

Journal of Nonlinear Functional Analysis

Available online at http://jnfa.mathres.org

METRIC SPACES WITH ASYMPTOTIC PROPERTY C AND FINITE DECOMPOSITION COMPLEXITY

JINGMING ZHU, YAN WU*

College of Data Science, Jiaxing University, Jiaxing 314001, China

Abstract. We construct a class of metric spaces $X_{\omega+k}$ whose transfinite asymptotic dimension and complementary-finite asymptotic dimension are both $\omega+k$ for any $k \in \mathbb{N}$, where ω is the smallest infinite ordinal number and a metric space $Y_{2\omega}$ whose transfinite asymptotic dimension and complementary-finite asymptotic dimension are both 2ω . Finally, we introduce a geometric property called decomposition dimension (decodim). Using decomposition dimension, we prove that the metric spaces $X_{\omega+k}$ and $Y_{2\omega}$ have finite decomposition complexity.

Keywords. Asymptotic property *C*; Complementary-finite asymptotic dimension; Finite decomposition complexity; Transfinite asymptotic dimension;.

1. Introduction

The asymptotic dimension is a coarse invariant of metric spaces introduced by Gromov [1]. Recently, it has received a great deal of attention; see, e.g., [2, 3, 4, 5] and the references therein. Generalizing finite asymptotic dimension, Dranishnikov introduced the notion of the asymptotic property C in [6], which covers a large family of metric spaces with the infinite asymptotic dimension. In 2010, Radul generalized the asymptotic dimension of a metric space X to the transfinite asymptotic dimension, which is denoted by $\operatorname{trasdim}(X)$, and proved that, for a metric space X, X has the asymptotic property C is equivalent to $\operatorname{trasdim}(X) < \infty$ [7]. There are examples of the metric space with $\operatorname{trasdim} = \infty$ and the metric space with $\operatorname{trasdim} = \omega$, where ω is the smallest infinite ordinal number [7]. But, if there is a metric space X with ω <trackin(X) < ∞ was unknown until we constructed a metric space whose transfinite asymptotic dimension is $\omega + 1$ [8]. In [9], we introduced another approach to classify the metric spaces with the infinite asymptotic dimension, which is called the complementary-finite asymptotic dimension (coasdim).

E-mail addresses: jingmingzhu@mail.zjxu.edu.cn (J. Zhu), yanwu@mail.zjxu.edu.cn (Y. Wu).

Received April 13, 2021; Accepted May 7, 2021.

^{*}Corresponding author.

J. ZHU, Y. WU

Inspired by the method in [8], we construct a class of metric spaces $X_{\omega+k}$ with

$$\operatorname{trasdim}(X_{\omega+k}) = \operatorname{coasdim}(X_{\omega+k}) = \omega + k \text{ for any } k \in \mathbb{N},$$

which generalizes the result in [8]. We use these metric spaces to construct a metric space $Y_{2\omega}$ with trasdim $(Y_{2\omega}) = \operatorname{coasdim}(Y_{2\omega}) = 2\omega$.

In 2012, Guentner, Tessera and Yu [10] introduced the notion of finite decomposition complexity to study the topological rigidity of manifolds, and they proved that every metric space of bounded geometry with finite decomposition complexity has property A [11]. Dranishnikov proved that every metric space of bounded geometry with asymptotic property C has property A [6]. The relation between asymptotic property C and finite decomposition complexity was studied by Dranishnikov and Zarichnyi [5]. There is no example of group known which makes a difference between asymptotic property C and the finite decomposition complexity. Here we prove that $X_{\omega+k} \in \mathcal{D}_{\omega+k}$, and $Y_{2\omega} \in \mathcal{D}_{2\omega}$. Therefore, $X_{\omega+k}$ and $Y_{2\omega}$ have both asymptotic property C, and the finite decomposition complexity.

2. Preliminaries

Let (X,d) be a metric space, and $U,V\subseteq X$. Define

diam
$$U = \sup\{d(x, y) | x, y \in U\}$$
 and $d(U, V) = \inf\{d(x, y) | x \in U, y \in V\}$.

Let R and r be positive numbers, and let $\mathscr U$ be a family of subsets of X. We say that $\mathscr U$ is R-bounded if

$$\operatorname{diam} \mathscr{U} \doteq \sup \{ \operatorname{diam} U \mid U \in \mathscr{U} \} \leq R.$$

In this case, \mathcal{U} is said to be *uniformly bounded*. We say that \mathcal{U} is *r-disjoint* if

$$d(U,V) \ge r$$
 for every $U,V \in \mathcal{U}$ with $U \ne V$.

Let A be a subset of X and $\varepsilon > 0$. Define

$$N_{\varepsilon}(A) = \{x \in X \mid d(x,A) < \varepsilon\} \text{ and } \overline{N_{\varepsilon}(A)} = \{x \in X \mid d(x,A) \le \varepsilon\}.$$

Letting $\delta > 0$, we denote

$$N_{\delta}(\mathscr{U}) = \{N_{\delta}(U) \mid U \in \mathscr{U}\},\$$

and

2

$$|\mathcal{U}| = |\mathcal{U}| = |$$

Definition 2.1. [4] The asymptotic dimension of a metric space X does not exceed n and write $\operatorname{asdim}(X) \leq n$ if there exists $n \in \mathbb{N}$ such that, for every r > 0, there exists a sequence of uniformly bounded families $\{\mathcal{U}_i\}_{i=0}^n$ of subsets of X such that $\bigcup_{i=0}^n \mathcal{U}_i$ covers X, and each \mathcal{U}_i is r-disjoint for $i = 0, 1, \dots, n$. In this case, we say that X has *finite asymptotic dimension*.

We say that $\operatorname{asdim}(X) = n$ if $\operatorname{asdim}(X) \le n$ and $\operatorname{asdim}(X) \le n - 1$ is not true.

We say that $\operatorname{asdim}(X) < \infty$ if $\operatorname{asdim}(X) \le m$ for some $m \in \mathbb{N}$, and $\operatorname{asdim}(X) = \infty$ if $\operatorname{asdim}(X) \le n$ is not true for any $n \in \mathbb{N}$.

Definition 2.2. [7] Let $Fin\mathbb{N}$ be the collection of all finite, nonempty subsets of \mathbb{N} , and let $M \subseteq Fin\mathbb{N}$. For $\sigma \in \{\emptyset\} \bigcup Fin\mathbb{N}$, let

$$M^{\sigma} = \{ \tau \in Fin\mathbb{N} \mid \tau \cup \sigma \in M \text{ and } \tau \cap \sigma = \varnothing \}.$$

Let M^a abbreviate $M^{\{a\}}$ for $a \in \mathbb{N}$. Define the ordinal number OrdM inductively as follows:

$$\begin{array}{lll} \operatorname{Ord} M = 0 & \Leftrightarrow & M = \varnothing, \\ \operatorname{Ord} M \leq \alpha & \Leftrightarrow & \forall \ a \in \mathbb{N}, \text{ there exists } \beta < \alpha, \text{ such that } \operatorname{Ord} M^a \leq \beta, \\ \operatorname{Ord} M = \alpha & \Leftrightarrow & \operatorname{Ord} M \leq \alpha \text{ and } \operatorname{Ord} M \leq \beta \text{ is not true for any } \beta < \alpha, \\ \operatorname{Ord} M = \infty & \Leftrightarrow & \operatorname{Ord} M \leq \alpha \text{ is not true for any ordinal number } \alpha. \end{array}$$

Definition 2.3. [7] Given a metric space X, let

$$A(X) = \{ \sigma \in Fin\mathbb{N} \mid \text{ there are no uniformly bounded families } \mathscr{U}_i \text{ for } i \in \sigma$$
 such that each \mathscr{U}_i is i -disjoint and $\bigcup_{i \in \sigma} \mathscr{U}_i \text{ covers } X \}.$

The transfinite asymptotic dimension of X is defined as trasdim(X)=OrdA(X).

Remark 2.4. Note that $\operatorname{trasdim}(X) \leq n$ if and only if $\operatorname{asdim}(X) \leq n$.

Lemma 2.5. (see [9], Proposition 2.1) Let X be a metric space, and let $l \in \mathbb{N} \cup \{0\}$. Then the following conditions are equivalent:

- (1) $trasdim(X) \le \omega + l$;
- (2) for every $k \in \mathbb{N}$, there exists $m = m(k) \in \mathbb{N}$ such that for every $n \in \mathbb{N}$, there are uniformly bounded families $\mathcal{U}_{-l}, \mathcal{U}_{-l+1}, \cdots, \mathcal{U}_m$ satisfying \mathcal{U}_i is k-disjoint for $i \in \{-l, \cdots, 0\}$, \mathcal{U}_j is n-disjoint for $j \in \{1, 2, \cdots, m\}$ and $\bigcup_{i=-l}^m \mathcal{U}_i$ covers X.

Definition 2.6. [9] Every ordinal number γ can be represented as $\gamma = \lambda(\gamma) + n(\gamma)$, where $\lambda(\gamma)$ is the limit ordinal or 0 and $n(\gamma) \in \mathbb{N} \cup \{0\}$. Let X be a metric space, we define *complementary-finite asymptotic dimension* coasdim(X) inductively as follows:

- $\operatorname{coasdim}(X) = -1$ if and only if $X = \emptyset$,
- coasdim $(X) \leq \gamma$ if and only if for every r > 0 there exist r-disjoint and uniformly bounded families $\mathscr{U}_0, \ldots, \mathscr{U}_{n(\gamma)}$ of subsets of X such that coasdim $(X \setminus \bigcup (\bigcup_{i=0}^{n(\gamma)} \mathscr{U}_i)) \leq \alpha$ for some $\alpha < \lambda(\gamma)$,
- $\operatorname{coasdim}(X) = \gamma$ if and only if $\operatorname{coasdim}(X) \le \gamma$ and for any $\beta < \gamma$, $\operatorname{coasdim}(X) \le \beta$ is not true.

Remark 2.7. Note that $coasdim(X) \le n$ if and only if $asdim(X) \le n$.

Lemma 2.8. (see [9], Theorem 3.3) Let X be a metric space with $X_1, X_2 \subseteq X$. Then $coasdim(X_1 \cup X_2) \le max\{coasdim(X_1), coasdim(X_2)\}$.

Definition 2.9. Let X and Y be metric spaces. $f: X \to Y$ is said to be *coarse embedding* if there are nondecreasing functions $p_1, p_2: \mathbb{R}^+ \to \mathbb{R}^+$ such that $\lim_{x \to +\infty} p_1(x) = +\infty$ and for every $x_1, x_2 \in X$,

$$p_1(d(x_1,x_2)) \le d(f(x_1),f(x_2)) \le p_2(d(x_1,x_2)).$$

If, additionally, there exists R > 0 such that $Y \subseteq N_R(f[X])$, then f is called *coarse equivalence* and metric spaces X and Y are said to be coarse equivalent. Coarse equivalence is an equivalence relation.

Transfinite asymptotic dimension and complementary-finite asymptotic dimension are coarsely invariant properties of metric spaces.

Lemma 2.10. (see [9, 12]) Let X and Y be metric spaces, and let ξ be an countable ordinal number. There is a coarse embedding $\phi: X \to Y$ from X to Y. If $coasdim(Y) \le \xi$ and $trasdim(Y) \le \xi$, then

$$coasdim(X) \leq coasdim(Y)$$
 and $trasdim(X) \leq trasdim(Y)$.

Consequently, if X and Y are coarse equivalent, $coasdim(Y) \le \xi$, and $trasdim(Y) \le \xi$, then trasdim(X) = trasdim(Y) and $trasdim(Y) \le \xi$, and $trasdim(Y) \le \xi$, then

3. MAIN RESULTS

3.1. A metric space with transfinite asymptotic dimension $\omega + k$. In this section, we will construct a metric space $X_{\omega+k}$, and prove that $\operatorname{trasdim}(X_{\omega+k}) = \omega + k$ for every $k \in \mathbb{N}$, which are inspired by the method in [8].

Definition 3.1. ([13]) Let X be a metric space, and let A, B be a pair of disjoint subsets of X. We say that a subset $L \subset X$ is a *partition* of X between A and B if there exist open sets $U, W \subset X$ satisfying the following conditions

$$A \subset U, B \subset W$$
 and $X = U \sqcup L \sqcup W$.

Definition 3.2. Let X be a metric space, and let A, B be a pair of disjoint subsets of X. For any $\varepsilon > 0$, we say that a subset $L \subset X$ is an ε -partition of X between A and B if there exist open sets $U, W \subset X$ satisfying the following conditions

$$A \subset U, B \subset W, X = U \sqcup L \sqcup W, d(L,A) > \varepsilon$$
 and $d(L,B) > \varepsilon$.

Clearly, an ε -partition L of X between A and B is a partition of X between A and B.

Lemma 3.3. ([14]) Let $L_0 \doteq [0,B]^n$ for some B > 0. Let F_i^+ and F_i^- be the pairs of opposite faces of L_0 , where $i = 1, 2, \dots, n$, and let $0 < \varepsilon < \frac{1}{6}B$. For $k = 1, 2, \dots, n$, let \mathcal{U}_k be an ε -disjoint and $\frac{1}{3}B$ -bounded family of subsets of $[0,B]^n$. Then there exists a decreasing sequence of closed sets $[0,B]^n = L_0 \supset L_1 \supset L_2 \cdots \supset L_n$ such that L_{k+1} is an ε -partition of L_k between $F_{k+1}^+ \cap L_k$ and $F_{k+1}^- \cap L_k$, and $L_{k+1} \subseteq L_k \cap (\bigcup \mathcal{U}_{k+1})^c$ for $k = 0, 1, 2, \dots, n-1$.

To prove the main results, we will use a version of the Lebesgue theorem.

Lemma 3.4. (see [13], Lemma 1.8.19) Let F_i^+ , F_i^- , where $i \in \{1, ..., n\}$, be the pairs of opposite faces of $I^n \doteq [0, 1]^n$. If $I^n = L'_0 \supset L'_1 \supset ... \supset L'_n$ is a decreasing sequence of closed sets such that L'_i is a partition of L'_{i-1} between $L'_{i-1} \cap F_i^+$ and $L'_{i-1} \cap F_i^-$ for $i \in \{1, 2, ..., n\}$, then $L'_n \neq \emptyset$.

As it is similar with [8], we will use the asymptotic union to construct examples.

Definition 3.5. Let $\{Z_i\}_{i=1}^{\infty}$ be a sequence of subspaces of a metric space (Z, d_Z) . Let

$$X = \bigsqcup_{i=1}^{\infty} (0, \cdots, 0, Z_i, 0, \cdots).$$

For every $x, y \in X$, there exist unique $l, k \in \mathbb{N}$, $x_l \in Z_l$ and $y_k \in Z_k$ such that $x = (0, \dots, 0, x_l, 0, \dots)$ and $y = (0, \dots, 0, y_k, 0, \dots)$. Assume that $l \le k$, put c = 0 if l = k, and $c = l + (l + 1) + \dots + (k - 1)$ if l < k. Define a metric on X by

$$d(x,y) = d_Z(x_l, y_k) + c.$$

We say that (X,d) is asymptotic union of $\{Z_i\}_{i=1}^{\infty}$, which is denoted by as $\bigsqcup_{i=1}^{\infty} Z_i$. And we denote $as \bigsqcup_{i=n}^{\infty} Z_i$ as a subspace of $as \bigsqcup_{i=1}^{\infty} Z_i$.

For every $k, i \in \mathbb{N}$, let

$$X_{\omega+k}^{(i)} = \{(x_1, \dots, x_i) \in \mathbb{R}^i | |\{j \mid x_j \notin 2^i \mathbb{Z}\}| \le k\}.$$

Note that $X_{\omega+k}^{(i)} \subset \mathbb{R}^i$ for each $i \in \mathbb{N}$. Let $X_{\omega+k} = \text{as} \bigsqcup_{i=1}^{\infty} X_{\omega+k}^{(i)}$, where $X_{\omega+k}^{(i)}$ is a subspace of the metric space $(\bigoplus \mathbb{R}, d_{\max})$ for each $i \in \mathbb{N}$, and d_{\max} is the maximum metric.

Proposition 3.6. For any $k \in \mathbb{N}$, $trasdim(X_{\omega+k}) \leq \omega + k - 1$ is not true.

Proof. Suppose that $\operatorname{trasdim}(X_{\omega+k}) \leq \omega + k - 1$. By Lemma 2.5, for every $n \in \mathbb{N}$, there exists $m = m(n) \in \mathbb{N}$ such that there exist B-bounded families $\mathscr{U}_{-k+1}, \mathscr{U}_{-k+2}, \ldots, \mathscr{U}_{m-1}, \mathscr{U}_m$ satisfying \mathscr{U}_i is n-disjoint for $i = -k + 1, \ldots, 0$, \mathscr{U}_j is 2^{m+k+2} -disjoint for $j = 1, 2, \ldots, m$ and $\bigcup_{i=-k+1}^m \mathscr{U}_i$ covers $X_{\omega+k}$ and hence covers $[0,6B]^{m+k} \cap X_{\omega+k}^{(m+k)}$. Without lose of generality, we can assume $B = B(n) > \max\{n, 2^{m+k+2}\}$.

We assume that $p = \frac{6B}{2^{m+k}} \in \mathbb{N}$. Taking a bijection $\psi : \{1, 2, \dots, p^{m+k}\} \to \{0, 1, 2, \dots, p-1\}^{m+k}$, let

$$Q(t) = \prod_{j=1}^{m+k} [2^{m+k} \psi(t)_j, 2^{m+k} (\psi(t)_j + 1)], \text{ in which } \psi(t)_j \text{ is the } j \text{th coordinate of } \psi(t).$$

Let $\mathcal{Q} = \{Q(t) \mid t \in \{1, 2, \dots, p^{m+k}\}\}$. Then, $[0, 6B]^{m+k} = \bigcup_{Q \in \mathcal{Q}} Q$. Note that

$$[0,6B]^{m+k} \cap X_{\omega+k}^{(m+k)} = \bigcup_{Q \in \mathscr{Q}} \partial_k Q,$$

where $\partial_k Q$ is the *k*-dimensional skeleton of Q.

Let $L_0 = [0, 6B]^{m+k}$. By Lemma 3.3, since $N_{2^{m+k}}(\mathcal{U}_1)$ is 2^{m+k} -disjoint and $(2^{m+k+1} + B)$ -bounded, there exists a 2^{m+k} -partition L_1 of $[0, 6B]^{m+k}$ such that

$$L_1 \subset (\bigcup N_{2^{m+k}}(\mathscr{U}_1))^c \cap [0,6B]^{m+k}$$

and $d(L_1, F_1^{+/-}) > 2^{m+k}$. Since L_1 is a 2^{m+k} -partition of $[0, 6B]^{m+k}$ between F_1^+ and F_1^- , then $[0, 6B]^{m+k} = L_1 \sqcup A_1 \sqcup B_1$ such that A_1 , B_1 are open in $[0, 6B]^{m+k}$, and A_1 , B_1 contain two opposite facets F_1^- , F_1^+ respectively.

Let $\mathcal{M}_1 = \{Q \in \mathcal{Q} | Q \cap L_1 \neq \emptyset\}$, and $M_1 = \bigcup \mathcal{M}_1$. Since L_1 is a 2^{m+k} -partition of $[0, 6B]^{m+k}$ between F_1^+ and F_1^- , then M_1 is a partition of $[0, 6B]^{m+k}$ between F_1^+ and F_1^- , i.e., $[0, 6B]^{m+k} = M_1 \sqcup A_1' \sqcup B_1'$ such that A_1' and B_1' are open in $[0, 6B]^{m+k}$, and A_1' and B_1' contain two opposite facets F_1^- , F_1^+ , respectively. Let

$$L_1' = \partial_{m+k-1} M_1 = \bigcup \{ \partial_{m+k-1} Q | Q \in \mathcal{M}_1 \}.$$

Then, $[0,6B]^{m+k}\setminus (L'_1\sqcup A'_1\sqcup B'_1)$ is the union of some disjoint open (m+k)-dimensional cubes with length of edge $=2^{m+k}$. So L'_1 is a partition of $[0,6B]^{m+k}$ between F_1^+ and F_1^- , and $L'_1\subset (\bigcup\mathcal{U}_1)^c\cap [0,6B]^{m+k}$.

For $N_{2^{m+k}}(\mathcal{U}_2)$, there exists a 2^{m+k} -partition L_2 of L'_1 such that

$$L_2 \subset ([\]N_{2m+k}(\mathscr{U}_2))^c \cap [0,6B]^{m+k},$$

and $d(L_2, F_2^{+/-}) > 2^{m+k}$. Since L_2 is a 2^{m+k} -partition of L_1' between $L_1' \cap F_2^+$ and $L_1' \cap F_2^-$, then $L_1' = L_2 \sqcup A_2 \sqcup B_2$ such that A_2 and B_2 are open in L_1' , and A_2 and B_2 contain two opposite facets $L_1' \cap F_2^-$, $L_1' \cap F_2^+$, respectively, and $d(L_2, F_2^{+/-}) > 2^{m+k}$.

Let $\mathcal{M}_2 = \{Q \in \mathcal{M}_1 \mid Q \cap L_2 \neq \emptyset\}$, and $M_2 = \bigcup \mathcal{M}_2$. Since L_2 is a 2^{m+k} -partition of L_1' between $L_1' \cap F_2^+$ and $L_1' \cap F_2^-$, then $M_2 \cap L_1'$ is a partition of L_1' between $L_1' \cap F_2^+$ and $L_1' \cap F_2^-$, i.e., $L_1' = (M_2 \cap L_1') \sqcup A_2' \sqcup B_2'$ such that A_2' , B_2' are open in L_1' , and A_2' and B_2' contain two opposite facets $L_1' \cap F_2^-$ and $L_1' \cap F_2^+$, respectively. Let

$$L_2' = \partial_{m+k-2} M_2 \doteq \bigcup \{ \partial_{m+k-2} Q | Q \in \mathcal{M}_2 \}.$$

Then $L'_1 \setminus (L'_2 \sqcup A'_2 \sqcup B'_2)$ is the union of some disjoint open (m+k-1)-dimensional cubes with length of edge $= 2^{m+k}$. So L'_2 is also a partition of L'_1 between $L'_1 \cap F_2^+$ and $L'_1 \cap F_2^-$, and $L'_2 \subset (\bigcup (\mathscr{U}_1 \cup \mathscr{U}_2))^c \cap [0,6B]^{m+k}$. After m steps above, we have L'_m to be a partition of L'_{m-1} and $L'_m \subset (\bigcup (\mathscr{U}_1 \cup \ldots \cup \mathscr{U}_m))^c \cap [0,6B]^{m+k}$. Note that $L'_m \subset X_{\omega+k}^{(m+k)}$ and hence

$$L'_m \subset (\bigcup (\mathscr{U}_{-k+1} \cup \ldots \cup \mathscr{U}_0)) \cap [0, 6B]^{m+k}.$$

For $j=1,2,\cdots,k$, there exists a partition L'_{m+j} of L'_{m+j-1} between $L'_{m+j-1}\cap F^+_{m+j}$ and $L'_{m+j-1}\cap F^-_{m+j}$ such that $L'_{m+j}\subseteq L'_{m+j-1}\cap (\bigcup (\mathscr{U}_{-j+1}\cup\ldots\cup\mathscr{U}_m))^c$ due to Lemma 3.3. It follows that

$$L'_{m+k} \subseteq L'_{m+k-1} \cap (\bigcup (\mathscr{U}_{-k+1} \cup \ldots \cup \mathscr{U}_0))^c = \emptyset,$$

which is a contradiction with Lemma 3.4. So trasdim $(X_{\omega+k}) \le \omega + k - 1$ is not true.

Lemma 3.7. (see [15], Proposition 3.1) Let X be a metric space if $coasdim(X) \le \gamma$ for some ordinal number γ , then $trasdim(X) \le \gamma$.

For every $n, i, k \in \mathbb{N}$, let

$$X_{\omega+k}^{(i,n)} = \{(x_1,\ldots,x_i) \in \mathbb{R}^i \mid |\{j \mid x_j \notin 2^n \mathbb{Z}\}| \le k\}.$$

Note that $X_{\omega+k}^{(i)} = X_{\omega+k}^{(i,i)}$.

Lemma 3.8. For every $r \in \mathbb{N}$ with $r \geq 4$, there exist $n = r \in \mathbb{N}$ and r-disjoint uniformly bounded families $\mathcal{U}_0, \mathcal{U}_1$ such that $\mathcal{U}_0 \cup \mathcal{U}_1$ covers as $\bigsqcup_{i=n}^{\infty} X_{\omega+1}^{(i,n)}$.

Proof. For every $r \in \mathbb{N}$ and $r \ge 4$, choose $n = r \in \mathbb{N}$. For every $i \ge n$, let

$$\mathscr{U}_{0}^{(i)} = \{ \left(\prod_{t=1}^{i} (n_{t} 2^{n} - r, n_{t} 2^{n} + r) \right) \cap X_{\omega+1}^{(i,n)} \mid n_{t} \in \mathbb{Z} \},$$

and

$$\mathscr{U}_{1}^{(i)} = \{ \left(\prod_{t=1}^{j-1} (n_{t} 2^{n} - r, n_{t} 2^{n} + r) \times [n_{j} 2^{n} + r, (n_{j} + 1) 2^{n} - r] \times \prod_{t=j+1}^{i} (n_{t} 2^{n} - r, n_{t} 2^{n} + r) \right) \cap X_{\omega+1}^{(i,n)} \mid n_{t} \in \mathbb{Z}, 1 \leq j \leq i \}.$$

It is easy to see that $\mathscr{U}_0^{(i)}$ and $\mathscr{U}_1^{(i)}$ are r-disjoint and 2^n -bounded families. Now, for every $x=(x_1,\ldots,x_i)\in X_{\omega+1}^{(i,n)}\setminus (\bigcup\mathscr{U}_0^{(i)})$, there exists unique $j\in\{1,2,\cdots,i\}$ such that $x_j\in[n_j2^n+r,(n_j+1)2^n-r]$. It follows that $x\in\mathscr{U}_1^{(i)}$. Therefore, $\mathscr{U}_0^{(i)}\cup\mathscr{U}_1^{(i)}$ covers $X_{\omega+1}^{(i,n)}$. Let $\mathscr{U}_0=\bigcup_{i\geq n}\mathscr{U}_0^{(i)}$,

and $\mathscr{U}_1 = \bigcup_{i \geq n} \mathscr{U}_1^{(i)}$. Since $d(X_{\omega+1}^{(i,n)}, X_{\omega+1}^{(j,n)}) \geq n = r$ for every $i, j \geq n$ and $i \neq j$, then $\mathscr{U}_0, \mathscr{U}_1$ are r-disjoint and 2^n -bounded families such that $\mathscr{U}_0 \cup \mathscr{U}_1$ covers $as \bigsqcup_{i=n}^{\infty} X_{\omega+1}^{(i,n)}$.

Remark 3.9. By Lemma 3.8, for every $r \in \mathbb{N}$ and r > 1, there exist 3r-disjoint and uniformly bounded families $\mathscr{U}_0, \mathscr{U}_1$ such that $\mathscr{U}_0 \cup \mathscr{U}_1$ covers $as \bigsqcup_{i=3r}^{\infty} X_{\omega+1}^{(i,3r)}$. Let $\mathscr{V}_0 = \{N_r(U) | U \in \mathscr{U}_0\}$, $\mathscr{V}_1 = \{N_r(U) | U \in \mathscr{U}_1\}$. Then $\mathscr{V}_0, \mathscr{V}_1$ are r-disjoint uniformly bounded families, and $\mathscr{V}_0 \cup \mathscr{V}_1$ covers $as \bigsqcup_{i=3r}^{\infty} N_r(X_{\omega+1}^{(i,n)})$, where $N_r(X_{\omega+1}^{(i,n)})$ is r-neighborhood of $X_{\omega+1}^{(i,n)}$ in \mathbb{R}^i . By the similar argument, we obtain the following Lemma.

Lemma 3.10. For every $r \in \mathbb{N}$ and r > 1, there exist $n = 3^{k-1}r \in \mathbb{N}$ and r-disjoint uniformly bounded families $\mathscr{U}_0, \mathscr{U}_1, \ldots, \mathscr{U}_k$ such that $\mathscr{U}_0 \cup \mathscr{U}_1 \cup \ldots \cup \mathscr{U}_k$ covers as $\bigsqcup_{i=n}^{\infty} X_{\omega+k}^{(i,n)}$.

Proof. We will prove it by induction on k. By Lemma 3.8, the result is true for k=1. Assume that the result is true for k=m. Then, for every $r \in \mathbb{N}$ and r>1, there exist $n=3^m r \in \mathbb{N}$ and 3r-disjoint uniformly bounded families $\mathcal{V}_0, \mathcal{V}_1, \ldots, \mathcal{V}_m$ such that $\mathcal{V}_0 \cup \mathcal{V}_1 \cup \ldots \cup \mathcal{V}_m$ covers $as \bigsqcup_{i=n}^{\infty} X_{\omega+m}^{(i,n)}$. Now, for k=m+1, let

$$\mathscr{U}_0 = \{N_r(V) | V \in \mathscr{V}_0\}, \cdots, \mathscr{U}_m = \{N_r(V) | V \in \mathscr{V}_m\}.$$

Then $\mathscr{U}_0, \mathscr{U}_1, \cdots, \mathscr{U}_m$ are r-disjoint and uniformly bounded families such that $\mathscr{U}_0 \cup \mathscr{U}_1 \cup \ldots \cup \mathscr{U}_m$ covers $as \bigsqcup_{i=n}^{\infty} N_r(X_{\omega+m}^{(i,n)})$. Let

$$\mathcal{U}_{m+1}^{(i)} = \{\{x_t\}_{t=1}^{j_1-1} \times [n_{j_1}2^n + r, (n_{j_1}+1)2^n - r] \times (x_t)_{t=j_1+1}^{j_2-1} \times [n_{j_2}2^n + r, (n_{j_2}+1)2^n - r] \times \{x_t\}_{t=j_2+1}^{j_3-1} \times \dots \times \{x_t\}_{t=j_m+1}^{j_{m+1}-1} \times [n_{j_{m+1}}2^n + r, (n_{j_{m+1}}+1)2^n - r] \times \{x_t\}_{t=j_{m+1}+1}^{i} \mid x_t \in 2^n \mathbb{Z}, n_{j_k} \in \mathbb{Z}, 1 \le k \le m+1\}.$$

It is easy to see that $\mathscr{U}_{m+1}^{(i)}$ is r-disjoint and 2^n -bounded. Note that, for every $i \geq n$,

$$X_{\boldsymbol{\omega}+m+1}^{(i,n)} \setminus \bigcup \mathcal{U}_{m+1}^{(i)} \subset N_r(X_{\boldsymbol{\omega}+m}^{(i,n)})$$

Indeed, for any $x = \{x_t\}_{t=1}^i \in X_{\omega+m+1}^{(i,n)} \setminus \bigcup \mathscr{U}_{m+1}^{(i)}$, $\{x_t\}_{t=1}^i \in X_{\omega+m+1}^{(i,n)}$ implies that there exists at most m+1 coordinates x_t such that $x_t \notin 2^n \mathbb{Z}$ and $x \notin \bigcup \mathscr{U}_{m+1}^{(i)}$ implies that, among all the x_t with $x_t \notin 2^n \mathbb{Z}$, there exists at least one x_{t_0} such that $d(x_{t_0}, 2^n \mathbb{Z}) < r$. It follows that $x \in N_r(X_{\omega+m}^{(i,n)})$. Since

$$d(X_{\omega+m+1}^{(i,n)},X_{\omega+m+1}^{(j,n)}) > r \text{ for every } i,j \geq n \text{ and } i \neq j,$$

then $\mathscr{U}_{m+1} \doteq \bigcup_{i \geq n} \mathscr{U}_{m+1}^{(i)}$ is an *r*-disjoint uniformly bounded family of subsets and

$$as \bigsqcup_{i=n}^{\infty} X_{\omega+m+1}^{(i,n)} \subset (\bigcup \mathscr{U}_{m+1}) \cup \bigcup_{i=n}^{\infty} N_r(X_{\omega+m}^{(i,n)}).$$

Therefore, $\mathscr{U}_0 \cup \mathscr{U}_1 \cup \ldots \cup \mathscr{U}_{m+1}$ covers $as \bigsqcup_{i=n}^{\infty} X_{\omega+m+1}^{(i,n)}$. So the result is true for k=m+1. \square

Proposition 3.11. $coasdim(X_{\omega+k}) \leq \omega + k$.

Proof. For every r > 0, by Lemma 3.10, there exist $n = n(r) \in \mathbb{N}$ and r-disjoint uniformly bounded families $\mathscr{U}_0, \mathscr{U}_1, \dots, \mathscr{U}_k$ such that $\mathscr{U}_0 \cup \mathscr{U}_1 \cup \dots \cup \mathscr{U}_k$ covers $as \bigsqcup_{i=n}^{\infty} X_{\omega+k}^{(i,n)}$. Since

 $X_{\omega+k}^{(i)} = X_{\omega+k}^{(i,i)} \subset X_{\omega+k}^{(i,n)}$ for $i \ge n$, $X_{\omega+k} \setminus \bigcup (\mathscr{U}_0 \cup \dots \mathscr{U}_k) \subseteq as \bigsqcup_{i=1}^{n-1} X_{\omega+k}^{(i)}$. From Lemma 2.8, one has

$$\operatorname{coasdim}(X_{\omega+k}\setminus\bigcup(\mathscr{U}_0\cup\ldots\mathscr{U}_k))\leq\operatorname{coasdim}(\operatorname{as}\bigsqcup_{i=1}^{n-1}X_{\omega+k}^{(i)})\leq$$

$$\operatorname{coasdim}\left(\operatorname{as}\bigsqcup_{i=1}^{n-1}\mathbb{R}^{i}\right)\leq\operatorname{coasdim}\left(\mathbb{R}^{n-1}\right)<\omega.$$

It follows from the definition that $\operatorname{coasdim}(X_{\omega+k}) \leq \omega + k$.

Theorem 3.12. $trasdim(X_{\omega+k}) = \omega + k$ for every $k \in \mathbb{N}$.

Proof. From Lemma 3.7 and Proposition 3.11, one has $\operatorname{trasdim}(X_{\omega+k}) \leq \omega + k$. Using Proposition 3.6, we obtain that $\operatorname{trasdim}(X_{\omega+k}) = \omega + k$.

Theorem 3.13. $coasdim(X_{\omega+k}) = \omega + k$ for every $k \in \mathbb{N}$.

Proof. From Proposition 3.6 and Lemma 3.7, we can obtain that $\operatorname{coasdim}(X_{\omega+k}) \leq \omega + k - 1$ is not true. Then $\operatorname{coasdim}(X_{\omega+k}) = \omega + k$ due to Proposition 3.11.

3.2. A metric space with complementary-finite asymptotic dimension and transfinite asymptotic dimension 2ω . In this section, we will construct a metric space $Y_{2\omega}$ by taking asymptotic union of all the metric spaces $Y_{\omega+k}$, which is coarsely equivalent to $X_{\omega+k}$ for any $k \in \mathbb{N}$.

For every $k, i \in \mathbb{N}$, let

$$Y_{\boldsymbol{\omega}+k}^{(i)} = \{(x_1, \dots, x_i) \in (2^k \mathbb{Z})^i \mid |\{j \mid x_j \notin 2^i \mathbb{Z}\}| \le k\}, Y_{\boldsymbol{\omega}+k} = \text{as} \bigsqcup_{i=1}^{\infty} Y_{\boldsymbol{\omega}+k}^{(i)} \text{ and } Y_{2\boldsymbol{\omega}} = \text{as} \bigsqcup_{k=1}^{\infty} Y_{\boldsymbol{\omega}+k},$$

where $Y_{\omega+k}$ is a subspace of the metric space as $\bigsqcup_{j=1}^{\infty} \mathbb{R}^j$ for each $j \in \mathbb{N}$.

Proposition 3.14. $coasdim(Y_{2\omega}) = 2\omega$ and $trasdim(Y_{2\omega}) = 2\omega$.

Proof. For any $k \in \mathbb{N}$, since $Y_{\omega+k} \subseteq X_{\omega+k}$ and $X_{\omega+k} \subseteq N_{2^k}(Y_{\omega+k})$, $Y_{\omega+k}$ and $X_{\omega+k}$ are coarse equivalent. It follows that

 $\operatorname{trasdim}(Y_{\omega+k}) = \operatorname{trasdim}(X_{\omega+k}) = \omega + k \text{ and } \operatorname{coasdim}(Y_{\omega+k}) = \operatorname{coasdim}(X_{\omega+k}) = \omega + k$

due to Lemma 2.10. It follows that $\operatorname{coasdim}(Y_{2\omega}) \geq 2\omega$ and $\operatorname{trasdim}(Y_{2\omega}) \geq 2\omega$.

For every n > 0, let

$$\mathscr{U} = \{ \{x\} \mid x \in as \bigsqcup_{k=n+1}^{\infty} Y_{\omega+k} \}.$$

Then \mathcal{U} is *n*-disjoint and uniformly bounded, and

$$Y_{2\omega}\setminus\bigcup\mathscr{U}=as\bigsqcup_{k=1}^nY_{\omega+k}.$$

It follows from Lemma 2.8 that

$$\operatorname{coasdim}(\operatorname{as} \bigsqcup_{k=1}^{n} Y_{\omega+k}) \leq \operatorname{coasdim}(\operatorname{as} \bigsqcup_{k=1}^{n} X_{\omega+k}) \leq \max_{1 \leq k \leq n} \{\operatorname{coasdim}(X_{\omega+k})\} = \omega + n < 2\omega,$$

thus $\operatorname{coasdim}(Y_{2\omega} \setminus \bigcup \mathscr{U}) < 2\omega$. Then by the definition of complementary-finite asymptotic dimension, $\operatorname{coasdim}(Y_{2\omega}) \leq 2\omega$. Hence $\operatorname{trasdim}(Y_{2\omega}) \leq 2\omega$, which is due to Lemma 3.7. Therefore, $\operatorname{coasdim}(Y_{2\omega}) = 2\omega$, and $\operatorname{trasdim}(Y_{2\omega}) = 2\omega$.

3.3. The decomposition dimension of metric spaces.

Definition 3.15. ([4]) We say that the metric family $\{X_{\alpha}\}$ satisfies the inequality $\operatorname{asdim}(X_{\alpha}) \leq n$ uniformly if, for every r > 0, there exists R > 0 such that, for each α , there are r-disjoint and R-bounded families $\mathscr{U}_{0}^{\alpha}, \mathscr{U}_{1}^{\alpha}, \cdots, \mathscr{U}_{n}^{\alpha}$ of subsets of X_{α} such that $\bigcup_{i=0}^{n} \mathscr{U}_{i}^{\alpha}$ covers X_{α} .

Now we introduce a new dimension in coarse geometry.

Definition 3.16. Every ordinal number γ can be represented as $\gamma = \lambda(\gamma) + n(\gamma)$, where $\lambda(\gamma)$ is the limit ordinal or 0, and $n(\gamma) \in \mathbb{N} \cup \{0\}$. For a metric space X, we define *decomposition dimension* decodim(X) inductively as follows:

- for $\gamma = n \in \mathbb{N}$, $\operatorname{decodim}(X) \leq n \Leftrightarrow \operatorname{coadim}(X) \leq n$;
- for $\gamma = \omega$, decodim $(X) \le \omega \Leftrightarrow \operatorname{coadim}(X) \le \omega$;
- for $\gamma > \omega$, $\operatorname{decodim}(X) \leq \gamma \Leftrightarrow$ for every r > 0, there is an r-disjoint family $\mathscr{U} = \{U_i\}$ of subsets of X such that $\operatorname{asdim}(U_i) \leq n(\gamma)$ uniformly and $\operatorname{decodim}(X \setminus \bigcup \mathscr{U}) \leq \alpha$ for some $\alpha < \lambda(\gamma)$;
- $\operatorname{decodim}(X) = \gamma \Leftrightarrow \operatorname{decodim}(X) \leq \gamma$ and $\operatorname{decodim}(X) \leq \beta$ is not true for any ordinal number $\beta < \gamma$.

Remark 3.17. It is easy to see that $coasdim(X) \le \omega$ implies decodim(X) = coasdim(X).

Lemma 3.18. Let X and Y be metric spaces, and let $\{Y_{\alpha}\}$ be metric family of subsets of Y and $asdim(Y_{\alpha}) \leq n$ uniformly. Let $\phi: X \to Y$ be a coarse embedding from X to Y. Then, for the metric family $\{\phi^{-1}(Y_{\alpha})\}$, $asdim(\phi^{-1}(Y_{\alpha})) \leq n$ uniformly.

Proof. Since $\phi: X \to Y$ is a coarse embedding, there are nondecreasing functions $p_1, p_2: \mathbb{R}^+ \to \mathbb{R}^+$ such that $\lim_{x \to +\infty} p_1(x) = +\infty$ and for every $x_1, x_2 \in X$,

$$p_1(d(x_1,x_2)) \le d(\phi(x_1),\phi(x_2)) \le p_2(d(x_1,x_2)).$$

For every r > 0, asdim $(Y_{\alpha}) \le n$ uniformly implies there exists R > 0 such that, for each α , there are $(p_2(r)+1)$ -disjoint and R-bounded families $\mathscr{U}_0^{\alpha}, \mathscr{U}_1^{\alpha}, \cdots, \mathscr{U}_n^{\alpha}$ of subsets of Y_{α} with $\bigcup_{i=0}^n \mathscr{U}_i^{\alpha}$ covers Y_{α} . Since $\lim_{x\to +\infty} p_1(x) = +\infty$, there exists S > 0 such that $p_1(S) > R$. For $i = 0, 1, 2, \cdots, n$, let

$$\mathscr{V}_i^{\alpha} = \{ \phi^{-1}(U) \mid U \in \mathscr{U}_i^{\alpha} \}.$$

Then \mathscr{V}_i^{α} is r-disjoint and S-bounded families of subsets of $\phi^{-1}(Y_{\alpha})$ with $\bigcup_{i=0}^{n} \mathscr{V}_i^{\alpha}$ covers $\phi^{-1}(Y_{\alpha})$. So $\operatorname{asdim}(\phi^{-1}(Y_{\alpha})) \leq n$ uniformly.

Proposition 3.19. Let X and Y be metric spaces with $decodim(Y) \le \xi$ for some countable ordinal number ξ . If there is a coarse embedding $\phi: X \to Y$ from X to Y, then $decodim(X) \le decodim(Y)$. Consequently, if X and Y are coarsely equivalent, then decodim(X) = decodim(Y).

Proof. We will prove it by induction on ξ .

• For $\xi \le \omega$, decodim $(Y) \le \xi \le \omega$ implies coasdim $(Y) \le \omega$. By Lemma 2.10, coasdim $(X) \le \cos\dim(Y) \le \omega$.

It follows that

$$\operatorname{decodim}(X) = \operatorname{coasdim}(X) \leq \operatorname{coasdim}(Y) = \operatorname{decodim}(Y)$$
.

• Assume that the statement is true for every $\xi < \beta$. Now let us consider the case of $\xi = \beta$ with $\beta > \omega$. Since $\phi : X \to Y$ is a coarse embedding, there are nondecreasing functions $p_1, p_2 : \mathbb{R}^+ \to \mathbb{R}^+$ such that $\lim_{x \to +\infty} p_1(x) = +\infty$ and for every $x_1, x_2 \in X$,

$$p_1(d(x_1,x_2)) \le d(\phi(x_1),\phi(x_2)) \le p_2(d(x_1,x_2)).$$

For every r > 0, there is a $(p_2(r) + 1)$ -disjoint family $\mathcal{U} = \{U_\alpha\}$ of subsets of Y such that

 $\operatorname{asdim}(U_{\alpha}) \leq n(\beta)$ uniformly and $\operatorname{decodim}(Y \setminus \bigcup \mathcal{U}) \leq \eta$ for some $\eta < \lambda(\beta)$.

Then $\operatorname{asdim}(\phi^{-1}(U_{\alpha})) \leq n(\beta)$ uniformly by Lemma 3.18. Let $\mathscr{V} = \{\phi^{-1}(U_{\alpha})\}$. Since the restriction of ϕ to $X \setminus \bigcup \mathscr{V}$ is a coarse embedding into $Y \setminus \bigcup \mathscr{U}$ and $\operatorname{decodim}(Y \setminus \bigcup \mathscr{U}) \leq \eta$, $\operatorname{decodim}(X \setminus \bigcup \mathscr{V}) \leq \eta$ by induction hypothesis. So $\operatorname{decodim}(X) \leq \beta = \operatorname{decodim}(Y)$.

Example 3.20. For $n \in \mathbb{N}$, decodim $(X_{\omega+n}) \leq \omega + n$.

Proof. • For n = 1, by Theorem 3.13, $\operatorname{coasdim}(X_{\omega+1}) = \omega + 1$. Then $\operatorname{coasdim}(X_{\omega+1}) \leq \omega$ is not true and hence $\operatorname{decodim}(X_{\omega+1}) \leq \omega$ is not true. Now it suffices to show that $\operatorname{decodim}(X_{\omega+1}) \leq \omega + 1$. For any k > 0 and integer n > 2k, let $\mathscr{V}_0^{(n)} = \{[i2^n + k, (i+1)2^n - k] \mid i \in \mathbb{Z}\}$, and let

$$\mathscr{W}_{0}^{(n)} = \{ \prod_{i=1}^{j-1} \{nn_{i}\} \times V_{j} \times \prod_{i=j+1}^{n} \{nn_{i}\} \mid n_{i} \in \mathbb{Z}, V_{j} \in \mathscr{V}_{0}^{(n)}, j = 1, 2, 3, \dots, n \}$$

Let $\mathscr{W}_0 = \bigcup_{n>k} \mathscr{W}_0^{(n)}$. Then \mathscr{W}_0 is k-disjoint, and $\operatorname{asdim}(W) \leq 1$ uniformly for any $W \in \mathscr{W}_0$. It is easy to see $X_{\omega+1} \setminus \bigcup \mathscr{W}_0 \subseteq N_k(X_\omega)$. Hence $\operatorname{coasdim}(X_{\omega+1} \setminus \bigcup \mathscr{W}_0) \leq \omega$, which implies $\operatorname{decodim}(X_{\omega+1} \setminus \bigcup \mathscr{W}_0) \leq \omega$. Therefore $\operatorname{decodim}(X_{\omega+1}) \leq \omega + 1$.

• Assuming decodim $(X_{\omega+k}) \le \omega + k$ holds for $k \le n-1$, we have that, for any r > n > 0, the r-neighborhood $N_r(X_{\omega+n-1})$ of $X_{\omega+n-1}$ in $X_{\omega+n}$ has decodim $(N_r(X_{\omega+n-1})) \le \omega + n-1$ due to Proposition 3.19. Let $i_0 \in \mathbb{N}$ be the smallest number with $r \le i_0$. For any $i \ge i_0$, for any subset $F \subset \{1, \dots, i\}$ with |F| = n and $x_j \in \mathbb{Z}$ for $j \in \{1, \dots, i\} \setminus F$, let

$$U_F^{\{x_j\}_{j\in\{1,\cdots,i\}\setminus F}} = \prod_{j\notin F} \{2^j x_j\} \times \prod_{j\in F} [2^j x_j + r, 2^j (x_j + 1) - r]$$
 and

$$\mathscr{A}_i = \{ U_F^{\{x_j\}_{j \in \{1, \cdots, i\} \setminus F}} | F \subset \{1, \cdots, i\} \text{ with } | F| = n \text{ and } x_j \in \mathbb{Z} \text{ for } j \in \{1, \cdots, i\} \setminus F \}.$$

Then $A_i \doteq \bigcup \mathscr{A}_i = \{(x_1,\ldots,x_i) \in X_{\omega+n}^{(i)} | \{j|d(x_j,2^i\mathbb{Z}) \geq r\}| \leq n\} = X_{\omega+n} \setminus N_r(X_{\omega+n-1}).$ Using the definition, $d(A_p,A_q) > r$ for $p \neq q \in \mathbb{N}$ and $p,q \geq i_0$, so $\bigcup_{i=i_0}^{\infty} \mathscr{A}_i$ is still an r-disjoint family of subsets such that $\operatorname{asdim}(V) \leq n$ uniformly for every $V \in \bigcup_{i=i_0}^{\infty} \mathscr{A}_i$. So $\operatorname{decodim}(X_{\omega+n}) \leq \omega + n$.

Example 3.21. decodim $(Y_{2\omega}) \leq 2\omega$.

Proof. For R > 0, since $Y_{2\omega} = as \bigsqcup_{k=1}^{\infty} Y_{\omega+k}$, then $\mathscr{U} = \{\{x\} | x \in as \bigsqcup_{k=R+1}^{\infty} Y_{\omega+k}\}$ is a R-disjoint uniformly bounded subsets family, and $\bigcup \mathscr{U} = as \bigsqcup_{k=R+1}^{\infty} Y_{\omega+k}$. By definition $Y_{\omega+k} \subset X_{\omega+R}$ for $k \leq R$, so there exists $m \in \mathbb{N}$ such that $\operatorname{decodim}(as \bigsqcup_{k=1}^{R} Y_{\omega+k}) \leq \omega + m$, which implies $\operatorname{decodim}(Y_{2\omega}) \leq 2\omega$.

Definition 3.22. ([11]) A metric family $\mathscr X$ is *r-decomposable* over a metric family $\mathscr Y$ if every $X \in \mathscr X$ admits a decomposition

$$X = X_0 \cup X_1, X_i = \bigsqcup_{r \text{-disjoint}} X_{ij},$$

where each $X_{ij} \in \mathscr{Y}$. It is denoted by $\mathscr{X} \xrightarrow{r} \mathscr{Y}$.

Definition 3.23. ([11])

- (1) Let \mathcal{D}_0 be the collection of bounded families: $\mathcal{D}_0 = \{ \mathcal{X} : \mathcal{X} \text{ is uniformly bounded} \}$.
- (2) Let α be an ordinal greater than 0, and let \mathscr{D}_{α} be the collection of metric families decomposable over $\bigcup_{\beta<\alpha}\mathscr{D}_{\beta}$:

$$\mathscr{D}_{\alpha} = \{ \mathscr{X} : \forall \ r > 0, \exists \ \beta < \alpha, \exists \ \mathscr{Y} \in \mathscr{D}_{\beta}, \text{ such that } \mathscr{X} \xrightarrow{r} \mathscr{Y} \}.$$

Definition 3.24. ([11]) A metric family \mathscr{X} has *finite decomposition complexity* if there exists a countable ordinal α such that $\mathscr{X} \in \mathscr{D}_{\alpha}$.

Remark 3.25. We view a single metric space X as a metric family with a single element $\{X\}$.

Lemma 3.26. ([11]) A metric space X has finite asymptotic dimension if and only if $\{X\} \in \mathcal{D}_n$ for some $n \in \mathbb{N}$.

By imitating the proofs of Proposition 3.8 in [3], we easily obtain the following lemma.

Lemma 3.27. For a metric famliy $\mathscr{X} = \{X_{\alpha}\}_{{\alpha} \in \mathfrak{A}}$, asdim $(X_{\alpha}) \leq n$ uniformly implies $\{X_{\alpha}\}_{{\alpha} \in \mathfrak{A}} \in \mathscr{D}_n$.

Proposition 3.28. For a metric space X and an ordinal number ξ , $decodim(X) \leq \xi$ implies $\{X\} \in \mathcal{D}_{\xi}$.

Proof. We will prove it by an induction on ξ .

- For $\xi \in \mathbb{N}$, decodim $(X) \le \xi$ implies X has finite asymptotic dimension. Then $\{X\} \in \mathcal{D}_{\xi}$ by Lemma 3.26.
- For $\xi = \omega$, for every r > 0, since $\operatorname{decodim}(X) \leq \omega$, there is an r-disjoint and uniformly bounded family $\mathscr U$ of subsets of X such that $\operatorname{asdim}(X \setminus \bigcup \mathscr U) \leq n$ for some $n \in \mathbb N$. By Lemma 3.26, $\{X \setminus \bigcup \mathscr U\} \in \mathscr D_n$. Let $\mathscr Y = \{U \mid U \in \mathscr U\} \cup \{X \setminus \bigcup \mathscr U\}$. Then $\mathscr Y \in \mathscr D_n$ and $\{X\} \xrightarrow{r} \mathscr Y$, which implies that $\{X\} \in \mathscr D_\omega$.
- For $\xi > \omega$, assume that $\operatorname{decodim}(Y) \leq \gamma$ implies $\{Y\} \in \mathcal{D}_{\gamma}$ for every metric space Y and for every $\gamma < \xi$. Now let X be a metric space with $\operatorname{decodim}(X) \leq \xi$. For every r > 0, there is an r-disjoint family \mathscr{U} of subsets of X with $\operatorname{asdim}(U) \leq n(\xi)$ uniformly for every $U \in \mathscr{U}$, such that $\operatorname{decodim}(X \setminus \bigcup \mathscr{U}) \leq \beta$ for some ordinal number $\beta < \xi$. By assumption, $\{X \setminus \bigcup \mathscr{U}\} \in \mathscr{D}_{\beta}$. By Lemma 3.27, $\mathscr{U} \in \mathscr{D}_{n(\xi)}$. Let $\mathscr{U} = \{U \mid U \in \mathscr{U}\} \cup \{X \setminus \bigcup \mathscr{U}\}$, then $\mathscr{U} \in \mathscr{D}_{\beta}$ and $\mathscr{X} \xrightarrow{r} \mathscr{Y}$. So $\{X\} \in \mathscr{D}_{\xi}$.

J. ZHU, Y. WU

Corollary 3.29. *For any* $k \in \mathbb{N}$ *,* $X_{\omega+k} \in \mathcal{D}_{\omega+k}$ *, and* $Y_{2\omega} \in \mathcal{D}_{2\omega}$ *.*

Funding

This work was supported by the National Natural Science Foundation of China (Grant No.12071183).

Acknowledgements

The authors wish to thank the referees for careful reading and valuable comments.

REFERENCES

- [1] M. Gromov, Asymptotic invariants of infinite groups, in: Geometric Group Theory, Vol.2, Sussex, 1991, in: Lond. Math. Soc. Lect. Note Ser., vol.182, pp. 1–295, Cambridge Univ. Press, Cambridge, 1993.
- [2] G. Yu, The Novikov conjecture for groups with finite asymptotic dimension, Ann. Math. 147 (1998), 325-355.
- [3] A. Dranishnikov, M. Zarichnyi, Universal spaces for asymptotic dimension, Topol. Appl. 140 (2004), 203-225.
- [4] G. Bell, A. Dranishnikov, Asymptotic dimension in Będlewo, Topol. Proc. 38 (2011), 209-236.
- [5] A. Dranishnikov, M. Zarichnyi, Asymptotic dimension, decomposition complexity, and Havar's property C, Topol. Appl. 169 (2014), 99-107.
- [6] A. Dranishnikov, Asymptotic topology, Russ. Math. Survey 55 (2000), 1085-1129.
- [7] T. Radul, On transfinite extension of asymptotic dimension, Topol. Appl. 157 (2010), 2292-2296.
- [8] J. Zhu, Y. Wu, A metric space with its transfinite asymptotic dimension $\omega + 1$, Topol. Appl. 273 (2020), 107115
- [9] Y. Wu, J. Zhu, Classification of metric spaces with infinite asymptotic dimension, Topol. Appl. 238 (2018), 90-101.
- [10] E. Guentner, R. Tessera, G. Yu, A notion of geometric complexity and its application to topological rigidity, Invent. Math. 189 (2012), 315-357.
- [11] E. Guentner, R. Tessera, G. Yu, Discrete groups with finite decomposition complexity, Groups Geom. Dyn. 7 (2013), 377-402.
- [12] M. Satkiewicz, Transfinite Asymptotic Dimension, arXiv:1310.1258v1, 2013.
- [13] R. Engelking, Theory of Dimensions: Finite and Infinite, Heldermann Verlag, 1995.
- [14] Y. Wu, J. Zhu, A metric space with transfinite asymptotic dimension $2\omega + 1$, Chin. Ann. Math. (2021), in press.
- [15] Y. Wu, J. Zhu, The relationship between asymptotic decomposition properties, Topol. Appl. 292 (2021), 107623.