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Abstract. This paper discusses the chaotic characteristics of coupled mapping lattices (CMLs). Un-
like the discussions of CMLs in autonomous discrete dynamical systems, this paper considers the non-
autonomous case. The relationship between the original map sequence and the coupled system in
(F1,F2)-chaos (or sensitivity, spatio-temporal chaos, densely chaos, transitivity, accessibility, exact,
Ruelle-Takens chaos, and Kato chaos) is studied.
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1. INTRODUCTION

In 1983, Kaneko [1] proposed coupled mapping lattices (shortly, CMLs). Since then, CMLs
have been studied in physics, communication, and image processing; see, e.g., [2–6]. Using
coupled mapping lattice models, one can imitate Rayleigh-Denard convective structure, observe
the dynamic behavior of the spatiotemporal circuit system, and recover the initial value of the
signal, realize image coding and compression, etc. In particular, CMLs have been widely used
in chaotic encryption algorithms; see, e.g., [7–10]. The study of the chaotic properties of CMLs
can provide theoretical support to various applications. In 2013, Lu, Zhu, and Wu [11] showed
the dense-chaos, Spatio-temporal chaos, sensitivity, and Li-Yorke sensitivity of a class of CMLs
in autonomous systems. In 2015, Liu, Lu, and Li [12] obtained the Li-Yorke chaoticity, distri-
butional chaoticity, and ω-chaoticity of the above CMLs. In 2017, Lu and Li [13] demonstrated
a class of CMLs in the autonomous system, which is (F1,F2)-chaotic, ω-chaotic, and topolog-
ically chaotic. In 2020, for the stronger form of transitivity and weak mixing, Li and Zhao [14]
gave a sufficient and necessary condition for the CML with zero coupled constants. It deserves
mentioning that there are many results on CMLs in autonomous systems, however, the research
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on CMLs in non-autonomous systems is still limited. In this paper, we focuses on the chaotic
properties of CMLs in non-autonomous systems.

Denote by I the subinterval of R with compactness. Consider a sequence continuous map-
pings fn : I 7→ I,n ∈ N. Let f1,∞ = ( f1, f2, ...). (I, f1,∞) is called a non-autonomous discrete
system. For any a ∈ I, the orbit of a under f1,∞ is

Orb(a, f1,∞) = {a, f1(a), f2 ◦ f1(a), ..., f n
1 (a), ...},

where f n
1 = fn ◦ ...◦ f1, and f 0

1 is the identity mapping.
In this paper, the following CML is considered

xm+1,n = (1− ε) fm+1(xm,n)+
1
2

ε[ fm+1(xm,n−1)+ fm+1(xm,n+1)], (1.1)

where xm,n ∈ I, m ∈ N0 = {0,1,2, ...},n ∈ Z= {...,−1,0,1, ...}, I is a non-degenerate compact
interval, and ε ∈ [0,1] is a constant.

For t ∈ Z, let Nt = {t, t + 1, ...} and Ω = {(0,n) : n ∈ Z} = {...,(0,−1),(0,0),(0,1), ...}.
For any sequence φ = {φ0,n}∞

∞ on Ω, by induction, one can obtain a double-indexed sequence
x = {xm,n : m = 0,1,2, ...;n = ...,−1,0,1, ...}, which is said to be a solution of system (1.1) with
initial condition φ . Write

I∞
∞ = {{an}∞

n=−∞ = (...,a−1,a0,a1, ...) : an ∈ I,n ∈ Z}

and
4∞

∞ = {(...,a−1,a0,a1, ...) : ai = a j ∈ I, i, j ∈ Z},
which is called the diagonal set of I∞

∞. For arbitrary two sequences x1 = {x1,n}∞
n=−∞,x2 =

{x2,n}∞
n=−∞ ∈ I∞

∞, it is easy to prove that

d(x1,x2) =
∞

∑
n=−∞

|x1,n− x2,n|
2|n|

(1.2)

is a metric on I∞
∞.

Let x = {xm,n : m ∈ N0,n ∈ Z} be a solution of system (1.1) with initial condition φ =
{φ0,n}∞

∞ ∈ I∞
∞. Let

xm = {xm,n}∞
n=−∞ = (...,xm,−1,xm,0,xm,1, ...), ∀m ∈ N0,

and let

xm+1 = {xm+1,n}∞
n=−∞ = (...,xm+1,−1,xm+1,0,xm+1,1, ...) = Fm+1

1 (xm), ∀m ∈ N0,

where
x0 = φ = {x0,n = φ0,n}∞

n=−∞

and

xm+1,n = (1− ε) fm+1(xm,n)+
1
2

ε[ fm+1(xm,n−1)+ fm+1(xm,n+1)],∀m ∈ N0,n ∈ Z.

Then, one can see that system (1.1) is equivalent to the following system

xm+1 = Fm+1(xm),xm ∈ I∞
∞, ∀m≥ 0. (1.3)

In system (1.3), Fm+1(m = 0,1,2, ...) is said to be induced by system (1.1). Obviously, a
double-indexed sequence {xm,n : m ∈ N0,n ∈ Z} is a solution of system (1.1) if and only if
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{xm = {xm,n}∞
n=−∞ : m ∈ N0}∞

m=0 is a solution of system (1.3). If mapping sequence F1,∞ is
chaotic on I∞

∞, it is said that system (1.3) is chaotic on I∞
∞.

2. PRELIMINARIES

In 1975, for the first time, Li and Yorke [15] expressed the chaos mathematically. Subse-
quently, Schweizer and Smital [16] gave an extended form of Li-Yorke chaos, named distribu-
tional chaos. In 2009, Tan and Xiong [17] described the chaos with Furstenberg families and
defined (F1,F2)-chaos, which makes that Li-Yorke chaos and distributional chaos are the spe-
cial cases of (F1,F2)-chaos. Subsequently, the definitions of Li-Yorke chaos, distributional
chaos, and (F1,F2)-chaos in the non-autonomous discrete systems are given.

Definition 2.1. The sequence mapping f1,∞ is said to be Li-Yorke chaotic if there is an uncount-
able set S⊂ X such that, for any a,b ∈ S with a 6= b,

limsup
n7→∞

d( f n
1 (a), f n

1 (b))> 0 and liminf
n7→∞

d( f n
1 (a), f n

1 (b)) = 0,

where the uncountable set S is called the Li-Yorke scrambled set (or Li-Yorke irregular set) of
f1,∞.

Definition 2.2. The sequence mapping f1,∞ is said to be distributional chaotic if there is an
uncountable set S⊂ X such that, for any a,b ∈ S with a 6= b,

(i) ∀t > 0,F∗ab(t, f1,∞) = limsup
n7→∞

1
ncard{ j ∈ {1,2, ...,n} : d( f n

1 (a), f n
1 (b))< t}= 1;

(ii) ∃t0 > 0,Fab(t, f1,∞) = liminf
n7→∞

1
ncard{ j ∈ {1,2, ...,n} : d( f n

1 (a), f n
1 (b))< t}= 0,

where F∗ab(t, f1,∞) and Fab(t, f1,∞) are upper and lower distributional functions, respectively.
The uncountable set S is called the distributional scrambled set (or the irregularly distributional
set) of f1,∞.

Definition 2.3. Let F1 and F2 be Furstenberg families, and let f1,∞ be a sequence mapping.
A subset D ⊂ X is called a (F1,F2)-scrambled set of f1,∞ if, for any a,b ∈ D with a 6= b, the
following two conditions are satisfied:

(i) {n ∈ N : d( f n
1 (a), f n

1 (b)< t} ∈F1 f or any t > 0;
(ii) {n ∈ N : d( f n

1 (a), f n
1 (b)> δ} ∈F2 f or some δ > 0.

The pair (a,b), which satisfies the above two conditions, is called a (F1,F2)-scrambled pair of
f1,∞.

After Li-Yorke chaos, various definitions of chaos appeared recently, for example, Devaney
chaos, infinite sensitivity, transitivity, accessibility, densely chaotic, densely δ -chaotic, Li-
Yorke sensitivity, Spatio-temporal chaos, Kato’s chaotic, and Ruelle-Takens chaos. The def-
initions of those chaos in non-autonomous discrete systems are given as follows.

In general, the set of all Li-Yorke scrambled pairs of system (X , f1,∞) is denoted by LYd( f1,∞),
that is,

LYd( f1,∞) = {(a,b) ∈ X×X : limsup
n7→∞

d( f n
1 (a), f n

1 (b))> 0 and liminf
n7→∞

d( f n
1 (a), f n

1 (b)) = 0}

and the set of all Li-Yorke-δ scrambled pairs of system (X , f1,∞) for some δ > 0 is denoted by
LYd( f1,∞,δ ), that is,

LYd( f1,∞,δ )= {(a,b)∈X×X : limsup
n7→∞

d( f n
1 (a), f n

1 (b))> δ and liminf
n7→∞

d( f n
1 (a), f n

1 (b))= 0}.
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Definition 2.4. Let (X ,d) be a compact metric space, and let fn : X 7→X be a sequence mapping.
(1) f1,∞ is said to be densely chaotic if LYd( f1,∞) = X×X ;
(2) f1,∞ is said to be densely δ -chaotic if there exist δ > 0 such that LYd( f1,∞,δ ) = X×X .

Obviously, if δ = 0, then the densely δ -chaotic is densely chaotic.

The following notations are needed in the sequel. For any ε > 0,

Prox( f1,∞)(a) = {b ∈ X : liminf
n→∞

d( f n
1 (a), f n

1 (b)) = 0},

Asymε( f1,∞)(a) = {b ∈ X : limsup
n→∞

d( f n
1 (a), f n

1 (b))< ε},

Asym( f1,∞)(a) = ∩δ>0Asymδ ( f1,∞) = {b ∈ X : lim
n→∞

d( f n
1 (a), f n

1 (b)) = 0},

and
Qδ ( f1,∞) = {a ∈ X : ∀ε > 0,∃b ∈ B(x,ε) such that (a,b) ∈ LYd( f1,∞,δ )}.

Definition 2.5. Let (X ,d) be a compact metric space, and let fn : X 7→X be a sequence mapping.
(1) f1,∞ is spatio-temporal chaotic if, for any a ∈ X and δ > 0,

B(a,δ )∩ (Prox( f1,∞)(a)\Asym( f1,∞)(a)) 6= /0;

(2) f1,∞ is Li-Yorke sensitivity if there is a ε > 0 such that, for any a ∈ X and δ > 0,

B(a,δ )∩ (Prox( f1,∞)(a)\Asymε( f1,∞)(a)) 6= /0;

(3) f1,∞ is densely Li-Yorke sensitive if Qδ ( f1,∞) is dense in X for some δ > 0;
(4) f1,∞ is sensitive if there exists an η > 0 such that, for any a ∈ X and ε > 0, there exist a

b ∈ B(a,ε), and n ∈ N such that ρ( f n
1 (a), f n

1 (b))> η ;
(5) f1,∞ is infinitely sensitive if there exists an η > 0 such that, for any a ∈ X and ε > 0, there

exist b ∈ B(a,ε) and n ∈ N such that limsup
n→∞

ρ( f n
1 (a), f n

1 (b))≥ η ;

(6) f1,∞ is transitive if, for any nonempty open subsets U1,U2 ⊂Y , f n
1 (U1)∩U2 6= /0 for some

integer n > 0;
(7) f1,∞ is accessible if, for any ε > 0 and any two nonempty open subsets U1,U2 ⊂ X , there

are two points a ∈U1 and b ∈U2 such that ρ( f n
1 (a), f n

1 (b)))< ε for some integer n > 0;
(8) f1,∞ is exact if, for any open subset U ⊂ X , there is a n ∈ N such that f n

1 (U) = X .

Remark 2.6. Here we present another equivalent definition of the transitivity. f1,∞ is said to be
transitivity if there is an a ∈ X such that Orb(a, f1,∞) = X .

Definition 2.7. (1) A dynamic system (X , f1,∞) (or the sequence mapping f1,∞ : X → X) is said
to be Kato chaotic if it is both sensitive and accessible;

(2) A dynamic system (X , f1,∞) (or f1,∞ : X → X) is said to be chaotic in the sense of Ruelle
and Takens if it is both transitive and sensitive.

The definitions in the non-autonomous systems mentioned above are based on the corre-
sponding definitions in the autonomous systems which are in references [16–24] and the refer-
ences therein.

Proposition 2.8. A dynamical system (X , f1,∞) is infinitely sensitive if and only if it is sensitive.
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Proof. Necessity is obvious. We next only give the sufficiency. It is similar to the proof of [18,
Theorem 2.1]. If (X , f1,∞) is sensitive, then there exists an η > 0 such that, for any a ∈ X and
ε > 0, there exist a b ∈ B(a,ε) and n ∈ N such that ρ( f n

1 (a), f n
1 (b))> η . Given any N ∈ N, set

DN = {(a,b) : ρ( f n
1 (a), f n

1 (b))≤
η

4 }. It is clear that DN is a closed set.
Now, we assert that, for any N ∈ N, intDN =∅. In fact, if there exists some N ∈ N such that

intDN 6= ∅, and there exist nonempty open sets U,V ∈ X such that U ×V ⊂ DN , then, for any
pair (a,b) ∈U×V , ρ( f n

1 (a), f n
1 (b))≤

η

4 holds for any n >N. For all points a1,a2 ∈U and any
n > N,

ρ( f n
1 (a1), f n

1 (a2))≤ ρ( f n
1 (a1), f n

1 (b))+ρ( f n
1 (b), f n

1 (a2))≤
η

2
.

Note that there exists a nonempty open set U∗ ⊂U such that, for any pair a1,a2 ∈U∗ and any
0≤ m≤ N,

ρ( f m
1 (a1), f m

1 (a2))≤
η

2
.

So, for all points a1,a2 ∈ U∗ and any n ∈ N, ρ( f m
1 (a1), f m

1 (a2)) ≤ η

2 , which contradicts the
sensitivity of (X , f1,∞). It follows that set D = ∪N∈NDN is a first category set in X ×X . Then,
set (X×X)\D = {(a,b) : ∀N ∈N,∃n > N such that ρ( f n

1 (a), f n
1 (b))>

η

4 } is residual in X×X .
on the other hand, if (X , f1,∞) is not infinitely sensitive, then there exist an a0 ∈ X and ξ > 0

such that, for any b ∈ B(a0,ξ ),

limsup
n→∞

ρ( f n
1 (a0), f n

1 (b))≤
η

16
.

Note the fact that (X ×X)\D is residual in X ×X . It follows that there exist a pair (b1,b2) ∈
[B(a0,ξ )×B(a0,ξ )]∩ [(X×X)\D ]. Then, for any n ∈ N,

ρ( f n
1 (b1), f n

1 (b2))≤ ρ( f n
1 (b1), f n

1 (a0))+ρ( f n
1 (a0), f n

1 (b2))≤
η

8
,

one has

limsup
n→∞

ρ( f n
1 (b1), f n

1 (b2))≤
η

8
,

which contradicts (b1,b2) ∈ X×X \D . So, (X , f1,∞) is infinitely sensitive. �

3. CHAOTIC PROPERTIES OF COUPLED MAP LATTICE (1.1)

In this section, one always assumes that X = I = [0,1]. The metric ρ in I is defined by
ρ(a,b) =| a−b |, ∀a,b ∈ I. The metric d in I∞

∞ is defined by (1.2), and fn : I 7→ I is a sequence
of mappings.

Theorem 3.1. If f1,∞ is (F1,F2)-chaotic, then system (∆∞
∞,d,F1,∞) is (F1,F2)-chaotic.

Proof. Since f1,∞ is (F1,F2)-chaotic, then there exists an uncountable set D⊂ I such that, for
any a 6= b ∈ D,

(i) ∀t > 0,{n ∈ N : d( f n
1 (a), f n

1 (b))< t} ∈F1;
(ii) ∃δ > 0,{n ∈ N : d( f n

1 (a), f n
1 (b))> δ} ∈F2.

Take
(∆∗)∞

∞ = {(...,x1,x0,x1, ...) : xn = a ∈ D,n ∈ Z} ⊂4∞
∞ ⊂ I∞

∞.
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Clearly, (∆∗)∞
∞ is uncountable. For any x = {...,a,a,a, ...},y = {...,b,b,b, ...} ∈ (∆∗)∞

∞,x 6= y,
since x0,n = a(n ∈ Z), then

x1,n = (1− ε) f1(a)+
1
2

ε[ f1(a)+ f1(a)] = f1(a) (∀n ∈ Z),

that is,
F1(x) = x1 = {..., f1(a), f1(a), f1(a), ...}.

Similarly,
F2 ◦F1(x) = x2 = {..., f2 ◦ f1(a), f2 ◦ f1(a), f2 ◦ f1(a), ...};

......

Fm
1 (x) = xm = {..., f m

1 (a), f m
1 (a), f m

1 (a), ...},m ∈ N.
It is obvious that, for any k ∈ N,

Fk
1 (x) = { f k

1 (a)}∞
n=−∞, Fk

1 (y) = { f k
1 (b)}∞

n=−∞.

Thus, for any k ∈ N,

d(Fk
1 (x),F

k
1 (y)) = d({ f k

1 (a)}∞
n=−∞,{ f k

1 (b)}∞
n=−∞)

=
∞

∑
n=−∞

| f k
1 (a)− f k

1 (b) |
2|n|

= 3 | f k
1 (a)− f k

1 (b) | .

(3.1)

According to (3.1), (i), and (ii), one has that, for any t > 0,

{n ∈ N : d(Fn
1 (x),F

n
1 (y))< t}= {n ∈ N : d( f n

1 (a), f n
1 (b))<

t
3
} ∈F1

and
{n ∈ N : d(Fn

1 (x),F
n
1 (y))> 3δ}= {n ∈ N : d( f n

1 (a), f n
1 (b))> δ} ∈F2.

This implies that F1,∞ is (F1,F2)-chaotic. �

The following corollaries can be obtained easily.

Corollary 3.2. If f1,∞ is Li-Yorke chaotic, then system (∆∞
∞,d,F1,∞) is Li-Yorke chaotic.

Corollary 3.3. If f1,∞ is distributional chaotic, then system (∆∞
∞,d,F1,∞) is distributional chaotic.

Next, we restrict the space to the diagonal ∆∞
∞ of I∞

∞, and discuss some chaotic properties.

Theorem 3.4. (1) If f1,∞ is Li-Yorke sensitive, then system (∆∞
∞,d,F1,∞ |∆∞

∞
) is Li-Yorke sensitive;

(2) If f1,∞ is densely Li-Yorke sensitive, then system (∆∞
∞,d,F1,∞ |∆∞

∞
) is densely Li-Yorke sen-

sitive;
(3) If f1,∞ is spatio-temporal chaotic, then system (∆∞

∞,d,F1,∞ |∆∞
∞
) is spatio-temporal chaotic.

Proof. (1) Fix x = (...,a,a,a, ...) ∈ 4∞
∞. Since f1,∞ is Li-Yorke sensitive, there exist ε > 0 and

δ > 0 such that
B(a,

ε

3
)∩ (Prox( f1,∞)(a)\Asymδ ( f1,∞)(a)) 6=∅.

Let b ∈ B(a, ε

3)∩ (Prox( f1,∞)(a)\Asymδ ( f1,∞)(a)). Setting y = (...,b,b,b, ...) ∈ ∆∞
∞, one has

d(x,y) =
∞

∑
n=−∞

|a−b|
2|n|

= 3|a−b|< ε.
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So, y ∈ B(x,ε),

liminf
n7→∞

d(Fn
1 (x),F

n
1 (y)) = liminf

n→∞

∞

∑
n=−∞

| f n
1 (a)− f n

1 (b)|
2|n|

= 3liminf
n7→∞

| f n
1 (a)− f n

1 (b)|

= 0,

and
limsup

n7→∞

(d(Fn
1 (x),F

n
1 (y)) = 3limsup

n7→∞

| f n
1 (a)− f n

1 (b)| ≥ 3δ .

That is,
y ∈ B(x,ε)∩ (Prox(F1,∞)(x)\Asym3δ (F1,∞)(x)) 6=∅.

Hence, F1,∞|4∞
∞

is Li-Yorke sensitive.
(2) Since f1,∞ is densely Li-Yorke sensitive, then, for any a ∈ Qδ ( f1,∞) and any ε > 0, there

exists b ∈ B(a, ε

3) such that (a,b) ∈ LYρ( f1,∞,δ ). Take x∗ = {xn = a}∞
n=−∞ and y∗ = {yn =

b}∞
n=−∞. One has

limsup
n→∞

d(Fn
1 (x
∗),Fn

1 (y
∗)) = limsup

n→∞

d( f n
1 (a), f n

1 (b)) = 3limsup
n→∞

| f n
1 (a)− f n

1 (b) |> δ

and

liminf
n→∞

d(Fn
1 (x
∗),Fn

1 (y
∗)) = liminf

n→∞
d( f n

1 (a), f n
1 (b)) = 3liminf

n→∞
| f n

1 (a)− f n
1 (b) |= 0.

Thus, there exists x∗ ∈ Qδ (F1,∞). For any fixed x ∈ ∆∞
∞, let x = (...,xm,−1,xm,0,xm,1, ...), where

xm,p = xm,p+1, p∈Z. Since f1,∞ is densely Li-Yorke sensitive, then, for any ε > 0 and the above
xm,0, B(xm,0,

ε

3)∩Qδ ( f1,∞) 6= /0. Taking a ∈ B(xm,0,
ε

3)∩Qδ ( f1,∞), one has

d(x,x∗) =
∞

∑
n=−∞

|xm,p−a|
2|n|

= 3|xm,p−a|< ε.

So x∗ ∈ B(x,ε). This indicates that Qδ (F1,∞) = ∆∞
∞. Thus, system (∆∞

∞,d,F1,∞ |∆∞
∞
) is densely

Li-Yorke sensitive.
(3) The proof is similar to (1). F1,∞|4∞

∞
is spatio-temporal chaotic. �

Theorem 3.5. (1) If f1,∞ is densely δ -chaotic, then system (∆∞
∞,d,F1,∞ |∆∞

∞
) is densely δ -chaotic;

(2) If f1,∞ is densely chaotic, then system (∆∞
∞,d,F1,∞ |∆∞

∞
) is densely chaotic.

Proof. (1) Fix (x,y)∈4∞
∞×4∞

∞, and let x=(...,xm,−1,xm,0,xm,1, ...), y=(...,yn,−1,yn,0,yn,1, ...),
where xm,p = xm,p+1 and yn,q = yn,q+1, p,q ∈ Z. Since f1,∞ : I 7→ I is densely δ -chaotic, then,
for any ε > 0,

B((xm,0,yn,0),
ε

3
)∩LYd( f1,∞,δ ) 6=∅.

Take (a,b)∈B((xm,0,yn,0),
ε

3)∩LYd( f1,∞,δ ). Letting x∗= {...,a,a,a, ...} and y∗= {...,b,b,b...},
one has

d(Fk
1 (x
∗),Fk

1 (y
∗)) = 3 | f k

1 (a)− f k
1 (b) |< 3δ ,

(x∗,y∗) ∈ LYd(F1,∞,3δ )⊂ LYd(F1,∞,δ ),

and

d(x,x∗) =
∞

∑
p=−∞

|xm,p−a|
2|p|

= 3|xm,0−a|< ε,
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d(y,y∗) =
∞

∑
p=−∞

|yn,p−b|
2|p|

= 3|yn,0−b|< ε.

By the arbitrariness of (x,y), one concludes that LYd(F1,∞,δ ) =4∞
∞×4∞

∞. So (∆∞
∞,d,F1,∞ |∆∞

∞
)

is densely δ -chaotic.
(2) Obviously, if δ = 0, then the densely δ -chaotic is densely chaotic. �

Theorem 3.6. (1) If f1,∞ is transitive, then system (∆∞
∞,d,F1,∞ |∆∞

∞
) is transitive;

(2) If f1,∞ is sensitivity, then system (∆∞
∞,d,F1,∞ |∆∞

∞
) is sensitivity;

(3) If f1,∞ is accessible, then system (∆∞
∞,d,F1,∞ |∆∞

∞
) is accessible;

(4) If f1,∞ is exact, then system (∆∞
∞,d,F1,∞ |∆∞

∞
) is exact.

Proof. (1) Since f1,∞ is transitive, there exist an a ∈ I satisfying Orb(a, f1,∞) = I. Then, for
any b ∈ I and any ε > 0, B(b,ε)∩Orb(a, f1,∞) 6= /0. That is, there exists a k0 > 0 such that
ρ( f k0

1 (a),b) = | f k0
1 (a)− b| < ε

3 . Take x0 = (...,a,a,a, ...) ∈ ∆∞
∞. Since Fk

1 (x0) = { f k
1 (a)}∞

n=−∞

for any k ∈ N, then Orb(x0,F1,∞) = {{ f k
1 (a)}∞

n=−∞ |k∈N}. For y = (...,b,b,b, ...) ∈ 4∞
∞ and

above k0 > 0,

d(Fk0
1 (x0),y) =

∞

∑
n=−∞

| f k0
1 (a)−b|

2|n|
= 3| f k0

1 (a)−b|< ε.

So, B(y,ε)∩Orb(x0,F1,∞) 6= /0. By the arbitrariness of b, system (∆∞
∞,d,F1,∞ |∆∞

∞
) is transitive.

(2) Since f1,∞ is sensitivity, then there exists a δ > 0 such that, for any a ∈ I and ε > 0,
there exist ba,ε ∈ B(a, ε

3) and na,ε ∈ N such that | f na,ε
1 (a)− f na,ε

1 (ba,ε)| > δ . So, for any fixed
x = (...,a,a,a, ...) ∈4∞

∞ and any ε > 0, taking y = (...,ba,ε ,ba,ε ,ba,ε , ...) ∈4∞
∞, one has that

d(x,y) =
∞

∑
n=−∞

|a−ba,ε |
2|n|

= 3|a−ba,ε |< ε,

that is, y ∈ B(x,ε). In view of d(Fna,ε
1 (x),Fna,ε

1 (y)) = 3| f na,ε
1 (a)− f na,ε

1 (b)|> 3δ > δ , one con-
cludes that F1,∞|4∞

∞
is sensitivity.

(3) For any open subsets U1 and U2, let

(∆1)
∞
∞ = {(...,x−1,x0,x1, ...),xn = a ∈U1 ⊂ I,n ∈ Z} ⊂ I∞

∞

and
(∆2)

∞
∞ = {(...,y−1,y0,y1, ...),yn = b ∈U2 ⊂ I,n ∈ Z} ⊂ I∞

∞.

Since f1,∞ is accessible, then there exist a ∈U1 and b ∈U2 such that

ρ( f k
1 (a), f k

1 (b)) =| f k
1 (a)− f k

1 (b) |<
ε

3
for some k > 0. Letting x = (...,a,a,a, ...) ∈ (∆1)

∞
∞ and y = (...,b,b,b, ...) ∈ (∆2)

∞
∞, one has

d(Fk
1 (x),F

k
1 (y)) = 3 | f k

1 (a)− f k
1 (b) |< ε. So, system (∆∞

∞,d,F1,∞ |∆∞
∞
) is accessible.

(4) Since f1,∞ is exact, for any open subset D⊂ I, there exists m∈N such that f m
1 (D) = I, that

is, for any a ∈ D, there exists m > 0 such that B( f m
1 (a), ε

3)∩ I 6= /0 for any ε > 0. Hence, there
is a b ∈ X such that ρ( f m

1 (a),b) =| f m
1 (a)− b |< ε

3 . Let (∆∗)∞
∞ be an arbitrary open subset of

(4)∞
∞ and x0 = (...,a,a,a, ...) ∈ (∆∗)∞

∞. Clearly, for any k ∈ N, Fk
1 (x0) = { f k

1 (a)}∞
n=−∞. For any

y0 = (...,b,b,b, ...) ∈ (4)∞
∞, d(Fm

1 (x0),yo) = 3| f m
1 (a)−b| < ε . That is, there exists an m ∈ N,

such that Fm
1 ((∆∗)∞

∞) =4∞
∞. So, system (∆∞

∞,d,F1,∞ |∆∞
∞
) is exact. �
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Theorem 3.7. If f1,∞ is chaotic in the sense of Ruelle and Takens, then system (∆∞
∞,d,F1,∞ |∆∞

∞
)

is chaotic in the sense of Ruelle and Takens.

Proof. From Theorem 3.6 (1), Theorem 3.6 (2), and the definition of Ruelle-Takens chaos, the
conclusion can be derived easily. �

Theorem 3.8. If f1,∞ is Kato chaotic, system (∆∞
∞,d,F1,∞ |∆∞

∞
) is Kato chaotic.

Proof. From Theorem 3.6 (2), and Theorem 3.6 (3), one concludes the desired conclusion im-
mediately. �

According to Proposition 2.8 and Theorem 3.6 (3), one obtains the following corollary im-
mediately.

Corollary 3.9. If system (4∞
∞,d,F1,∞ |4∞

∞
) is infinitely sensitive, then it is sensitive.

Indeed, we have a stronger conclusion than the corollary above.

Theorem 3.10. If f1,∞ is infinitely sensitive, then system (4∞
∞,d,F1,∞ |4∞

∞
) is infinitely sensitive.

Proof. Since f1,∞ is infinitely sensitive, then there exists a δ > 0 such that, for any a∈ I and any
ε , there exist ba,ε ∈ B(a, ε

3) and na,ε ∈N such that limsupna,ε→∞ ρ( f na,ε
1 (a), f na,ε

1 (ba,ε))≥ δ . So,
for any x = (...,a,a,a, ...) ∈ 4∞

∞, and any ε > 0, taking x = (...,ba,ε ,ba,ε ,ba,ε , ...) ∈ 4∞
∞, one

has that

d(x,y) =
∞

∑
n=−∞

| f na,ε
1 (a)− f na,ε

1 (ba,ε)|
2|n|

= 3| f na,ε
1 (a)− f na,ε

1 (ba,ε)|< ε

that is, y ∈ B(x,ε). In view of

limsup
na,ε→∞

d(Fna,ε
1 (x),Fna,ε

1 (y)) = limsup
na,ε→∞

d( f na,ε
1 (a), f na,ε

1 (ba,ε))≥ δ ,

one concludes that F1,∞ |∆∞
∞

is infinitely sensitive. �

Remark 3.11. From [18], one sees that, on (I∞
∞) (or its subsystem), the mapping F induced

by chaotic map f is chaotic or not, which is related to the measurement on (I∞
∞,d). In fact, in

the non-autonomous discrete system, the chaotic of F1,∞ induced by chaotic mapping f1,∞ is
also related to the measurement on (I∞

∞,d). This can be obtained from the following example.
d1(x1,x2) = 0, x1 = x2 and d1(x1,x2) = 1, x1 6= x2. It can be seen that the measurement d1 and
d defined by (1.2) are not equivalent, and system (1.1) does not chaotic under metric d1.

4. SOME EXAMPLES

Let I be a compact subinterval of R. Let I∞
∞ be the metric space induced by I, and let4∞

∞ be
the diagonal set of I∞

∞. From system (1.1), one has the following inducted system

xm+1 = Fm+1(xm),xm = (...,am,am,am, ...) ∈4∞
∞,m ∈ N+,am ∈ I. (4.1)

It is easy to see that am+1 = fm+1(am). Let

f (x) = 19saw(x)+ sin(x(1− x)),x ∈ I,

where saw(x) is the sawtooth function defined by

saw(x) = (−1)m(x−2m),2m−1≤ x≤ 2m+1,m ∈ Z.
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One can prove that map f satisfies the definitions of chaos in Section 2. The simulation
with explanations of chaotic behavior is provided by Figure 1. The red dots and the green dots,
respectively, represent the trajectory of initial value x1 = 0.8751 and x2 = 0.8752 iterations for
7000 times. It is clear that, after iterations, the trajectory of x1 (or x2) is ergodic and disorderly
(see red dots or green dots). And with little difference between initial values x1 and x2, there
is a big gap between the iteration values after 5999 iterations (see f n(x1) = −12.2681 and
f n(x2) = 13.7032). This means that f is sensitive dependence on initial condition.

FIGURE 1. Chaotic behaviors of f with the initial data x1 = 0.8751,x2 = 0.8752,
and n = 7000.

Now, let fm = f , for any m ∈ N. One has that

am+1 = f (am) = 19saw(am)+ sin(am(1−am)),

for any am ∈ I. Since map f is chaotic, xm =(...,am,am,am, ...), and xm+1 =(...,am+1,am+1,am+1, ...),
then coupled system (4.1) (or coupled map Fm+1) is chaotic too.

On the other hand, the results presented in Section 3 indicate that if the original mapping
sequence f1,∞ is chaotic, then the coupled system induced by f1,∞ and coupling model (1.1) is
chaotic. This is consistent with the above conclusion.

Remark 4.1. By appropriately changing the coefficients of the function f (x) in the above
examples, many examples that satisfy the above conclusions can be obtained. For example
f1(x) = 7saw(x) + 18sin(x(1− x)),x ∈ I, f2(x) = 5saw(x) + 24sin(x(1− x)),x ∈ I, f3(x) =
10saw(x)+ 20sin(x(1− x)),x ∈ I,, f4(x) = 25saw(x)+ 9

2sin(x(1− x)),x ∈ I, and so on. For
any given initial value, the simulation of these functions shows the ergodicity. We give the
initial values of the four functions as x11 = 0.2212,x12 = 0.2213; x21 = 0.3456,x22 = 0.3455;
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x31 = 0.7561,x32 = 0.7562; and x41 = 0.8651,x42 = 0.8652, respectively, the number of itera-
tions is 6000 times. Then, the simulations are shown in Figure 2, Figure 3, Figure 4, and Figure
5, respectively.

(a) Figure 2 (b) Figure 3

(c) Figure 4 (d) Figure 5
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