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RECURRENT NEURAL NETWORK WITH L1/2 REGULARIZATION FOR
REGRESSION AND MULTICLASS CLASSIFICATION PROBLEMS

LIN LI, QINWEI FAN∗, LI ZHOU

School of Science, Xi’an Polytechnic University, Xi’an 710048, China

Abstract. Recurrent neural network (RNN) is introduced to solve the dynamic system problem. In this paper,
a new RNN of the gradient method with L1/2 regularization learned sequential behavior is presented. L1/2 regu-
larization can drive redundant weight vectors of nodes to zero efficiently. The usual L1/2 regularization involves
a non-smooth absolute value function, which causes the oscillation of the norm of gradient and the error func-
tion in the numerical computation. However, by smoothing techniques, those drawbacks can be well addressed.
Simulation results of regression and multiclass classification problems demonstrate that our algorithm has better
performance than three other algorithms.
Keywords. Gradient method; L1/2 regularization; Recurrent neural networks; Smoothing approximation.

1. INTRODUCTION

An artificial neural network (ANN) comprises interconnected artificial neurons. A simple
artificial feed-forward neural network usually has one input layer, one output layer, and one
hidden layer; see, e.g., [16, 32, 33]. As an information processing science, ANN has been
developed for many years. After experiencing the tortuous road of rising, climax, depression,
and revival, it has progressed steadily; see [4, 10, 21]. However, with the development of ANN,
researchers discovered that it does not consider the correlation between the data in practical
applications, and the output of the network is only related to the input at current [19]. When
solving practical problems, there is a lot of sequential data, such as text, voice, and video, etc
[2, 13]. These data are often time dependent, and the output of the network is not only related
to the input at the current but also related to the previous output [11]. ANN cannot handle this
kind of correlation well, because it has no memory ability, it cannot feedback the output of the
previous moment to the next moment.

In order to solve this problem, researchers proposed an ANN combined with recurrent con-
nections, which is called the recurrent neural network (RNN); see [15, 30, 31]. RNN can model
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sequence data for sequence recognitions and predictions. The structure of the RNN’s hidden
state serves as the memory of the network [17], and the state of the hidden layer depends on
its previous state each time. The RNN has a variety of network structures. Of course, it also
supports single output and multi-output; see, e.g., [35, 36]. In the single output mode, the state
of the recurrent node is obtained through an output function (such as sigmoid). The output of
the recurrent neural network in the multi-output mode depends on its topology. The structure
of the RNN used in this paper is a single layer with multi-output recurrent connections [36].

Similar to the ANN, the RNN training also uses the gradient descent method, which is a
simple and fast learning algorithm. However, when using the gradient descent algorithm to train
the RNN, gradient explosion or gradient disappearance often occurs; see, e.g., [1, 18, 20, 22].
Recently, many researchers focuses on solving this problem, which indeed is a thorny problem
in neural network learning. A common way to solve this problem is to add a regularization term
to the traditional error function; see [27]. Penalties can drive unnecessary weight to zero, even
remove some very small weight, or prevent the weights becoming larger; see [5, 6, 14, 23, 26].
Generally, several regularization methods have been proposed for optimizing neural networks,
such as Lp regularization. The error function with Lp regularization is generally defined as
follows:

Cost = Error+λφ(w),

where Error is the sum of square error function, λφ(w) = λ‖w||pp is the regular term, ‖w||pp =
(∑i |wi|p) is the Lp penalty, λ > 0 is the penalty coefficient, and || · || stands for the Euclidean
norm.

The value of p corresponds to different properties of the error function. When p = 0, it is
called L0 regularization term (see [7, 39]), which was usually used for variable selection and
feature extraction. The L0 regularization method can obtain the sparsest solution by constraining
the number of coefficients, but it also involves solving an NP-hard problem, and these sparse
solutions are not easy to calculate. When p = 1, it is called the L1 regularization term (also
called LASSO method; see [25, 28]). Compared with L0, L1 is easier to solve and only needs to
solve the quadratic programming problem, but its sparsity is weaker than the L0 regularization
term [7]. When p = 2, it is called L2 regularization term; see [12, 29]. It can only optimize the
network, but cannot make the network sparser. That is, L2 regularization cannot make redundant
weights to zero or remove them. Subsequently, in 2010 and 2012, Xu, Zhang, and Wang [37]
and Xu, Chang and Zhang [38] proposed the p = 1/2 case (also called the L1/2 regularization
term), which is a non-convex penalty term with unbiased, sparsity, and oracle properties [8].
At the same time, it can be regarded as a representation of Lp (0 < p < 1). It was proved [38]
that the L1/2 regularization generates sparser solutions than the L1 regularization. The L1/2
regularization term is defined as follow:

Cost = Error+λ‖w||
1
2
1
2
,

where ‖w||
1
2
1
2
= ∑i |wi|1/2, and L1/2 is one of the most useful tools for solving sparse problems.

It has been widely studied by reducing the estimated value of some parameters to zero. At the
same time, the L1/2 regularization has an absolute value function, which is not differentiable at
the origin. In other words, during the training process, this will cause the gradient of the error
function to oscillate in numerical experiments, and its convergence analysis is difficult to prove.
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FIGURE 1. Recurrent neural networks

Therefore, the smoothing L1/2 regularization was proposed in [9, 34] by replacing the absolute
value function with a smooth function to reduce the oscillation phenomenon generated in the
numerical experiment.

Inspired by the existing results, this paper proposes an RNN based on L1/2 regularization
to optimize the network structure to improve its generalization ability. That is, a smoothing
technique is introduced to solve the problem that the absolute value function is not differentiable
at the origin. More clearly, we summarize the main contributions of this article as follows:

(1) A pruning algorithm based on smoothing L1/2 regularization forthe RNN (RNNL1/2)
is proposed, which can punish the weight matrix of the hidden layer and identify redundant
weights, which is achieved by reducing the output redundant weights to zero optimize the effect
of network structure.

(2) The L1/2 regularization is not differentiable at the origin, which may cause numerical
oscillations in the training process. Therefore, we consider using a smoothing function to ap-
proximate the absolute value function, which is called the RNNSL1/2 and those drawbacks can
be well addressed.

(3) Perform numerical experiments to verify the proposed new algorithm. The XOR problem
and the classification experiment are given, respectively. The experimental results verify the
algorithm can sparse the weight matrix better, and the classification accuracy is also improved.

The rest of this article is organized as follows: In Section 2, the main model structure of
the RNN is described. Section 3 describes in detail the RNN gradient algorithm with smooth
regularization and gives the algorithm pseudo-code. Section 4 discusses some numerical exper-
iments. Section 5, which is also the last section, provides some conclusions for this paper.

2. THE MODEL ARCHITECTURE OF THE RNN

We consider the structure of the RNN in Figure 1. The expanded view is shown in Figure
2. The input layer has N input nodes. The input of this layer is a vector sequence of elapsed
time t (t = 1,2, · · ·), such as {x(t),x(t + 1), ...}, where x(t) = (x1,x2, ...,xN). The input unit
in the fully connected RNN is connected to the hidden unit in the hidden layer, where the
connection is defined by the weight matrix WI ∈ RN . The hidden layer has M hidden units
{h(t − 1),h(t),h(t + 1), ...}, where h(t) = (h1,h2, ...,hM), which are connected to each other
through time and cyclic connections. Using zero elements to initialize hidden units can improve
the overall performance and stability of the network. The connection weight is represented by
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FIGURE 2. The expanded view recurrent neural networks

WL ∈ RM. And the combination weight matrix is

W = (WI,WL) ∈ RM×(N+M).

It is assumed that the activation function of neurons in the hidden layer and the output neurons
is g : R→ R. Then, for any vector a = (am) ∈ RM, define victor function G : RM→ RM :

G(a) = (g(a1),g(a2), · · · ,g(aM))T .

Then combine xt and ht−1 as dimensional vector ut ∈ RN+M is

u(t) =
(

x(t)
h(t−1)

)
.

The input vector s of recurrent layer is s(t) = (s1(t),s2(t), · · · ,sM(t))T ∈ RM. The relationship
between the input vector and the output vector at the time of recurrent layer (t−1) is as follows:

s(t) =Wu(t) =WIx(t)+WLh(t−1), (t = 1,2, · · ·).

The output of the recurrent layer is

h(t) = G(s(t)),

and the output of the whole network is the first component of h(t)

h1(t) = g(s1(t)), (t = 1,2, · · ·).

3. GRADIENT LEARNING METHOD IN THE RNN WITH SMOOTHING L1/2
REGULARIZATION

Suppose that the training sample set is {x(t),O(t)}Q
t=1. Given a matrix A = (ai j) ∈ Rm×n,

vecA is defined as mn dimension vector as follows:

vecA = (a11,a21, · · · ,am1,a12,a22, · · · ,am2, · · · ,a1n,a2n, · · · ,amn)
T .

Then, we define
w = vecW.

Define the square error function by

Ẽ(w) =
1
2

Q

∑
t=1

(O(t)−h1(t))2. (3.1)
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Algorithm 1: RNN

Input: Training set D = {x(t),O(t)}Q
t=1, learning rate η , maximum iterative number

MaxE pochs, minimum error Err, activation function g, vector e1;
Output: Determined connection weights www;

1 Initialize www randomly in the range of (-1,1), the recurrent layer h(0) = 0;
2 Epochs = 0;
3 while ẼEE(((www)))6 Err or Epochs > MaxE pochs do
4 for t = 1 : Q do
5 h(t) = g(x(t),h(t−1),BBB);
6 h1(t) = h(t)e1

7 end
8 for t = 1 : Q do
9 Calculate ẼEE(((www))) based on Eq. (3.1);

10 Calculate ∆∆∆ẼEE(((www))) based on Eq. (3.2);
11 end
12 Update www based on Eq. (3.3) and Eq. (3.4);
13 Epochs = Epochs+1;
14 end
15 return www;

The gradient of the error function is defined as

Ẽw(w) =−
Q

∑
t=1

(O(t)−h1(t))
(

∂h(t)
∂w

)T

e1, (3.2)

where e1 is the first M-dimensional column vector with 1 and the remaining 0. Then, it can be
calculated

∂h(t)
∂w

= G′(s(t))
(
(u(t))T ⊗ IM +WL

∂h(t−1)
∂w

)
,

where IM is the M×M unit matrix, and ⊗ means the Kronecker product. Because the initial
condition h(0)≡ 0, we have

∂h(0)
∂w

= 0.

The training of the network is: Starting with an initial value w0, the weights wk are updated
iteratively by

wk+1 = wk +∆wk, (k = 0,1,2, · · ·), (3.3)

where

∆wk =−ηẼw(w), (3.4)

where η is a positive learning parameter.
The framework of the RNN is shown in Algorithm 1.
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On this basis, the L1/2 regularization is added to the network weight pruning to optimize the
network. So we can obtain the new error function:

E(w) = Ẽ(w)+λ‖w‖
1
2 ,

=
1
2

Q

∑
t=1

(O(t)−h1(t))2 +λ‖w||
1
2 ,

where λ ∈ (0,1) is the coefficient of penalty term, and the gradient function of error E(w) is

Ew(w) = Ẽw(w)+λ
sgn(w)

2‖w|| 12

=−
Q

∑
t=1

(O(t)−h1(t))
(

∂h(t)
∂w

)T

e1 +λ
sgn(w)

2‖w|| 12
.

The gradient learning algorithm with penalty terms modifies the value as follows

wk+1 = wk +∆wk, (k = 0,1,2, · · ·),

where

∆wk =−η

[
Ẽw(w)+λ

sgn(w)

2‖w|| 12

]
.

Because the absolute value function is not differentiable at the origin, it is easy to oscillate in
the iterative process. To overcome this difficulty, we adopt smoothing technology. If a smooth
function is used to approximate the absolute value of the weight in a small neighborhood near
the origin, the error function of the algorithm with L1/2 regular term is as follows:

E(w) = Ẽ(w)+λ || f (w)||
1
2 , (3.5)

where f (w) is a smooth function that approximates |w|.
Generally, we choose a smoothing function of |x| as follow:

f (x) =

{
|x|, |x| ≥ a,

− |x|
4

8a3 +
3|x|2
4a + 3a

8 , |x|< a.

It is not hard to see that

f (x) ∈ [
3
8

a,+∞), f ′(x) ∈ [−1,1], f ′′(x) ∈ [0,
3

2a
],

where a is a small positive constant, which is close to zero. The new error equation after adding
smoothing is

Ew(w) = Ẽw(w)+λ
f ′(w)

2| f (w)| 12

=−
Q

∑
t=1

(O(t)−h1(t))
(

∂h(t)
∂w

)T

e1 +λ
f ′(w)

2| f (w)| 12
.

(3.6)

Then, we obtain
wk+1 = wk +∆wk, (k = 0,1,2, · · ·), (3.7)
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where

∆wk =−η

[
Ẽw(w)+λ

f ′(w)

2| f (w)| 12

]
. (3.8)

The framework of the smoothing L1/2 regularizer with recurrent neural network (RNNSL1/2) is
shown in Algorithm 2.

Algorithm 2: RNNSL1/2

Input: Training set D = {x(t),O(t)}Q
t=1, learning rate η , maximum iterative number

MaxE pochs, minimum error Err, activation function g, penalty rate λ ,
smoothing parameter a, vector e1;

Output: Determined connection weights www ;
1 Initialize www randomly in the range of (-1,1), the recurrent layer h(0) = 0;
2 Epochs = 0;
3 while EEE(((www)))6 Err or Epochs > MaxE pochs do
4 for t = 1 : Q do
5 h(t) = g(x(t),h(t−1),BBB);
6 h1(t) = h(t)e1

7 end
8 for t = 1 : Q do
9 Calculate ẼEE(((www))) based on Eq. (3.1);

10 for i=1:size(w) do
11 if w(i)> a then
12 w(i) = abs(w(i));
13 else
14 w(i) =− |w|

4

8a3 +
3|w|2

4a + 3a
8 ;

15 end
16 end
17 Calculate EEE(((www))) based on Eq. (3.5);
18 Calculate ∆∆∆EEE(((www))) based on Eq. (3.6);
19 end
20 Update www based on Eq. (3.7) and Eq. (3.8);
21 Epochs = Epochs+1;
22 end
23 return www;

4. NUMERICAL SIMULATIONS

In this section, there are 9 available data sets in the UCI database [3, 24] to evaluate the
performance of the L2 regularizer with recurrent neural network (RNNL2), the L1/2 with recur-
rent neural network (RNNL1/2), the smoothing L1/2 regularizer with recurrent neural network
(RNNSL1/2), and compare with the original RNN. In the first subsection, the results and error
graphs of the XOR problem are discussed. In the second subsection, a comparison of the results
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of the approximation problem is given. the last subsection provides the comparison results of
the classification problems.

4.1. XOR problems. In this subsection, the algorithm proposed in the paper is applied to the
XOR problem and numerical experiment simulations are given. We choose the network struc-
ture as 3 input nodes (including a bias) and 4 recurrent nodes. The sigmoid function g(t)= 1

1+e−x

is used as the activation function. Given a random initial weight matrix w, the training stops
when the number of iteration steps reaches 5000. The experimental results are given in Table 1.

From Figure 3(a), Figure 3(b), and Figure 3(c), we presented the error function curves, the
norm of gradient curves, and the norm of weight curves for the RNN, the RNNL2, the RNNL1/2,
and the RNNSL1/2 algorithms, respectively. It can be clearly seen from the Figure 3 that the
error function is monotonically decreasing, and the gradient norm decreases to zero. It can be
seen from the weight norm curve that the size of the weight is effectively controlled.

TABLE 1. The training samples and experiment result

t x1 x2 O RNN RNNL2 RNNL1/2 RNNSL1/2
1 1 1 0 0.0245 0.1493 0.0307 0.0178
2 0 0 1 0.9591 0.9623 0.9899 0.9999
3 1 0 0 0.0267 0.0237 0.0143 0.0083
4 0 1 1 0.9692 0.8978 0.9999 1.0000
5 1 1 1 0.9587 0.9637 1.0000 0.9999
6 0 0 1 0.9589 0.9733 0.9995 0.9999
7 0 1 0 0.4284 0.3283 0.0189 0.0713
8 0 1 1 0.9588 0.9788 0.9975 0.9992
9 1 1 1 0.9877 0.9812 0.9999 0.9998

10 0 0 1 0.9589 0.9673 1.0000 1.0000
11 1 0 0 0.1983 0.0984 0.0165 0.0451
12 0 1 1 0.9745 0.9781 0.9806 0.9899
13 1 1 1 0.9899 0.9543 0.9989 1.0000
14 0 0 1 0.9739 0.9912 0.9999 1.0000
15 0 1 0 0.0472 0.0659 0.0672 0.0173
16 1 0 1 0.9741 0.9876 1.0000 1.0000

4.2. Function approximation problems. In this subsection, we consider using the RNN, the
RNNL2, the RNNL1/2, and the RNNSL1/2 to approximate the function. The expression of the
objective function is defined as follows:

y(x) =
sin(x)

x
.

The training set and testing set {x(i),y(i)}T
i=1 with T = 67 data respectively, and x(i) is

uniformly distributed on the interval (−10,10). In order to make the regression problem more
realistic, we add uniform noise with [−0.2,0.2] distribution to the training set, and the test
set remains noise-free. For the authenticity of the experimental environment, we choose the
learning rate η = 0.06, the regularization parameter λ = 0.009, and the smoothing coefficient
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FIGURE 3. The performance results based on XOR problem with RNN,
RNNL2, RNNL1/2 and RNNSL1/2.
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FIGURE 4. Comparison of approximation results for the RNN, RNNL2,
RNNL1/2 and RNNSL1/2 .

a = 0.05. Form Figure 4, we can observe that the approximate effect of the RNNSL1/2 on the
objective function is better than other algorithms.

4.3. Classification problems. To verify the effectiveness of the RNNL1/2 and the RNNSL1/2
algorithms. Our experiment uses 9 data sets from the UCI machine learning repository. The
details of these data are given in Table 2. For each data set, we use 70% of the total data as the
training set and 30% as the test set. For the authenticity of the experimental environment, we
choose the learning rate η = 0.06, the regularization parameter λ = 0.009, and the smoothing
coefficient a = 0.05. We use the same initial training parameters to build the same network
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FIGURE 5. Comparison of Iris under RNN, RNNL2, RNNL1/2 and RNNSL1/2 algorithms.
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FIGURE 6. Comparison of Wine under the RNN, RNNL2, RNNL1/2 and
RNNSL1/2 algorithms.

structure, obtain the average result of each algorithm under 20 simulation experiments, and
then perform a detailed analysis and comparison of its performance.

TABLE 2. Detail description of the classification data sets

Dataset Instances Training Testing Attributes Class
samples samples

Balance-Scale 625 438 187 4 3
Ecoli 336 235 101 7 8
Glass 214 150 64 10 7
Heart 270 189 81 13 2
Iris 150 105 45 4 3
Seeds 210 146 64 7 3
Sonar 208 146 61 60 2
Speaker 329 230 99 12 6
Wine 178 125 25 13 3

We can see from Table 3 that, compared with other algorithms, the RNNSL1/2 can find re-
dundant nodes and has the most significant impact on the sparseness of the weights. Therefore,
the RNNSL1/2 can better trim the network structure without affecting the test success rate, and
can also improve the approximation or classification effect, and overcome the oscillation phe-
nomenon in the learning process.
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TABLE 3. Performance comparison for classification problems

Data set Algorithms Training Testing Surviving
Accuracy(%) Accuracy(%) Weights

Balance-Scale

RNN 84.64 82.12 21.00
RNNL2 86.17 85.11 21.00

RNNL1/2 88.19 85.23 13.81
RNNSL1/2 92.77 90.68 11.46

Ecoli

RNN 82.50 80.29 120.00
RNNL2 81.86 80.61 120.00

RNNL1/2 83.94 81.92 91.32
RNNSL1/2 87.28 84.50 88.92

Glass

RNN 87.50 84.29 90.00
RNNL2 86.17 85.11 90.00

RNNL1/2 87.94 85.92 68.30
RNNSL1/2 89.61 87.50 55.72

Heart

RNN 87.71 87.65 30.00
RNNL2 87.94 85.39 30.00

RNNL1/2 90.25 86.12 21.34
RNNSL1/2 91.49 91.01 21.03

Iris

RNN 86.40 84.49 21.00
RNNL2 90.92 89.76 21.00

RNNL1/2 93.28 90.70 11.93
RNNSL1/2 95.18 93.52 10.79

Seeds

RNN 90.11 89.70 30.00
RNNL2 90.49 89.95 30.00

RNNL1/2 93.76 90.65 18.82
RNNSL1/2 94.13 92.57 18.08

Sonar

RNN 93.24 90.80 124.00
RNNL2 86.17 85.11 124.00

RNNL1/2 94.14 92.82 60.91
RNNSL1/2 96.57 93.61 58.30

Speaker

RNN 84.96 79.91 108.00
RNNL2 85.06 78.39 108.00

RNNL1/2 92.94 85.73 70.32
RNNSL1/2 93.79 87.07 69.79

Wine

RNN 97.94 95.79 48.00
RNNL2 96.27 95.11 48.00

RNNL1/2 98.67 96.34 30.15
RNNSL1/2 1.00 99.69 29.08
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5. CONCLUSIONS

In this paper, we proposed an improved algorithm based on the RNN, which is used to trim
the redundant weights of the RNN in the training process. Through the use of smoothing tech-
nology, it was shown that the new algorithm can not only solve the oscillation phenomenon
generated by the original regularizer but also effectively optimize the network structure and
improve efficiency. More importantly, we used the XOR problem, the approximation problem,
and the classification problem to prove that the new algorithm can indeed make the weights
more sparse so that the network structure is simpler, and the convergence efficiency is faster.
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