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Abstract. This paper addresses the well-posedness of nonautonomous Cauchy problems by using strongly
continuous quasi-semigroups (C0-quasi-semigroups) on Banach spaces. Necessary and sufficient con-
ditions for the nonautonomous Cauchy problem u̇(t) = A(t)u(t) to be well-posed are that A(t) is the
infinitesimal generator of a C0-quasi-semigroup. This paper also verifies the sufficiency for an opera-
tor to be the infinitesimal generator of a C0-quasi semigroup. A simple application in predicting that
the persistence or extinction of a population growth model with diffusion and intrinsic growth rate are
time-dependent is considered.
Keywords. Infinitesimal generator; Population growth; Nonautonomous Cauchy problem; Strongly
continuous quasi-semigroup; Well-posed.

1. INTRODUCTION

Nonautonomous Cauchy problems (NCP) usually represent some phenomena of the transport-
reaction arising in physical and biological systems [1, 2, 3, 4]. The NCP on a Banach space X
takes a general form

u̇(t) = A(t)u(t), t ≥ 0,

u(0) = u0, u0 ∈ X ,
(1.1)

where u is an unknown function from [0,∞) into X , and each A(t) is a densely defined closed
linear operator in X with domain D(A(t)) = D , which is independent of t.

The main concern for (1.1) is the conditions for well-posedness. The NCP (1.1) is said to be
well-posed if its solution obeys the principles of existence, uniqueness, and continuous depen-
dence. Thus, the well-posedness plays an important role in applications. There is a prominent
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difference between autonomous and nonautonomous Cauchy problems. For the autonomous
cases, the uses of the C0-semigroups are well-understood in the framework. Based on the Hille-
Yosida theorem and its generalizations, many results on the autonomous problems that were
established; see, e.g., [5, 6, 7, 8, 9] and the references therein. A family of evolution operators
is an existing approach that was used to characterize the well-posedness of NCP; see, e.g., (1.1)
[10, 11, 12, 13, 14, 15]. Unfortunately, by the approach for both parabolic and hyperbolic types,
the well-posedness of NCP (1.1) requires strongly sufficient conditions of A(t). Although, by
following the semigroups theory, the family can be reduced to be an evolution semigroup on the
appropriate space for the well-posedness [11, 12, 14, 15].

The results in the autonomous Cauchy problems motivate a generalization to the NCP (1.1). It
is reasonable to take over some assumptions on the infinitesimal generator A in the Hille-Yosida
theorem into A(t) for each t. Related to the assertions, it has been initiated a construction of
a strongly continuous quasi semigroup (C0-quasi semigroup) [16]. This construction follows
the C0-semigroup theory. The properties of C0-quasi-semigroups and its applications can be
founded in [16, 17, 18, 19]. In general, there are different properties between C0-semigroups
and C0-quasi-semigroups [20]. A sufficient condition for NCP (1.1) to admit a unique solution
is that {A(t)}t≥0 generates a C0-quasi-semigroup, regardless of the parabolic or the hyperbolic.
This implies the importance of the investigations of the sufficient conditions for {A(t)}t≥0 to be
the infinitesimal generator of a C0-quasi-semigroup. Moreover, this provides an opportunity to
investigate the well-posedness of (1.1).

In this paper, we consider using the C0-quasi-semigroups to investigate the well-posedness of
(1.1). In Section 2, we focus on the sufficiency for {A(t)}t≥0 to be the infinitesimal generator
of a C0-quasi-semigroup. The main results, which are presented in Section 3, include the suffi-
cient and necessary conditions for the well-posedness of (1.1) and its applications in population
growth model with diffusion and intrinsic growth rate, which are time-dependent.

2. PRELIMINARIES

A strongly continuous quasi-semigroup initiated by Leiva and Barcenas [16] is a general-
ization of strongly continuous semigroups for the nonautonomous problems. The following
definition is the weaker version.

Definition 2.1. Let L (X) be the set of all bounded linear operators on a Banach space X .
A two-parameter commutative family {R(t,s)}s,t≥0 in L (X) is called a strongly continuous
quasi-semigroup (in short C0-quasi-semigroup) on X if

(a) R(t,0) = I, the identity operator on X ;
(b) R(t,s+ r) = R(t + r,s)R(t,r);
(c) lims→0+ ‖R(t,s)x− x‖= 0;
(d) there is a continuous increasing function M : [0,∞)→ [1,∞) such that

‖R(t,s)‖ ≤M(s), (2.1)

for all r,s, t ≥ 0 and x ∈ X .

A contraction quasi-semigroup is a C0-quasi semigroup {R(t,s)}s,t≥0 such that the function
M in (2.1) satisfies M(s)≤ 1 for all s ≥ 0. The condition (c) of Definition 2.1 implies that, for
each t ≥ 0, R(t, ·) is strongly continuous on [0,∞). Analogously, for each s ≥ 0, R(·,s) is also
strongly continuous on [0,∞).
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Let D denote a set of all x ∈ X such that the following limits exist

lim
s→0+

R(t,s)x− x
s

, t ≥ 0.

The infinitesimal generator of the C0-quasi-semigroup {R(t,s)}s,t≥0 is defined to be a family of
operators {A(t)}t≥0 on D , where

A(t)x = lim
s→0+

R(t,s)x− x
s

.

The examples and properties of the C0-quasi-semigroups can be found in [16, 17, 20]. If A is
the infinitesimal generator of the C0-semigroup T (t) on the domain D(A), then A is a closed
set, and D(A) is dense in X . These are not applicable for any C0-quasi-semigroup, as shown
by Example 3.2 and Example 3.3 of [20]. Henceforth, the quasi-semigroup {R(t,s)}s,t≥0 and
the infinitesimal generator {A(t)}t≥0 are simplified by R(t,s) and A(t), respectively. Due to
applications, we only focus on the C0-quasi-semigroups with the infinitesimal generator, wich
have a dense domain in Banach spaces. This assumption implies that every C0-quasi-semigroup
has a unique infinitesimal generator.

Lemma 2.2. Let R1(t,s) and R2(t,s) be C0-quasi-semigroups on a Banach space X with the
infinitesimal generators A1(t) and A2(t), respectively. If A1(t) = A2(t) for all t ≥ 0, then
R1(t,s) = R2(t,s) for all t,s≥ 0.

Proof. This is a special case of Lemma 1 of [21] for the C0-quasi-groups. �

Lemma 2.2 implicitly suggests the importance of sufficient conditions for A(t) to be the
infinitesimal generator of a C0-quasi-semigroup. The requirement is parallel with the sufficiency
of Hille-Yosida Theorem for C0-semigroups. Therefore, we call the following theorem as the
version of Hille-Yosida Theorem for C0-quasi-semigroups. We denote the resolvent operator of
A(t) by R(λ ,A(t)) := (λ −A(t))−1, λ ∈ ρ(A(t)), where ρ(A(t)) is the resolvent set of A(t).

Theorem 2.3. For each t ≥ 0, let A(t) be a closed and densely defined operator on D , and the
map t 7→ A(t)y be a continuous function from R+ to X for all y ∈ D . If R(λ ,A(·)) is locally
integrable, and there exist constants N,ω ≥ 0 such that [ω,∞)⊆ ρ(A(t)) and

‖R(λ ,A(t))r‖ ≤ N
(λ −ω)r , λ > ω, r ∈ N,

then A(t) is the infinitesimal generator of a C0-quasi semigroup.

Proof. For each t ≥ 0, we define the Yosida’s approximation of A(t) by

An(t) := nA(t)R(n,A(t)) = n2R(n,A(t))−nI, n > ω, n ∈ N.
From Lemma 3.6 of [20], we have

lim
n→∞

An(t)y = A(t)y, y ∈D . (2.2)

We further define
Gn(t) :=

∫ t

0
An(s)ds, n ∈ N, t ≥ 0.

Since Gn(t) ∈L (X), we can define a C0-quasi-semigroup

Rn(t,s)x := eGn(t+s)−Gn(t)x, t,s≥ 0, x ∈ X .
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We see that An(t) is the infinitesimal generator of Rn(t,s) and

‖Rn(t,s)‖ ≤ e−ns
∞

∑
k=0

(∫ t+s
t n2‖R(n,A(v))‖dv

)k

k!

≤ Ne−ns
∞

∑
k=0

(
n2s

n−ω

)k

= Ne
nω

n−ω
s, t,s≥ 0, n ∈ N. (2.3)

Since nωs
n−ω
→ ωs as n→ ∞, we find that there exists ω1 > ω such that ‖Rn(t,s)‖ ≤ Neω1s for

sufficiently large n. Further, we see Am(t)An(t) = An(t)Am(t) and An(t)Rm(t,s) = Rm(t,s)An(t)
for all m,n ∈ N and t,s≥ 0. Therefore, for u ∈ X ,

Rm(t,s)x−Rn(t,s)x =
∫ s

0

∂

∂ r
[Rm(t,r)Rn(t + r,s− r)x]dr

=
∫ s

0
Rm(t,r)Rn(t + r,s− r)[Am(t + r)x−An(t + r)x]dr.

By the uniform continuity of the map r 7→ A(r)y on [0,s], for t ≥ 0 fixed, (2.2) provides

lim
m,n→∞

sup
r∈[0,s]

‖Am(t + r)y−An(t + r)y‖= 0, y ∈D . (2.4)

Therefore, for each y ∈D , estimation (2.3) gives

‖Rm(t,s)y−Rn(t,s)y‖ ≤ N2seω1s sup
r∈[0,s]

‖Am(t + r)y−An(t + r)y‖. (2.5)

By (2.4), the right hand of (2.5) converges to 0 as m,n→ ∞. Thus, (Rn(t,s)y) is a Cauchy
sequence in X for all t,s≥ 0, and so it converges. Moreover, (2.3) implies that, for each x ∈ X ,
{Rn(t,s)x : n ∈ N} is a bounded set. The density of D in X and Theorem 18 of Chapter II of
[22] imply that the convergence can be extended for each x ∈ X . Therefore, we can define

R(t,s)x := lim
n→∞

Rn(t,s)x, s, t ≥ 0, x ∈ X . (2.6)

This definition gives R(t,0) = I and R(t,s+ r) = R(t + r,s)R(t,r) for all r,s, t ≥ 0. Equation
(2.3) also implies that

‖R(t,s)x‖ ≤ liminf
n→∞

‖Rn(t,s)x‖ ≤ Neω1s‖x‖, x ∈ X , t,s≥ 0.

Thus, there exists an increasingly continuous function M1(s) = Neω1s such that

‖R(t,s)‖ ≤M1(s), t,s≥ 0.

The proofs that R(t,s) is strongly continuous and A(t) in (2.2) is the infinitesimal generator of
R(t,s) are similar with the proof of Theorem 1 of [23], and the fact that, as m→ ∞, (2.5) gives

‖R(t,s)y−Rn(t,s)y‖ ≤ N2seω1s sup
r∈[0,s]

‖A(t + r)y−An(t + r)y‖.

�

The converse of Theorem 2.3 is not true for any C0-quasi-semigroups (see Example 3.2 and
Example 3.3 of [20]). In addition, the construction of the necessary condition is also constrained
by the lack of a standard form of the resolvent operator of A(t). This is different from the C0-
semigroups, and the resolvent operator of the infinitesimal generator of a C0-semigroup can
be expressed as a Laplace integral of the semigroup. Although, the resolvent operator of A(t)
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can be determined [24]. For the contraction quasi-semigroups, from Theorem 2.3, we have the
following result.

Corollary 2.4. Let, for t ≥ 0, A(t) be a closed and densely defined in a Banach space X with
domain D , [0,∞) ⊂ ρ(A(t)), and the mapping t 7→ A(t)y be continuous from R+ to X for all
y ∈ D . If R(λ ,A(·)) is locally integrable and ‖R(λ ,A(t))‖ ≤ 1

λ
, for all λ > 0, then A(t)

generates a contraction quasi-semigroup.

3. MAIN RESULTS

The main results in this section are split into two parts. The first part discusses the well-
posedness of Cauchy problem (1.1). The second part confirms an application of the well-
posedness in predicting the persistence or the extinction of population growth model, which
has time-dependency of diffusion and intrinsic growth rate.

3.1. Well-posedness of nonautonomous Cauchy problems. In this subsection, we investigate
the sufficient and necessary conditions for well-posedness of the Cauchy problem (1.1). The
investigation uses the quasi-semigroup approach. We consider the inhomogeneous form of
Cauchy problem (1.1)

u̇(t) = A(t)u(t)+ f (t), t ≥ 0,

u(0) = u0, u0 ∈ X ,
(3.1)

where f is a continuous function from [0,∞) to a Banach space X . We recall the definition
of a classical solution of nonautonomous Cauchy problem (3.1) [25]. We denote that C (Ω,X)
and C 1(Ω,X) are the set of all continuous functions on Ω, and the set of all functions whose
continuous derivative on Ω, respectively.

Definition 3.1. A function u is called a classical solution of (3.1) on [0,τ] if u ∈ C 1([0,τ],X),
u(t) ∈ D for all t ∈ [0,τ], and u(t) satisfies (3.1) for all t ∈ [0,τ]. The function u is called a
classical solution on [0,∞) if u is a classical solution on [0,τ] for each τ > 0.

Definition 3.1 is also valid for nonautonomous abstract Cauchy problem (1.1), that is, f = 0.
We have the following results.

Lemma 3.2. Let A(t) be the infinitesimal generator of a C0-quasi-semigroup R(t,s) on a Banach
space X and u0 ∈ D . If f ∈ C ([0,τ],X) and u is a classical solution of (3.1), then A(·)u(·) ∈
C ([0,τ],X) and

u(t) = R(0, t)u0 +
∫ t

0
R(s, t− s) f (s)ds. (3.2)

Proof. Since A(t)u(t) = u̇(t)− f (t) and u̇ ∈ C ([0,τ],X), we have A(·)u(·) ∈ C ([0,τ],X). From
Theorem 3.2 (b) of [20], we have

∂

∂ s
[R(s, t− s)u(s)] =−A(s)R(s, t− s)u(s)+R(s, t− s)[A(s)u(s)+ f (s)]

= R(s, t− s) f (s). (3.3)

Integrating (3.3) respect to s over [0, t], we obtain (3.2). Therefore, a classical solution of (3.1)
must have the form (3.2). �
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Theorem 3.3. (Theorem 4,[25]) If A(t) is the infinitesimal generator of a C0-quasi-semigroup
R(t,s) on a Banach space X, f ∈ C 1([0,τ],X), and u0 ∈D , then the function u defined by (3.2)
has a continuous derivative on [0,τ]. Moreover, u is the unique classical solution of problem
(3.1).

Remark 3.4. Theorem 3.3 remains valid if f is Hölder continuous on [0,τ] and u0 ∈ X . In facts,
R(0, t)u0 is the uniquely classical solution of the homogeneous Cauchy problem of (3.1) and

v(t) :=
∫ t

0
R(s, t− s) f (s)ds

is the solution of the Cauchy problem

v̇(t) = A(t)v(t)+ f (t),

v(0) = 0

which guarantees the existence of solutions of (3.1).

Next, we investigate the sufficient and necessary conditions for nonautonomous abstract
Cauchy problem (1.1) to have a solution. Related to this, we recall the terminology of well-
posedness of the nonautonomous abstract Cauchy problem (1.1) that follows the definition for
the autonomous case. Lemma 3.2 and Theorem 3.3 lead us that the infinitesimal generator has
an important role in the well-posedness.

Definition 3.5. The nonautonomous abstract Cauchy problem (1.1) is said to be well-posed if
it satisfies the following conditions:

(WP1) Existence. For each u0 ∈D , there exists a classical solution u of (1.1) on [0,∞).
(WP2) Uniqueness. If u,v : [0,τ]→ X are the classical solutions of (1.1), then u(t) = v(t) for

all t ∈ [0,τ], τ > 0.
(WP3) Continuous dependence. The classical solution x continuously depends on t ∈ [0,∞)

and u0 ∈D , i.e. the map φ : [0,∞)×D → X with φ(t,u0) = u(t) is continuous.

Condition (WP3) implies that if the map φ : [0,∞)×D→ X with φ(t,u0) = u(t) for t ∈ [0,∞)
and u0 ∈D , where u is a classical solution of (1.1), then, for each τ > 0, there exists an N ≥ 1
such that ‖φ(t,u0)‖ ≤ N‖u0‖ for all t ∈ [0,τ] and u0 ∈D .

To investigate the well-posedness of nonautonomous Cauchy problem (1.1) by the quasi-
semigroup approach, we consider the Cauchy problem

u̇(t) = A(t + r)u(t), t,r ≥ 0

u(0) = u0, u0 ∈ X .
(3.4)

Thus, nonautonomous Cauchy problem (1.1) is a special case of (3.4) with r = 0.
The following result characterizes the well-posedness of nonautonomous Cauchy problem

(3.4) by the existence and uniqueness of the infinitesimal generator as indicated in Theorem 3.3.

Theorem 3.6. For each t ≥ 0, let A(t) : D → X be a closed and densely defined operator in a
Banach space X. The followings are equivalent

(a) A(t) is the infinitesimal generator of a C0-quasi-semigroup on X;
(b) nonautonomous abstract Cauchy problem (3.4) is well-posed.
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Proof. (a)⇒ (b). Theorem 2.2 of [16] guarantees the existence and uniqueness of the classi-
cal solution u of (3.4), where u(t) = R(r, t)u0 and R(t,s) is the C0-quasi-semigroup generated
by A(t) on X . By condition (d) of Definition 2.1, for each τ > 0, there exists an increasing
continuous function M : [0,∞)→ [1,∞) such that

‖u(t)‖ ≤ ‖R(r, t)‖‖u0‖ ≤M(τ)‖u0‖, t ∈ [0,τ].

This shows that the classical solution u depends on t and u0 continuously.
(b)⇒ (a). By the well-posedness, for r ≥ 0 fixed, there exists a map

φr : [0,∞)×D →D ,

which uniquely assigns each u0 ∈D with the classical solution ur(t) = φr(t,u0), t ≥ 0, of (3.4).
The set of all the classical solutions ur of (3.4) is a subspace of the space of all functions from
[0,∞) to X . If we define Tr : D→X , where Tr(u0) = φr(t,u0) for u0 ∈D , then (WP2) guarantees
that Tr is a linear operator. Moreover, (WP3) gives that Tr is bounded. Next, the density of D
in X implies that, for any u ∈ X , there exists a sequence (un) ⊂ D , which converges to u.
Hypothesis (WP3) gives that (φr(t,un)) is a Cauchy sequence, so it converges in X . Theorem
18 of Chapter II of [22] implies that Tr can be extended uniquely on X . Therefore, for each
t ≥ 0, we can define a bounded linear operator R(r, t) on X by

R(r, t)u := lim
n→∞

φr(t,un).

By the uniqueness of limit, this definition does not depend on the choice of sequence (un)⊂D .
In this case, we have

R(r, t)u0 = φr(t,u0), u0 ∈D . (3.5)

From (3.5), the function ur(t) := R(r, t)u0 = φr(t,u0) is a classical solution of (3.4) as u0 ∈ D .
Next, for any s≥ 0, ur(t + s) = R(r, t + s)u0 = φr(t + s,u0) is a classical solution of (3.4), where
u0 is replaced by R(r,s)u0 = φr(s,u0). Consequently,

R(r, t + s)u0 = φr(t + s,u0) = φr+s(t,R(r,s)u0 =)R(r+ s, t)R(r,s)u0.

The density of D in X and the continuity of R(r, t + s) and R(r+ s, t)R(r,s) give

R(r, t + s)u = R(r+ s, t)R(r,s)u, u ∈ X , r,s, t ≥ 0.

Thus, R(t,s) is a quasi-semigroup on X . We have to show that R(r, t) is strongly continuous.
Given u∈X and ε > 0, by hypothesis (WP3), there exists an N≥ 1 such that sup0≤t≤1 ‖φr(t,u0)‖≤
N‖u0‖ for all u0 ∈D , i.e., sup0≤t≤1 ‖R(r, t)‖ ≤ N. Choose u0 ∈D such that

‖u−u0‖ ≤ ε

2(N+1) .

We have 0 < δ ≤ 1 such that, for 0≤ t < δ ,

‖φr(t,u0)−u0‖<
ε

2
.

Consequently, for 0≤ t < δ ,

‖R(r, t)u−u‖ ≤ ‖R(r, t)u−R(r, t)u0‖+‖R(r, t)u0−u0‖+‖u−u0‖

≤ (N +1)‖u−u0‖+‖φr(t,u0)−u0‖<
ε

2
+

ε

2
= ε.

This provides that R(r, t) is strongly continuous on X .
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Finally, A(t) is the infinitesimal generator of R(t,s). In fact, for any u0 ∈D , ur(t)=R(r, t)u0 =
φr(t,u0) is continuously differentiable with its range in D and satisfies (3.4) for all t ≥ 0. This
completes the proof. �

Remark 3.7. The uniqueness of the infinitesimal generator in Lemma 2.2 is a consequence of
the well-posedness. In fact, if both u(t) = R1(r, t)u0 and v(t) = R2(r, t)u0 satisfy (3.4), then
(WP2) holds. The density of D forces that R1(r, t)u0 = R2(r, t)u0 for all u0 ∈ X and r, t ≥ 0.

We consider a simple example that demonstrates how Theorem 3.6 characterizes the well-
posedly nonautonomous Cauchy problem.

Example 3.8. Let X be the Hilbert space L2(0,1). The nonautonomous Cauchy problem given
by

u̇(t) = A(t)u(t), u(0) = u0, (3.6)

where, for x ∈ [0,1],

A(t)u(x) =

{
− 1

(x+t)2 u(x), 0 < t ≤ 1,

−u(x), t = 0 or t > 1,

is well-posed on X .

First, we show that A(t) is the infinitesimal generator of a C0-quasi-semigroup on X . We note
that the domain of each A(t) is D = X . Thus, D is dense in X . Moreover, since each A(t) is
self-adjoint, then it is closed.

Next, we have 〈A(t)u,u〉 ≤ −1
4‖u‖

2 for all u ∈ D . Therefore, σ(A(t)) ⊂ (−∞,−1
4 ] for all

t ≥ 0. For λ /∈ (−∞,−1
4 ], we obtain

R(λ ,A(t))u(x) =


(x+t)2

λ (x+t)2+1u(x), 0 < t ≤ 1,

1
λ+1u(x), t = 0 or t > 1.

For each r ≥ 1, we verify that

‖R(λ ,A(t))r‖ ≤ 1
λ r , λ > 0, t ≥ 0.

Therefore, each operator A(t) satisfies the sufficiency of Theorem 2.3 with N = 1 and ω = 0.
Thus, A(t) generates a C0-quasi-semigroup R(t,s) on X , where

R(t,s)u(x) =

 exp
(

1
x+t+s −

1
x+t)

)
u(x), 0 < t,s≤ 1

exp(−s)u(x), t,s others,

Theorem 3.6 implies that nonautonomous Cauchy problem (3.6) is well-posed. In this case,
u(t) = R(0, t)u0 for some u0 ∈ X is a classical solution of the Cauchy problem.

Remark 3.9. (a) In fact, Example 3.8 is the nonautonomous Cauchy problem of the parabolic
type. We see that the quasi-semigroup approach is simpler than the evolution operator approach
in solving the Cauchy problem; see, e.g., [11, 12]. In this case, we do not need to investigate all
parabolic conditions (P1−P3) [11]. Moreover, the quasi-semigroup approach is also applicable
for the hyperbolic type.
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(b) In case that the C0-quasi-semigroup in Theorem 3.6 is a contraction quasi semigroup,
each A(t) is the maximal dissipative operator (see [26]). This is a consequence of Theorem 2 of
[23]. We see that the quasi-semigroup R(t,s) in Example 3.8 is a contraction quasi-semigroup
on X .

In applications, for example, in control systems, the condition f ∈ C ([0,τ],X) in problem
(3.1) is too strong. In this case, we need a mild solution that requires a weaker condition
than the classical solution. From Definition 2.1 of [17], a mild solution of the nonautonomous
abstract Cauchy problem (3.1) on [0,τ] is defined to be the function u given by (3.2), where
f ∈ Lp([0,τ],X), 1≤ p < ∞.

Theorem 3.10. If f ∈ Lp([0,τ],X), 1 ≤ p < ∞, and u0 ∈ X, then the mild solution u given by
(3.2) is strongly continuous on [0,τ].

Proof. Theorem 3.3 remains valid for f ∈ Lp([0,τ],X), so the integral in (3.2) is well-defined.
In facts, for 0≤ s≤ t ≤ τ and p = 1, we have∥∥∥∥∫ t

0
R(s, t− s) f (s)ds

∥∥∥∥≤ ∫ t

0
M(t)‖ f (s)‖ds≤M(t)‖ f‖L1 < ∞.

For 1 < p < ∞, the Holder’s inequality gives∥∥∥∥∫ t

0
R(s, t− s) f (s)ds

∥∥∥∥≤ [∫ t

0
‖R(s, t− s)‖qds

]1/q[∫ t

0
‖ f‖pds

]1/p

≤ t1/qM(t)‖ f‖Lp, 1
p +

1
q = 1.

For h≥ 0 small enough and t ≥ 0, we obtain

u(t +h)−u(t) =R(0, t +h)u0−R(0, t)u0 +(R(t,h)− I)
∫ t

0
R(s, t− s) f (s)ds

+
∫ t+h

t
R(s, t +h− s) f (s)ds, (3.7)

and

u(t−h)−u(t) =R(0, t−h)u0−R(0, t)u0 +(I−R(t−h,h))
∫ t−h

0
R(s, t−h− s) f (s)ds

+
∫ t

t−h
R(s, t− s) f (s)ds. (3.8)

The right hands in (3.7) and (3.8) converge to 0 as h→ 0, respectively. These imply that u is
continuous at t. �

Theorem 3.10 provides us the leeway to replace the classical solution with the mild solution
in the well-posedness of the inhomogeneous nonautonomous Cauchy problem (3.1) with f ∈
Lp([0,τ],X). In particular, we consider

u̇(t) = A(t)u(t)+ f (t), t ≥ 0

u(0) = u0, u0 ∈ X ,
(3.9)

where f ∈ W 1,p([0,∞),X), 1 ≤ p < ∞. Recall that W 1,p([0,∞),X) denote the space of all
functions f such that f , f ′ are absolutely continuous on [0,∞) and f , f ′ ∈ Lp([0,∞),X). This is
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a Sobolev space equipped with the norm

‖ f‖1,p :=
(∫

∞

0
|| f (s)||p ds+

∫
∞

0
|| f ′(s)||p ds

)1/p

.

Theorem 3.11. If A(t) is the infinitesimal generator of a C0-quasi-semigroup on X, then the
inhomogeneous nonautonomous abstract Cauchy problem (3.9) is well-posed.

Proof. Set a product space X = X ×Lp([0,∞),X). Let R(t,s) be the C0-quasi-semigroup gen-
erated by A(t). We define the operator matrices K t,s) on X by

K (t,s) :=
[

R(t,s) S(t,s)
0 Q(t,s)

]
, s, t ≥ 0,

where S(t,s) f =
∫ s

0
R(t +α,s−α) f (α)dα and Q(t,s) f (·) = f (·+ s) for all f ∈ Lp([0,∞),X).

We consider the operator matrices

A (t) :=

[
A(t) I

0 d
d(·)

]
, t ≥ 0,

defined on D := D ×W 1,p([0,∞),X), where D is the domain of A(t). The definition of S(t,s)
and the transformation of variable υ = r+α give

S(t + r,s) f +R(t + r,s)S(t,r) f

=
∫ s

0
R(t + r+α,s−α) f (α)dα +

∫ r

0
R(t +υ ,r+ s−υ) f (υ)dυ

=
∫ r+s

0
R(t +υ ,r+ s−υ) f (υ)dυ = S(t,r+ s) f .

This implies

K (t,r+ s)w =

[
R(t + r,s) S(t + r,s)

0 Q(t + r,s)

][
R(t,r) S(t,r)

0 Q(t,r)

]
w

= K (t + r,s)K (t,r)w,

where w =

[
u
f

]
∈X . This concludes that K (t,s) is a C0-quasi-semigroup on X . Further,

we can verify that K (t,s) is generated by A (t). Therefore, we can formulate the homogeneous
nonautonomous Cauchy problem on X ,

ẇ(t) = A (t)w(t), t ≥ 0

w(0) = w0, w0 ∈X ,
(3.10)

where w(0) =
[

u0
f0

]
with f0 = f (t), t ≥ 0. By Theorem 3.6, problem (3.10) is well-posed in

X and the classical solution is given by

w(t) = K (0, t)w0, t ≥ 0. (3.11)

Taking its first coordinate of (3.11), we obtain the mild solution of the inhomogeneous nonau-
tonomous Cauchy problem (3.9) given by (3.2). �
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Remark 3.12. Theorem 3.11 remains valid for f ∈ C 1([0,∞),X). In this case, if u0 ∈ D ,
then Theorem 3.11 and Theorem 3.3 are identic. In fact, both are hyperbolic cases (see, e.g.,
[11, 13]). If f : [0,τ]→ X is Hölder continuous, then Cauchy problem (3.9) is parabolic type
and therefore it is well-posed due to Remark 3.4.

3.2. An application in population growth with time-dependent diffusion. In the subsection,
we simulate the C0-quasi-semigroups to analyze the simple predictions about the persistence,
extinction, or stability of a population or community inhabiting a spatially heterogeneous en-
vironment. The predictions refer to “average” of spatially varying demographic parameters
over the environment [27]. In the context of spatially explicit population models, the principal
eigenvalues of differential operators or matrices describing the dispersal and demographics of
populations are defined to be the averages.

A model of population growth with time-dependent diffusion assumes that the population
inhabit a finite region Ω⊂ R2 with a lethal exterior. The model takes the form

ut(x, t) = d(t)∆u(x, t)+ r(x, t)u(x, t), (x, t) ∈Ω× (0,τ),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0,τ),
(3.12)

where u is the population density, ∆ is the Laplace operator, d is the time-dependent diffusion of
the population, and r is the intrinsic growth rate function of the population. We also assume that
d and r are τ-periodic in time t. In addition, d and r are also positively continuous functions
on [0,∞) and on Ω× [0,∞), respectively. Due to the boundary condition, problem (3.12) is
spatially heterogeneous. For d and r are constants, the persistence, extinction and stability
of the population had been analyzed in [27]. The persistence of the population depends on a
relation of d, r, and the principal eigenvalue of the Laplace operator. For Ω ⊂ R2, we set a
Banach space X = Lp(Ω), 2 < p < ∞, as the state space of system (3.12). The τ-periodicity in
t of r(t) = r(·, t) implies that r(t) is bounded. We define the operators A(t) := d(t)∆+ r(t) on

D =W 2,p
0 (Ω) := {u ∈W 2,p(Ω) : u = 0 on ∂Ω},

where u(x) = u(x, ·). We verify that d(t)∆ is the infinitesimal generator of a C0-quasi-semigroup
on X (see [28]). If necessary, first we assume that Ω is a rectangle. From the perturbation result
of Theorem 3 [29], the family of operators A(t) is the infinitesimal generator of the C0-quasi-
semigroup R(t,s) on X . Therefore, Theorem 3.6 guarantees that problem (3.12) is well-posed.
Next, we give a simple analysis of the quasi-semigroups in persistence or extinction of the
population.

Let Ci+α, j+α/2(Ω,R) be a class of all functions u(x, t), where u has continuous derivatives up
to order i in x with the ith order derivatives Hölder continuous with exponent α , and continuous
and uniformly bounded derivatives up to order j in t, with ∂ ju/∂ t j uniformly Hölder continuous
with exponent α/2. We define

F := {w ∈Cθ ,θ/2(Ω,R) : w is τ-periodic in t}.

F1 := {w ∈C2+θ ,1+θ/2(Ω,R) : w = 0 on ∂Ω×R, w is τ-periodic in t}.

Let L be the operator in F with domain F1 defined by

L := ∂t−A(t). (3.13)
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We consider the periodic eigenvalue problem

Lu = λu, in Ω×R,
u = 0, on ∂Ω×R,
u τ-periodic in t.

(3.14)

We recall that λ ∈C is an eigenvalue if there is a nontrivial solution (eigenfunction) u satisfying
(3.14). In particular, we concern on a principal eigenvalue (an eigenvalue λ ∈R) with a positive
eigenfunction. We set K := R(0,τ). The τ-periodicity of u requires that R(t +τ,s+τ) = R(t,s)
for all t,s≥ 0. We derive some properties of L.

Lemma 3.13. If u0 ∈ X, u0 > 0, then R(0, t)u0 > 0 in D for all 0≤ t ≤ τ .

Proof. Let t < τ be fixed. Theorem 3.2 (a) of [20] gives R(0, t)u∈D for all u∈D . Thus, R(0, t)
is a positive operator on D (see [30]). Since D is dense in X , the positive operator R(0, t)|D :
D →D can be extended to the positive operator R(0, t) ∈L (X ,D). Hence R(0, t)u0 ≥ 0 in D .
Since s 7→ R(0,s)u0 is continuous from [0, t] to X , we have R(0,s)u0 6= 0 in X . So, R(0,s)u0 > 0
in D for s, which is close to t. By R(0, t) = R(s, t− s)R(0,s)u0 and R(0,s)u0 > 0, we obtain
R(0, t)u0 > 0 in D . �

Lemma 3.14. If r0 := spr(K), the spectral radius of K, then 0 < r0 < 1.

Proof. The Krein-Rutman Theorem (Theorem 7.2) of [30] implies that r0 > 0 and r0 is the
unique eigenvalue of K. To prove r0 < 1, let u0 ∈ D , u0 > 0, be the principal eigenfunction of
K, i.e., Ku0 = r0u0. We see that u = R(0, ·)u0 satisfies

Lu = 0, in Ω× (0,τ]

u(x, t) = 0, on ∂Ω× (0,τ]

u(·,0) = u0, in Ω.

Lemma 3.13 gives u≥ 0. Setting v := u−‖u0‖C(Ω) on Ω× [0,τ], we obtain

Lv = r(t)‖u0‖C(Ω) ≥ 0, in Ω× (0,τ]

v(x, t)≥ 0, on ∂Ω× (0,τ]

v(·,0)≥ 0, in Ω.

This shows that v(t)≥ 0 for all 0≤ t ≤ τ . Moreover,

r0‖u0‖C(Ω) = ‖Ku0‖= ‖u(τ)‖C(Ω) < ‖u0‖C(Ω),

which implies that r0 < 1. �

Lemma 3.15. The operator L given in (3.13) is closed in F. Further, it has a compact inverse
L−1 ∈L (F).

Proof. Observe L ∈L (F1,F). We need to show that L is a closed operator in F . First, we show
that L : F1→ F is bijective. Given any f ∈ F , we define a function u(t) = u(·, t) by

u(t) = R(0, t)u0 +
∫ t

0
R(s, t− s) f (s)ds, 0 < t < τ,

u(τ) = u(0).
(3.15)
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We verify that Lu = f . Further, if u satisfies (3.15), then

u(t + τ) = R(0, t + τ)u0 +
∫ t+τ

0
R(s, t + τ− s) f (s)ds

= R(0, t)R(0,τ)u0 +
∫

τ

0
R(s, t + τ− s) f (s)ds+

∫ t+τ

τ

R(s, t + τ− s) f (s)ds

= R(0, t)[R(0,τ)u0 +
∫

τ

0
R(s,τ− s) f (s)ds]+

∫ t

0
R(s, t− s) f (s)ds

= R(0, t)u(τ)+
∫ t

0
R(s, t− s) f (s)ds = u(t).

This gives u ∈ F1. Hence, L is onto. Assume that Lu = 0. This equation has a solution u(t) =
R(0, t)u0, 0≤ t ≤ τ . Since u(τ) = u(0) and 0 < r0 < 1, we have

u0 = R(0,τ)u0 or (1−K)u0 = 0,

which implies u0 = 0. This gives u(t) = 0, 0 ≤ t ≤ τ , that is, L is injective. Therefore, L is
invertible and the Theorem 4.2-B of [31] implies that L is closed. Further, the Open Mapping
Theorem gives L−1 : F → F1 ↪→ F is continuous. Thus, L−1 ∈L (F) is compact. �

Theorem 3.16. The constant r0 = spr(K) is the principal eigenvalue of K with the eigenfunction
u0, u0 ∈D , u0 > 0, if and only if λ =−1

τ
lnr0 is the eigenvalue of L with a positive eigenfunction

u(t) := eλ tR(0, t)u0, 0≤ t ≤ τ .

Proof. Let Ku0 = r0u0 in D . We verify that u(t) = eλ tR(0, t)u0 satisfies

u̇(t)−A(t)u(t) = λu(t), 0 < t ≤ τ, in X ,

u(0) = u0 =
1
r0

Ku0 = eλτKu0 = u(τ).

This provides that u ∈ F1 and Lu = λu, u > 0 in F1. Conversely, if Lu = λu with u > 0, then
v(t) := e−λ tu(t) solves

v̇(t)−A(t)v(t) = 0, 0 < t ≤ τ, in X ,

v(0) = u(0) = u0 ∈D .

We note that v(t) = R(0, t)u0 with u0 > 0 in D . Consequently,

Ku0 = R(0,τ)u0 = v(τ) = e−λτu(τ) = r0u0,

i.e., r0 is the principal eigenvalue of K with the eigenfunction u0. By Krein-Rutman Theorem
of [30], one has r0 = spr(K). This completes the proof. �

We next illustrate the persistence or extinction of the population growth of (3.12) in the one-
dimensional state space [0, `]. In this case, ∆ = d2

dx2 has the eigenvalues and eigenfunctions

λn =−
(nπ

`

)2
, φn(x) =

√
2/`sin

(nπx
`

)
, 0≤ x≤ `, n≥ 1, (3.16)

respectively. Following the Example 1 of [28], we obtain a C0-quasi-semigroup R(t,s) on X
given by

R(t,s)u =
∞

∑
n=1

eλn[D(t+s)−D(t)]〈u,φn〉φn + eE(t+s)−E(t)u, s, t ∈ [0,τ],
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where D(t) =
∫ t

0 d(s)ds, E(t) =
∫ t

0 r(s)ds, and 〈u,v〉=
∫ `

0 u(x)v(x)dx. From Theorem 3.16, the
solution of (3.12) is given by

u(x, t) = R(0, t)u0(x)

=
∞

∑
n=1

eλnD(t)〈u0,φn〉φn(x)+ eE(t)u0(x), t ∈ [0,τ], x ∈ [0, `]. (3.17)

From (3.16), the solution given in (3.17) will grow exponentially if D(t) < 0 and E(t) > 0 on
[0,τ] but decay exponentially if D(t) > 0 or E(t) < 0 on [0,τ]. Therefore, population (3.12)
predicts persistence or extinction depending on the sign of the diffusion function and the intrin-
sic growth rate function of the population. For instance, if we specify d(t) = 1/(t + 1)2 and
r(x, t) = 0.2xt, the population will grow exponentially.

Remark 3.17. (a) We note that if d and r are constants, then the persistence or extinction
depends on the sign of the principal eigenvalue of the operator d∆+r, which can be conditioned;
see [27]. In our illustration, the principal eigenvalue λ1 of ∆ is surely negative, which can not
be conditioned.

(b) Theorem 3.16 shows that the classical solution of problem (3.12) can be determined from
the eigenfunction of the operator L. Further, if λ is the eigenvalue of L, then r0 = e−λτ is the
spectral radius of the operator K = R(0,τ).
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