− r3(u)−a1

33(u)y3(u− τ)

−a2
33(u)y3(u−2τ)+a31(u)y1(u−2τ)+a32(u)y2(u−2τ)

]
+x3(u)

[
−a1

33(u)(x3(u− τ)− y3(u− τ))−a2
33(u)(x3(u−2τ)− y3(u−2τ))

+a31(u)(x1(u−2τ)− y1(u−2τ))+a32(u)(x2(u−2τ)− y2(u−2τ))
])

du
]

≤ −
3

∑
i=1

µi(a1
ii(t)+a2

ii(t))|xi(t)− yi(t)|+(µ2a21(t)+µ3a31(t))|x1(t−2τ)

−y1(t−2τ)|+(µ1a12(t)+µ3a32(t))|x2(t−2τ)− y2(t−2τ)|

+(µ1a13(t)+µ2a23(t))|x3(t−2τ)− y3(t−2τ)|

+µ1

2

∑
l=1

al
11(t)

∫ t

t−lτ

(
|x1(u)− y1(u)|

[
r1(u)+a1

11(u)y1(u− τ)

+a2
11(u)y1(u−2τ)+a12(u)y2(u−2τ)+a13(u)y3(u−2τ)

]
+x1(u)

[
a1

11(u)|x1(u− τ)− y1(u− τ)|+a2
11(u)|x1(u−2τ)− y1(u−2τ)|
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+a12(u)|x2(u−2τ)− y2(u−2τ)|+a13(u)|x3(u−2τ)− y3(u−2τ)|
])

du

+µ2

2

∑
l=1

al
22(t)

∫ t

t−lτ

(
|x2(u)− y2(u)|

[
r2(u)+a1

22(u)y2(u− τ)

+a2
22(u)y2(u−2τ)+a21(u)y1(u−2τ)+a23(u)y3(u−2τ)

]
+x2(u)

[
a1

22(u)|x2(u− τ)− y2(u− τ)|+a2
22(u)|x2(u−2τ)− y2(u−2τ)|

+a21(u)|x1(u−2τ)− y1(u−2τ)|+a23(u)|x3(u−2τ)− y3(u−2τ)|
])

du

+µ3

2

∑
l=1

al
33(t)

∫ t

t−lτ

(
|x3(u)− y3(u)|

[
r3(u)+a1

33(u)y3(u− τ)

+a2
33(u)y3(u−2τ)+a31(u)y1(u−2τ)+a32(u)y2(u−2τ)

]
+x3(u)

[
a1

33(u)|x3(u− τ)− y3(u− τ)|+a2
33(u)|x3(u−2τ)− y3(u−2τ)|

+a31(u)|x1(u−2τ)− y1(u−2τ)|+a32(u)|x2(u−2τ)− y2(u−2τ)|
])

du.

(4.1)

Define W2(t) = µ1V12(t)+µ2V22(t)+µ3V32(t), where

V12(t) =
2

∑
l=1

∫ t

t−lτ

∫ t

u
al

11(u+ lτ)
([

r1(s)+a1
11(s)y1(s− τ)+a2

11(s)y1(s−2τ)

+a12(s)y2(s−2τ)+a13(s)y3(s−2τ)
]
|x1(s)− y1(s)|

+x1(s)
[
a1

11(s)|x1(s− τ)− y1(s− τ)|+a2
11(s)|x1(s−2τ)− y1(s−2τ)|

+a12(s)|x2(s−2τ)− y2(s−2τ)|+a13(s)|x3(s−2τ)− y3(s−2τ)|
])

dsdu,

V22(t) =
2

∑
l=1

∫ t

t−lτ

∫ t

u
al

22(u+ lτ)
([

r2(s)+a1
22(s)y2(s− τ)+a2

22(s)y2(s−2τ)

+a21(s)y1(s−2τ)+a23(s)y3(s−2τ)
]
|x2(s)− y2(s)|

+x2(s)
[
a1

22(s)|x2(s− τ)− y2(s− τ)|+a2
22(s)|x2(s−2τ)− y2(s−2τ)|

+a21(s)|x1(s−2τ)− y1(s−2τ)|+a23(s)|x3(s−2τ)− y3(s−2τ)|
])

dsdu,

V32(t) =
2

∑
l=1

∫ t

t−lτ

∫ t

u
al

33(u+ lτ)
([

r3(s)+a1
33(s)y3(s− τ)+a2

33(s)y3(s−2τ)

+a31(s)y1(s−2τ)+a32(s)y2(s−2τ)
]
|x3(s)− y3(s)|

+x3(s)
[
a1

33(s)|x3(s− τ)− y3(s− τ)|+a2
33(s)|x3(s−2τ)− y3(s−2τ)|

+a31(s)|x1(s−2τ)− y1(s−2τ)|+a32(s)|x2(s−2τ)− y2(s−2τ)|
])

dsdu.
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Calculating the right-upper derivative of W2(t) and from (4.1), we have

2

∑
i=1

D+Wi(t)≤ −
3

∑
i=1

µi(a1
ii(t)+a2

ii(t))|xi(t)− yi(t)|+(µ2a21(t)+µ3a31(t))|x1(t−2τ)

−y1(t−2τ)|+(µ1a12(t)+µ3a32(t))|x2(t−2τ)− y2(t−2τ)|

+(µ1a13(t)+µ2a23(t))|x3(t−2τ)− y3(t−2τ)|

+µ1

2

∑
l=1

∫ t

t−lτ
al

11(u+ lτ)du
[
r1(t)+(a1

11(t)+a2
11(t))M1 +a12(t)M2

+a13(t)M3
]
|x1(t)− y1(t)|+µ1M1 ∑

2
l=1
∫ t

t−lτ al
11(u+ lτ)du

×al
11(t)|x1(t− lτ)− y1(t− lτ)|+µ1M1τ(a1M

11 +2a2M
11 )

×[a12(t)|x2(t−2τ)− y2(t−2τ)|+a13(t)|x3(t−2τ)− y3(t−2τ)|
]

+µ2

2

∑
l=1

∫ t

t−lτ
al

22(u+ lτ)du
[
r2(t)+(a1

22(t)+a2
22(t))M2 +a21(t)M1

+a23(t)M3
]
|x2(t)− y2(t)|+µ2M2

2

∑
l=1

∫ t

t−lτ
al

22(u+ lτ)du

×al
22(t)|x2(t− lτ)− y2(t− lτ)|+µ2M2τ(a1M

22 +2a2M
22 )

×
[
a21(t)|x1(t−2τ)− y1(t−2τ)|+a23(t)|x3(t−2τ)− y3(t−2τ)|

]
,

+µ3

2

∑
l=1

∫ t

t−lτ
al

33(u+ lτ)du
[
r3(t)+(a1

33(t)+a2
33(t))M3 +a31(t)M1

+a32(t)M2
]
|x3(t)− y3(t)|+µ3M3

2

∑
l=1

∫ t

t−lτ
al

33(u+ lτ)du

×al
33(t)|x3(t− lτ)− y3(t− lτ)|+µ3M3τ(a1M

33 +2a2M
33 )

×
[
a31(t)|x1(t−2τ)− y1(t−2τ)|+a32(t)|x2(t−2τ)− y2(t−2τ)|

]
,

(4.2)
Define W3(t) = µ1V13(t)+µ2V23(t)+µ3V33(t), where

V13(t) = M1

2

∑
l=1

∫ t

t−lτ

∫ s+lτ

s
al

11(u+ lτ)al
11(s+ lτ)|x1(s)− y1(s)|duds

+(1+M1τ(a1M
11 +2a2M

11 ))
∫ t

t−2τ

a12(u+2τ)|x2(u)− y2(u)|du

+(1+M1τ(a1M
11 +2a2M

11 ))
∫ t

t−2τ

a13(u+2τ)|x3(u)− y3(u)|du,
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V23(t) = M2

2

∑
l=1

∫ t

t−lτ

∫ s+lτ

s
al

22(u+ lτ)al
22(s+ lτ)|x2(s)− y2(s)|duds

+(1+M2τ(a1M
22 +2a2M

22 ))
∫ t

t−2τ

a21(u+2τ)|x1(u)− y1(u)|du

+(1+M2τ(a1M
22 +2a2M

22 ))
∫ t

t−2τ

a23(u+2τ)|x3(u)− y3(u)|du,

V33(t) = M3

2

∑
l=1

∫ t

t−lτ

∫ s+lτ

s
al

33(u+ lτ)al
33(s+ lτ)|x3(s)− y3(s)|duds

+(1+M3τ(a1M
33 +2a2M

33 ))
∫ t

t−2τ

a31(u+2τ)|x1(u)− y1(u)|du

+(1+M3τ(a1M
33 +2a2M

33 ))
∫ t

t−2τ

a32(u+2τ)|x2(u)− y2(u)|du.

Calculating the right-upper derivative of W3(t) and from (4.2), we have

3

∑
i=1

D+Wi(t)≤−
(

µ1(a1
11(t)+a2

11(t))−µ1

2

∑
l=1

∫ t

t−lτ
al

11(u+ lτ)du
[
r1(t)+(a1

11(t)

+a2
11(t))M1 +a12(t)M2 +a13(t)M3

]
−µ1M1

2

∑
l=1

∫ t+lτ

t
al

11(u+ lτ)du

×al
11(t + lτ)−µ2(1+ τM2(a1M

22 +2a2M
22 ))a21(t +2τ)

−µ3(1+ τM3(a1M
33 +2a2M

33 ))a31(t +2τ)

)
|x1(t)− y1(t)|

−
(

µ2(a1
22(t)+a2

22(t))−µ2

2

∑
l=1

∫ t

t−lτ
al

22(u+ lτ)du
[
r2(t)+(a1

22(t)

+a2
22(t))M2 +a21(t)M1 +a23(t)M3

]
−µ2M2

2

∑
l=1

∫ t+lτ

t
al

22(u+ lτ)du

×al
22(t + lτ)−µ1(1+ τM1(a1M

11 +2a2M
11 ))a12(t +2τ)

−µ3(1+ τM3(a1M
33 +2a2M

33 ))a32(t +2τ)

)
|x2(t)− y2(t)|

−
(

µ3(a1
33(t)+a2

33(t))−µ3

2

∑
l=1

∫ t

t−lτ
al

33(u+ lτ)du
[
r3(t)+(a1

33(t)

+a2
33(t))M3 +a31(t)M1 +a32(t)M2

]
−µ3M3

2

∑
l=1

∫ t+lτ

t
al

33(u+ lτ)du
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×al
33(t + lτ)−µ1(1+ τM1(a1M

11 +2a2M
11 ))a13(t +2τ)

−µ2(1+ τM2(a1M
22 +2a2M

22 ))a23(t +2τ)

)
|x3(t)− y3(t)|.

(4.3)

Further, we define a Lyapunov function as follows

V (t) =
3

∑
i=1

Wi(t).

Calculating the right-upper derivative of V (t), we obtain from (4.3) that, for all t ≥ T0,

D+V (t) ≤−
3

∑
i=1

Ai(t)|xi(t)− yi(t)|. (4.4)

From assumption (H2), there exists a constant α > 0 and T ∗ ≥ T0 such that, for all t ≥ T ∗,

Ai(t)≥ α > 0, i = 1,2,3. (4.5)

Integrating from T ∗ to t on both sides of (4.4) and by (4.5) produces

V (t)+α

∫ t

T ∗

( 3

∑
i=1
|xi(s)− yi(s)|

)
ds≤V (T ∗).

Hence, V (t) is bounded on [T ∗,∞) and we have∫ t

T ∗

( 3

∑
i=1
|xi(s)− yi(s)|

)
ds < ∞.

From Theorem 3.1, we can obtain that (xi(t)− yi(t))(i = 1,2,3) and their derivatives remain
bounded on [T ∗,∞). As a consequence, |xi(t)− yi(t)| (i = 1,2,3) is uniformly continuous on
[T ∗,∞). By use of Barbalat’s lemma, it follows that

lim
t→∞

3

∑
i=1
|xi(t)− yi(t)|= 0.

Hence,
lim
t→∞

(xi(t)− yi(t)) = 0, i = 1,2,3.

This completes the proof. �

The following theorem is about the globally attractivity of system (1.7).

Theorem 4.2. If all conditions of Theorem 4.1 hold, then system (1.7) is globally attractive.

Proof. By using the similar method with Theorem 4.1, we can conclude the desired result. �

Remark 4.3. The aim of the construction of the multiple Lyapunov functional is to produce
non-delayed terms in the right-upper derivative calculation of Lyapunov functional. Thus, we
can offset the delayed terms by non-delayed terms. From the Lyapunov functional W2(t) and
W3(t) in the proof, we can see that the upper bounds Mi(i = 1,2,3) are very useful to construc-
tion of the Lyapunov functional.
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5. THE EXAMPLE

In this section, we will give an example to illustrate the results obtained in this paper.

Example 5.1. We consider the following system

ẋ1(t) = x1(t)
(2−|cos(t)|

2
− (1.8+0.35cos(t))x1(t− τ)− 1.1+ sin(t)

4
x1(t−2τ)

−4+4|cos(t)|
1000

x2(t−2τ)− 7+7|sin(t)|
1000

x3(t−2τ)
)
,

ẋ2(t) = x2(t)
(2−|sin(t)|

2
− 4+4|sin(t)|

1000
x1(t−2τ)− 3.3+0.3sin(t)

2
x2(t− τ)

−1.1+ cos(t)
4

x2(t−2τ)− 7+7|sin(t)|
1000

x3(t−2τ)
)
,

ẋ3(t) = x3(t)
(
− 2−|cos(t)|

1000
+

8+ |sin(t)|
100

x1(t−2τ)+
8+ |cos(t)|

100
x2(t−2τ)

−5+ sin(t)
2

x3(t− τ)− 5+ cos(t)
6

x3(t−2τ)
)
.

(5.1)

In system (5.1), if τ = 0.15, then

M1 ≈ 0.9152, M2 ≈ 0.8852, M3 ≈ 0.5062,

liminf
t→∞

A1(t)≈ 0.4551, liminf
t→∞

A2(t)≈ 0.5696, liminf
t→∞

A3(t)≈ 1.4764.

It is clear that the conditions of Theorem 4.1 hold.

0 1 2 3 4 5 6 7 8 9 10

0.25

0.3

0.35

0.4

0.45

t

 

 

x
1
(t)

x
2
(t)

(a)
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(b)

(c)

Fig. 1. Global attractivity of system (5.1)

From Fig. 1. we can see, system (5.1) is globally attractive.
Next, if τ = 2.5, then

M1 ≈ 100.6191, M2 ≈ 97.3201, M3 ≈ 55.6549, liminf
t→∞

A1(t)≈−2232.2 < 0

It is clear that the conditions of Theorem 4.1 do not hold.

(a)
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Fig. 2. Non-global attractivity of system (5.1)

From the Fig. 2. we can see, system (5.1) is not globally attractive.

Remark 5.1. From the above example, we can see that the effect of time delays on the global
attractivity of the system. The results of this paper suggest the biological implication that the
length of time delays can change the global attractivity of the system, in some cases, small time
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delays are harmless for the global attractivity of the system. However, the global attractivity of
the system may be destroyed by some other larger time delays.

6. CONCLUSION

In this paper, two classes of nonautonomous three-species Lotka-Volterra type one predator-
two competitive prey systems with pure discrete time delays are proposed and analyzed to study
the boundedness of the solution and global attractivity of the systems. Based on the comparison
method and the construction of the multiple Lyapunov functional, some new sufficient con-
ditions on boundedness, permanence, extinction and global attractivity of the systems are ob-
tained. In addition, numerical simulation results shows the feasibility of our results. Moreover,
the models and results present in this paper can been seen as the improvement and extension of
the models and results obtained in [2, 4, 7, 9, 10, 12].
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