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A GENERAL ITERATIVE ALGORITHM FOR SPLIT VARIATIONAL INCLUSION
PROBLEMS AND FIXED POINT PROBLEMS OF A PSEUDOCONTRACTIVE

MAPPING
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Abstract. In this paper, we introduce a general iterative algorithm based on the hybrid steepest descent
method for finding a common element of the solution set of split variational inclusion problems and
the fixed point set of a continuous pseudocontractive mapping. We establish strong convergence of the
proposed iterative algorithm in a Hilbert space. We also find the minimum-norm element in the common
set of two sets.
Keywords. Continuous pseudocontractive mapping; Fixed point problem; Maximal monotone operator;
Minimum-norm point; Split variational inclusion problem.

1. INTRODUCTION

Let H1 and H2 be two real Hilbert spaces. Let D and Q be nonempty, closed, and convex
subsets of H1 and H2, respectively. Let A : H1 → H2 be a bounded linear operator. Then the
split feasibility problem (SFP) is to find a point z∈H1 such that z∈D∩A−1Q. In 1994, the SFP
was first introduced by Censor and Elfving [8], in finite-dimensional Hilbert spaces, for mod-
eling inverse problems which arise from phase retrievals and in medical image reconstruction.
Since then, the SFP has received much attention due to its wide applications in signal pro-
cessing, image reconstruction, with particular progress in intensity-modulated radiation ther-
apy(IMRT), approximation theory, control theory, biomedical engineering, communications,
and geophysics; see, e.g., [2, 3, 4, 7] and the references therein.

In 2011, based on the split variational inequality problem (SVP) introduced by Censor et
al. [9], Moudafi [16] proposed the following split monotone variational inclusion problem
(SMVIP):

find a point x∗ ∈ H1 such that 0 ∈ f1(x∗)+B1(x∗), (1.1)
and

y∗ = Ax∗ ∈ H2 solves 0 ∈ f2(y∗)+B2(y∗), (1.2)
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where B1 : H1 → 2H1 and B2 : H2 → 2H2 are multi-valued maximal monotone mappings, A :
H1→H2 is a bounded linear operator, and f1 : H1→H1 and f2 : H2→H2 are two given single-
valued operators. The SMVIP (1.1)-(1.2) includes, as special cases, several split problems, such
as the split zero problem (SZP), the SVP, the SFP, and the split common fixed point problem
(SCFPP) [3, 4, 5, 13, 16], which have already been studied and used in practice as a model in the
IMRT treatment planning (see [7, 8]) and in many inverse problems arising for phase retrieval
and other real-world problem; for instance, in computerized tomography, in sensor networks
and date computation (see [3, 10]).

If f1 ≡ 0 and f2 ≡ 0, then SMVIP (1.1)-(1.2) reduces to the following split variational inclu-
sion problem (SVIP):

find a point x∗ ∈ H1 such that 0 ∈ B1(x∗), (1.3)

and

y∗ = Ax∗ ∈ H2 solves 0 ∈ B2(y∗). (1.4)

As we know, (1.3) is the variational inclusion problem, and we denote its solution set by
SOLVIP(B1). The SVIP (1.3)-(1.4) consists of a pair of variational inclusion problems, which
need to be solved so that the image y∗ = Ax∗ under a given bounded linear operator A, of the
solution x∗ of SVIP(1.3) in H1 is the solution of another SVIP (1.4) in another space H2. We
denote the solution set of SVIP(1.4) by SOLVIP(B2). The solution set of SVIP (1.3)-(1.4) is
denote by Γ = {x∗ ∈ H1 : x∗ ∈ SOLVIP(B1) and Ax∗ ∈ SOLVIP(B2)}.

A fixed point problem (FPP) is to find a fixed point z of a nonlinear mapping S with the
property:

z ∈C, Sz = z, (1.5)

where C is a nonempty, closed, and convex subset of a Hilbert space H. We denote the fixed
point set of S by Fix(S).

Many authors considered the SVIP (1.3)-(1.4). In 2012, Byrne et al. [5] introduced the
following iterative algorithm for the SVIP (1.3)-(1.4), which ensured the weak and strong con-
vergence: for given x0 ∈ H1, compute iterative sequence {xn} generated by

xn+1 = JB1
λ
(xn +ηA∗(JB2

λ
− I)Axn),

where JBi
λ

= (I +λBi)
−1 is the resolvent of Bi for i = 1,2, and λ > 0, A∗ is the adjoint of A,

L = ‖AA∗‖ and η ∈ (0, 2
L).

In 2013, in order to study the SVIP (1.3)-(1.4) coupled with the FPP (1.5) of a nonexpansive
mapping S, Kazmi and Rizvi [14] proposed the following iterative algorithm based on the work
of Byrne et al. [5]: {

un = JB1
λ
(xn +ηA∗(JB2

λ
− I)Axn),

xn+1 = αn f xn +(1−αn)Sun, n≥ 0,
(1.6)

where f : H1→ H1 is a contractive mapping and αn ∈ (0,1), and established the strong conver-
gence of the sequence {xn} generated by (1.6) to the common element of the solution set Γ of
SVIP (1.3)-(1.5) and the fixed point set Fix(S) of S.
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In 2015, combining the method (1.6) of Kazmi and Rizvi [14] and the method of Marino and
Xu [15], Sitthithakerngkiet et al. [17] presented the following general iterative algorithm:{

un = JB1
λ
(xn +ηA∗(JB2

λ
− I)Axn),

xn+1 = αnξ f xn +(I−αnD)Sun, n≥ 0,
(1.7)

where D : H1→ H1 is a strongly positive bounded linear operator and ξ > 0, and showed that
the sequence {xn} generated by (1.7) converges strongly to a point of Γ∩Fix(S), which is the
unique solution of a certain variational inequality related to D.

In 2018, in order to investigate the SVIP (1.3)-(1.4) coupled with the FPP (1.5) for a strictly
pseudocontractive mapping T , Yang and Yuan [22] considered the following iterative algorithm
based on Yamada’s hybrid steepest descent method [21]:{

un = JB1
λn
(xn +ηA∗(JB2

λn
− I)Axn),

xn+1 = Tβnun−µαnGTβnun, n≥ 0,
(1.8)

where Tβn = (1− βn)T + βnI and G : H1 → H1 is a κ-Lipschitzian and ρ-strongly monotone
mapping with constants κ, ρ > 0, and showed strong convergence of the sequence {xn} gen-
erated by (1.8) to a point of Γ∩Fix(T ), which is the unique solution of a certain variational
inequality related to G.

In this paper, motivated by the works of Byrne et al. [5], Kazmi and Rizvi [14], Sitthithak-
erngkiet et al. [17], and Yang and Yuan [22], we introduce a new general iterative algorithm
based on the hybrid steepest descent method for finding a common element of the solution set Γ

of SVIP (1.3)-(1.4) and the fixed point set Fix(T ) of a continuous pseudocontractive mapping
T . Then we establish strong convergence of the sequence generated by the proposed iterative
algorithm to a point of Γ∩Fix(T ), which is a solution of a certain variational inequality. As a
direct consequence, we find the unique minimum-norm element of Γ∩Fix(T ). The results of
in this paper are the supplement, extension, and generalization of the previous known results in
this area; see, e.g., [5, 14, 17, 22]) and the references therein.

2. PRELIMINARIES

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖, and let C be a
nonempty, closed, and convex subset of H.

We recall that

(i) a mapping V : C→ H is said to be l-Lipschitzian if there exists a constant l ≥ 0 such
that

‖V x−V y‖ ≤ l‖x− y‖ for all x, y ∈C;

(ii) a mapping G : C→ H is said to be ρ-strongly monotone if there exists a constant ρ > 0
such that

〈Gx−Gy,x− y〉 ≥ ρ‖x− y‖2 for all x, y ∈C;

(iii) a mapping T : C→ H is said to be pseudocontractive if

‖T x−Ty‖2 ≤ ‖x− y‖2 +‖(I−T )x− (I−T )y‖2 for all x, y ∈C;
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(iv) a mapping T : C → H is said to be k-strictly pseudocontractive [6] if there exists a
constant k ∈ [0,1) such that

‖T x−Ty‖2 ≤ ‖x− y‖2 + k‖(I−T )x− (I−T )y‖2 for all x, y ∈C;

(v) a mapping T : C→ H is said to be nonexpansive if

‖T x−Ty‖ ≤ ‖x− y‖, for all x, y ∈C

where I is the identity mapping.

Clearly, the class of pseudocontractive mappings includes the class of strictly pseudocontractive
mappings and the class of nonexpansive mappings as subclasses. Moreover, this inclusion is
strict (see [1, Example 5.7.1 and Example 5.7.2]).

Let B be a mapping of H into 2H . The effective domain of B is denoted by dom(B), that is,
dom(B) = {x ∈ H : Bx 6= /0}. A set-valued mapping B is said to be a monotone operator on H
if 〈x− y,u− v〉 ≥ 0 for all x, y ∈ dom(B), u ∈ Bx, and v ∈ By. A monotone operator B on H
is said to be maximal if its graph is not properly contained in the graph of any other monotone
operator on H. For a maximal monotone operator B on H and λ > 0, we may define a single-
valued operator JB

λ
= (I +λB)−1 : H → dom(B), which is called the resolvent of B. Let B be

a maximal monotone operator on H and let B−10 = {x ∈ H : 0 ∈ Bx}. It is well-known that
B−10 = Fix(JB

λ
) for all λ > 0 is closed and convex and the resolvent JB

λ
is firmly nonexpansive,

that is,
‖JB

λ
x− JB

λ
y‖2 ≤ 〈x− y,JB

λ
x− JB

λ
y〉 for all x, y ∈ H, (2.1)

and that the resolvent identity

JB
λ

x = JB
µ

(
µ

λ
x+
(

1− µ

λ

)
JB

λ
x
)

(2.2)

holds for all λ , µ > 0 and x ∈ H.
In a real Hilbert space H, the following hold:

‖x− y‖2 = ‖x‖2 +‖y‖2−2〈x,y〉, (2.3)

and
‖αx+βy‖2 = α‖x‖2 +β‖y‖2−αβ‖x− y‖2 ≤ α‖x‖2 +β‖y‖2, (2.4)

for all x, y ∈ H and α, β ∈ (0,1) with α +β = 1.
It is also well known ([11]) that every nonexpansive mapping T : H → H satisfies, for all

(x,y) ∈ H×H, the inequality

〈(x−T x)− (y−Ty),Ty−T x〉 ≤ 1
2
‖(T x− x)− (Ty− y)‖2,

and hence, for all (x,y) ∈ H×Fix(T ),

〈x−T x,y−T x〉 ≤ 1
2
‖T x− x‖2. (2.5)

For every point x ∈ H, there exists a unique nearest point in C, denoted by PCx, such that

‖x−PCx‖= inf{‖x− y‖ : y ∈C}.
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PC is called the metric projection of H onto C. It is well known ([19]) that PC is nonexpansive
and PC is characterized by the property

u = PCx⇐⇒ 〈x−u,u− y〉 ≥ 0 for all x ∈ H, y ∈C. (2.6)

A mapping T : H→H is said to be averaged if it can be written as the average of the identity
I and a nonexpansive mapping, that is,

T = (1−α)I +αS, (2.7)

where α is a number in (0,1) and S : H → H is nonexpansive. More precisely, when (2.7)
holds, we say that T is α-averaged. We note that averaged mappings are nonexpansive. Further
firmly nonexpansive mappings (in particular, projections and resolvents of maximal monotone
operators) are averaged, and the composite of finitely many averaged mappimgs is averaged
(see [4, 16]).

We need the following lemmas for the proof of our main results.

Lemma 2.1 ([1]). In a real Hilbert space H, the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉, ∀x, y ∈ H.

Lemma 2.2 ([18]). Let {xn} and {zn} be bounded sequences in a real Banach space E, and let
{γn} be a sequence in [0,1] which satisfies 0 < liminfn→∞ γn ≤ limsupn→∞ γn < 1. Suppose that
xn+1 = γnxn +(1− γn)zn for all n ≥ 1 and limsupn→∞(‖zn+1− zn‖−‖xn+1− xn‖) ≤ 0. Then
limn→∞ ‖zn− xn‖= 0.

Lemma 2.3 ([20]). Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1−ξn)sn +ξnδn, ∀n≥ 1,

where {ξ} and {δn} satisfy the following conditions:
(i) {ξn} ⊂ [0,1] and ∑

∞
n=1 ξn = ∞;

(ii) limsupn→∞ δn ≤ 0 or ∑
∞
n=1 ξn|δn|< ∞.

Then limn→∞ sn = 0.

The following lemma is the Lemma 2.4 of Zegeye [23].

Lemma 2.4 ([23]). Let C be a closed and convex subset of a real Hilbert space H. Let T :C→H
be a continuous pseudocontractive mapping. Then, for r > 0 and x ∈ H, there exists z ∈C such
that 〈y− z,T z〉− 1

r 〈y− z,(1+ r)z− x〉 ≤ 0, ∀y ∈C. For r > 0 and x ∈ H, define Tr : H→C by

Trx =
{

z ∈C : 〈y− z,T z〉− 1
r
〈y− z,(1+ r)z− x〉 ≤ 0, ∀y ∈C

}
.

Then the following hold:
(i) Tr is single-valued;

(ii) Tr is firmly nonexpansive, that is,

‖Trx−Try‖2 ≤ 〈x− y,Trx−Try〉, ∀x, y ∈ H;

(iii) Fix(Tr) = Fix(T );
(iv) Fix(T ) is a closed convex subset of C.

The following lemmas can be easily proven from see [21], and therefore, we omit their proof.
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Lemma 2.5. Let H be a real Hilbert space. Let V : H→H be an l-Lipschitzian mapping with a
constant l ≥ 0, and let G : H→ H be a κ-Lipschitzian and ρ-strongly monotone mapping with
constants κ, ρ > 0. Then, for 0≤ γl < µρ ,

〈(µG− γV )x− (µG− γV )y,x− y〉 ≥ (µρ− γl)‖x− y‖2 for all x, y ∈ H.

That is, µG− γV is strongly monotone with constant µρ− γl.

Lemma 2.6. Let H be a real Hilbert space H. Let G : H → H be a κ-Lipschitzian and ρ-
strongly monotone mapping with constants κ > 0 and ρ > 0. Let 0 < µ < 2ρ

κ2 and 0 < t <
σ ≤ 1. Then σ I− tµG : H → H is a contractive mapping with a constant σ − tτ , where τ =

1−
√

1−µ(2ρ−µκ2).

Lemma 2.7 ([12]). Assume that T is nonexpansive self mapping of a closed convex subset of
C of a Hilbert space H. If T has a fixed point, then I−T is demiclosed, i.e., whenever {xn}
is a sequence in C converging weakly to some x ∈ C and the sequence {(I−T )xn} converges
strongly to some y, it follows that (I−T )x = y, where I is the identity mapping H.

We have the following lemma, which is a direct consequence of the definition of resolvent
mapping.

Lemma 2.8 ([14]). SVIP(1.3)-(1.4) is equivalent to find x∗ ∈ H1 such that y∗ = Ax∗ ∈ H2

x∗ = JB1
λ

x∗ and y∗ = JB2
ν y∗ f or some λ , ν > 0.

In the following, we write xn ⇀ x to indicate that the sequence {xn} converges weakly to x.
xn→ x implies that {xn} converges strongly to x.

3. ITERATIVE ALGORITHMS

Throughout the rest of this paper, we always assume the following:

• H1 and H2 are real Hilbert spaces with inner product 〈·, ·〉 and induced norm ‖ · ‖;
• A : H1→ H2 is a bounded linear operator;
• A∗ : H2→ H1 is the adjoint of A;
• L is the spectral radius of the operator A∗A
• B1 : H1→ 2H1 is a maximal monotone operator with dom(B1)⊂ H1;
• B2 : H2→ 2H2 is a maximal monotone operator with dom(B2)⊂ H2
• B−1

1 0 is the set of zero points of B1, that is, B−1
1 0 = {z ∈ H1 : 0 ∈ B1z};

• B−1
2 0 is the set of zero points of B2, that is, B−1

2 0 = {z ∈ H2 : 0 ∈ B2z};
• JB1

λn
: H1→ dom(B1) is the resolvent of B1 for λn ∈ (0,∞) and liminfn→∞ λn > 0;

• JB2
νn : H2→ dom(B2) is the resolvent of B2 for νn ∈ (0,∞) and liminfn→∞ νn > 0;

• G : H1 → H1 is a κ-Lipschitzian and ρ-strongly monotone mapping with constants
κ, ρ > 0;
• V : H1→ H1 is an l-Lipschitzian mapping with constant l ∈ [0,∞);
• µ and γ , which are two positive constants, satisfy 0 < µ < 2ρ

κ2 and 0 ≤ γl < τ , where
τ = 1−

√
1−µ(2ρ−µκ2);

• T : H1→ H1 is a continuous pseudocontractive mapping with Fix(T ) 6= /0;
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• Trn : H1→ H1 is a mapping defined by

Trnx =
{

z ∈ H1 : 〈T z,y− z〉− 1
rn
〈y− z,(1+ rn)z− x〉 ≤ 0, for ally ∈ H1

}
for x ∈ H1 and rn ∈ (0,∞), and liminfn→∞ rn > 0;
• Γ 6= /0 is the solution set of SVIP (1.3)-(1.4). That is, Γ = {x∗ ∈ H1 : x∗ ∈ SOLVIP(B1)

and Ax∗ ∈ SOLVIP(B2)} 6= /0.
• Ω := Γ∩Fix(T ) 6= /0.

By Lemma 2.4, we note that Trn is nonexpansive, and Fix(Trn) = Fix(T ).
Now, we propose a new iterative algorithm which generates a sequence {xn} in an explicit

way: for an arbitrarily chosen x0 ∈C,{
zn = JB1

λn
(xn +ηnA∗(JB2

νn − I)Axn),

xn+1 = βnxn +(1−βn)Trn(αnγV xn +(I−αnµG)zn), n≥ 0,
(3.1)

where {αn} and {βn} are two real sequences in (0,1), {rn}, {λn}, and {νn} are three positive
real sequences, and {ηn} is a real sequence in (0, 1

L). We will establish strong convergence of
this sequence to a common element of Ω.

Theorem 3.1. Let the sequence {xn} be generated iteratively by the explicit algorithm (3.1).
Let {αn}, {βn} ⊂ (0,1), {rn},{λn},{νn} ⊂ (0,∞) and {ηn} ⊂ (0, 1

L) satisfy the following con-
ditions:

(C1) limn→∞ αn = 0;
(C2) ∑

∞
n=0 αn = ∞;

(C3) 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1;
(C4) 0 < r ≤ rn < ∞ and limn→∞ |rn+1− rn|= 0;
(C5) 0 < λ ≤ λn < ∞ and limn→∞ |λn+1−λn|= 0;
(C6) 0 < ν ≤ νn < ∞ and limn→∞ |νn+1−µn|= 0;
(C7) 0 < η ≤ ηn <

1
L and limn→∞ |ηn+1−ηn|= 0 .

Then {xn} converges strongly to a point q ∈ Ω, which is the unique solution of the variational
inequality

〈(µG− γV )q, p−q〉 ≥ 0 for all p ∈Ω. (3.2)

Proof. First, let Q = PΩ, where Ω := Γ∩Fix(T ). Then, by the closedness and convexity of Γ

and Fix(T )( Lemma 2.4 (iv)), PΩ is well-defined. Also, it is easy to show that Q(I−µG+γV ) :
H1→ H1 is a contractive mapping with a constant 1− (τ − γl). In fact, from Lemma 2.6, we
have

‖Q(I−µG+ γV )x−Q(I−µG+ γV )y‖ ≤ ‖(I−µG+ γV )x− (I−µG+ γV )y‖
≤ ‖(I−µG)x− (I−µG)y‖+ γ‖V x−V y‖
≤ (1− (τ− γl))‖x− y‖

for any x, y∈H1. So, Q(I−µG+γV ) is a contractive mapping with a constant 1−(τ−γl)< 1.
Thus, by Banach contraction principle, there exists a unique element q ∈ H1 such that q =
PΩ(I− µG+ γV )q. Equivalently, by (2.6), q is a solution of the variational inequality (3.2).
We note that the uniqueness of a solution to variational inequality (3.2) is a consequence of the
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strong monotonicity of µG− γV (due to Lemma 2.5). Below, we will use q ∈ Ω to denote the
unique solution to variational inequality (3.2).

From now on, we put Kn = I +ηnA∗(JB2
νn − I)A, un = xn +ηnA∗(JB2

νn − I)Axn = Knxn, zn =

JB1
λn

un, and yn = αnγV xn +(I−αnµG)zn for n≥ 0. Let p ∈Ω. Since

‖zn− p‖2 = ‖JB1
λn

un− JB1
λn

p‖2

= ‖JB1
λn
(xn +ηnA∗(JB2

νn − I)Axn− JB1
λn

p‖2

≤ ‖xn +ηnA∗(JB2
νn − I)Axn− p‖2

= ‖xn− p‖2 +η
2
n‖A∗(J

B2
νn − I)Axn‖2 +2ηn〈xn− p,A∗(JB2

νn − I)Axn〉,

(3.3)

we have
‖zn− p‖2 ≤ ‖xn− p‖2 +η

2
n 〈(J

B2
νn − I)Axn,AA∗(JB2

νn − I)Axn〉

+2ηn〈xn− p,A∗(JB2
νn − I)Axn〉.

(3.4)

Observe that

η
2
n 〈J

B2
νn − I)Axn,AA∗(JB2

νn − I)Axn〉 ≤ Lη
2
n‖(J

B2
νn − I)Axn‖2. (3.5)

Moreover, from (2.5), we obtain

2ηn〈xn− p,A∗(JB2
νn − I)Axn〉= 2ηn〈A(xn− p),(JB2

νn − I)Axn〉

= 2ηn〈A(xn− p)+(JB2
νn − I)Axn− (JB2

νn − I)Axn,(J
B2
νn − I)Axn〉

= 2ηn[〈(JB2
νn Axn−Ap,JB2

νn − I)Axn〉−‖(JB2
νn − I)Axn‖2]

≤ 2ηn[
1
2
‖(JB2

νn − I)Axn‖2−‖(JB2
νn − I)Axn‖2]

= −ηn‖(JB2
νn − I)Axn‖2.

(3.6)
From (3.3), (3.4), (3.5), and (3.6), we have

‖zn− p‖2 = ‖JB1
λn

un− JB1
λn

p‖2 ≤ ‖un− p‖2

= ‖xn +ηnA∗(JB2
νn − I)Axn− p‖2

≤ ‖xn− p‖2 +ηn(Lηn−1)‖(JB2
νn − I)Axn‖2

≤ ‖xn− p‖2 (by ηn ∈ (0,
1
L
)).

(3.7)

Now, we divide the proof into the following steps.

Step 1. Show that {xn} is bounded.
In view of p = JB1

λn
p, p = Kn p, and p = Trn p, we obtain from (3.7) that

‖yn− p‖= ‖αnγV xn +(I−αnµG)zn− p‖
≤ αn‖γV xn− γV p‖+αn‖γV p−µGp‖+(1−αnτ)‖un− p‖
≤ αnγl‖xn− p‖+αn‖γV p−µGp‖+(1−αnτ)‖xn− p‖
= (1− (τ− γl)αn)‖xn− p‖+αn‖γV p−µGp‖.

(3.8)
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Thus, since Trn is nonexpansive (by Lemma 2.4), we deduce from (3.7) and (3.8) that

‖xn+1− p‖ ≤ βn‖xn− p‖+(1−βn)‖Trnyn− p‖
≤ βn‖xn− p‖+(1−βn)‖yn− p‖
≤ βn‖xn− p‖+(1−βn)[(1− (τ− γl)αn)‖xn− p‖+αn‖γV p−µGp‖]

= (1− (1−βn)(τ− γl)αn)‖xn− p‖+(1−βn)(τ− γl)αn
‖γV p−µGp‖

τ− γl

≤ max
{
‖xn− p‖, ‖γV p−µGp‖

τ− γl

}
.

Using an induction, we have

‖xn− p‖ ≤max
{
‖x0− p‖, ‖γV p−µGp‖

τ− γl

}
.

Hence, {xn} is bounded. So, {yn}, {un} = {Knxn}, {zn} = {JB1
λn

un}, {Gxn}, {GJB1
λn

un}, {wn}
= {Trnyn}, and {V xn} are bounded. It follows from (3.1) and condition (C1) that

‖yn− zn‖= ‖yn− JB1
λn

un‖= αn‖γV xn−µGJB1
λn

un‖→ 0 as n→ ∞.

Step 2. Show that limn→∞ ‖xn+1− xn‖= 0.
For this purpose, we derive

‖yn− yn−1‖= ‖αnγV xn +(I−αnµG)JB1
λn

un− (αn−1γV xn−1 +(I−αn−1µG)JB1
λn−1

un−1)‖
≤ ‖(αn−αn−1)γV xn−1 +αn(γV xn− γV xn−1)‖

+‖(I−αnµG)JB1
λn

un− (I−αnµG)JB1
λn−1

un−1‖

+‖(I−αnµG)JB1
λn−1

un−1− (I−αn−1µG)JB1
λn−1

un−1‖
≤ |αn−αn−1|‖γV xn−1‖+αnγl‖xn− xn−1‖

+(1−αnτ)‖JB1
λn

un− JB1
λn−1

un−1‖+ |αn−αn+1|‖µGJB1
λn−1

un−1‖

= |αn−αn−1|(‖γV xn−1‖+‖µGJB1
λn−1

un−1‖)

+αnγl‖xn− xn−1‖+(1−αnτ)‖JB1
λn

un− JB1
λn−1

un−1‖

≤ |αn−αn−1|M1 +αnγl‖xn− xn−1‖+(1−αnτ)‖JB1
λn

un− JB1
λn−1

un−1‖,
(3.9)

where M1 > 0 is an appropriate constant. From the resolvent identity (2.2) and condition (C5)
(0 < λ ≤ λn for n≥ 0), we have

‖JB1
λn

un− JB1
λn−1

un−1‖=
∥∥∥∥JB1

λn−1

(
λn−1

λn
un +

(
1− λn−1

λn

)
JB1

λn
un

)
− JB1

λn−1
un−1

∥∥∥∥
≤
∥∥∥∥λn−1

λn
(un−un−1)+

(
1− λn−1

λn

)
(JB1

λn
un−un−1)

∥∥∥∥
≤ ‖un−un−1‖+

|λn−λn−1|
λn

‖JB1
λn

un−un‖

≤ ‖un−un−1‖+
|λn−λn−1|

λ
M2,

(3.10)
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where M2 > 0 is an appropriate constant. Again, since Kn = I+ηnA∗(JB2
νn − I)A is nonexpansive

as averaged ([16]), we calculate

‖un−un−1‖

= ‖(I +ηnA∗(JB2
νn − I)A)xn− (I +ηn−1A∗(JB2

νn−1− I)A)xn−1‖
= ‖Knxn−Knxn−1‖+‖Knxn−1−Kn−1xn−1‖

≤ ‖xn− xn−1‖+‖(xn−1 +ηnA∗(JB2
νn − I)Axn−1)− (xn−1 +ηn−1A∗(JB2

νn−1− I)Axn−1)‖

≤ ‖xn− xn−1‖+‖ηnA∗(JB2
νn − I)Axn−1−ηn−1A∗(JB2

νn − I)Axn−1‖

+‖ηn−1A∗(JB2
νn − I)Axn−1−ηn−1A∗(JB2

νn−1− I)Axn−1‖

≤ ‖xn− xn−1‖+ |ηn−ηn−1|‖A∗(JB2
νn − I)Axn−1‖

+ηn−1‖A∗‖‖JB2
νn (Axn−1)− JB2

νn−1(Axn−1)‖

≤ ‖xn− xn−1‖+ |ηn−ηn−1|M3 +
1
L
‖A∗‖‖JB2

νn (Axn−1)− JB2
νn−1(Axn−1)‖,

(3.11)

where M3 > 0 is an appropriate constant. From the resolvent identity (2.2) and condition (C6)
(0 < ν ≤ νn for n≥ 0), we deduce

‖JB2
νn (Axn−1)− JB2

νn−1(Axn−1)‖

=

∥∥∥∥JB2
νn−1

(
νn−1

νn
Axn−1 +

(
1− νn−1

νn

)
JB2

νn (Axn−1)

)
− JB2

νn−1(Axn−1)

∥∥∥∥
≤
∣∣∣∣1− νn−1

νn

∣∣∣∣‖JB2
νn (Axn1)−Axn−1‖

≤ |νn−νn−1|
νn

‖(JB2
νn − I)Axn−1‖

≤ |νn−νn−1|
ν

M4,

(3.12)

where M4 > 0 is an appropriate constant. Substituting (3.12) into (3.11), we arrive at

‖un−un−1‖ ≤ ‖xn− xn−1‖+ |ηn−ηn−1|M3 +
1
L
‖A∗‖|νn−νn−1|

M4

ν
. (3.13)

From (3.9), (3.10) and (3.13), we drive

‖yn− yn−1‖ ≤ |αn−αn−1|M1 +αnγl‖xn− xn−1‖+(1−αnτ)‖JB1
λn

un− JB1
λn−1

un−1‖
≤ |αn−αn−1|M1 +αnγl‖xn− xn−1‖

+(1−αnτ)

(
‖un−un−1‖+ |λn−λn−1|

M2

λ

)
≤ |αn−αn−1|M1 +αnγl‖xn− xn−1‖

+(1−αnτ)

[
‖xn− xn−1‖+ |ηn−ηn−1|M3

+
1
L
‖a∗‖|νn−νn−1|

M4

ν
+ |λn−λn−1|

M2

λ

]
.

(3.14)
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On the other hand, let wn = Trnyn. It follows from wrn−1 = Trn−1yn−1 that

〈y−wn,Twn〉−
1
rn
〈y−wn,(1+ rn)wn− yn〉 ≤ 0 for all y ∈ H1, (3.15)

and

〈y−wn−1,Twn−1〉−
1

rn−1
〈y−wn−1,(1+ rn−1)wn−1− yn−1〉 ≤ 0 for all y ∈ H1. (3.16)

Putting y := zn−1 in (3.15) and y := zn in (3.16), we obtain

〈wn−1−wn,Twn〉−
1
rn
〈wn−1−wn,(1+ rn)wn− yn〉 ≤ 0, (3.17)

and

〈wn−wn−1,Twn−1〉−
1

rn−1
〈wn−wn−1,(1+ rn−1)wn−1− yn−1〉 ≤ 0. (3.18)

Adding up (3.17) and (3.18), we obtain

〈wn−1−wn,Twn−Twn−1〉−
〈

wn−1−wn,
(1+ rn)wn− yn

rn
− (1+ rn−1)wn−1− yn−1

rn−1

〉
≤ 0.

(3.19)
Using the fact that T is pseudocontractive, we conclude from (3.19) that〈

wn−1−wn,
wn− yn

rn
− wn−1− yn−1

rn−1

〉
≥ 0,

and hence 〈
wn−1−wn,wn−wn−1 +wn−1− yn−

rn

rn−1
(wn−1− yn−1)

〉
≥ 0. (3.20)

From (3.20) and condition (C4) (0 < r ≤ rn for n≥ 0), we derive

‖wn−wn−1‖2 ≤
〈

wn−1−wn,yn−1− yn +(1− rn

rn−1
)(wn−1− yn−1)

〉
≤ ‖wn−1−wn‖

(
‖yn−1− yn‖+

|rn− rn−1|
r

‖wn−1− yn−1‖
)
.

Thus,

‖wn−wn−1‖ ≤ ‖yn−1− yn‖+
|rn− rn−1|

r
‖wn−1− yn−1‖

≤ ‖yn−1− yn‖+
|rn− rn−1|

r
M5,

(3.21)

where M5 > 0 is an appropriate constant. Substituting (3.14) into (3.21) yields

‖wn−wn−1‖= ‖Trnyn−Trn−1yn−1‖
≤ (1−αn(τ− γl))‖xn− xn−1‖+ |α−αn−1|M1 + |ηn−ηn−1|M3

+
1
L
‖A∗‖|νn−νn−1|

M4

ν
+ |λn−λn−1|

M2

λ
+ |rn− rn−1|

M5

r
.

(3.22)

In view of conditions (C1), (C4), (C5), (C6), and (C7), we find from (3.22) that

limsup
n→∞

(‖wn−wn−1‖−‖xn− xn−1‖ ≤ 0.
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Thus, by Lemma 2.2, we have

lim
n→∞
‖wn− xn‖= lim

n→∞
‖Trnyn− xn‖= 0. (3.23)

Since xn+1− xn = (1−βn)(wn− xn), we conclude from (3.23) and condition (3) that

lim
n→∞
‖xn+1− xn‖= 0.

Step 3. Show that limn→∞ ‖un− zn‖= limn→∞ ‖un− JB1
λn

un‖= 0.
To this end, by (3.7), we see that

‖un− p‖2 = ‖xn +ηnA∗(JB2
νn − I)Axn− p‖2

≤ ‖xn− p‖2 +ηn(Lηn−1)‖(JB2
νt − I)Axn‖2

≤ ‖xn− p‖2 (by ηn ∈ (0,
1
L
)).

(3.24)

Again, since JB1
λn

is firmly nonexpansive, it follows from (2.1) and (2.3) that

‖zn− p‖2 ≤ 〈JB1
λn

un− JB1
λn

p,un− p〉

=
1
2
[‖un− p‖2 +‖zn− p‖2−‖un− zn‖2]

and hence

‖zn− p‖2 ≤ ‖un− p‖2−‖un− zn‖2 ≤ ‖xn− p‖2−‖un− zn‖2. (3.25)

Thus, by (2.4), (3.1), and (3.25), we obtain

‖xn+1− p‖2 ≤ βn‖xn− p‖2 +(1−βn)‖Trnyn− p‖2

≤ βn‖xn− p‖2 +(1−βn)‖yn− p‖2

= βn‖xn− p‖2 +(1−βn)‖αn(γV xn−µGp)+(I−αnµG)JB1
λn

un− (I−αnµG)p‖2

≤ βn‖xn− p‖2 +(1−βn)(αn‖γV xn−µGp‖+(1−αnτ)‖zn− p‖)2

≤ βn‖xn− p‖2 +(1−βn)(αn‖γV xn−µGp‖+‖zn− p‖)2

≤ βn‖xn− p‖2 +(1−βn)[αnM6 +‖xn− p‖2−‖un− zn‖2]

≤ ‖xn− p‖2 +(1−βn)(αnM6−‖un− zn‖2),
(3.26)

where M6 > 0 is an appropriate constant, and so

‖un− zn‖2 ≤αnM6 +
1

1−βn
(‖xn− p‖2−‖xn+1− p‖2)

≤ αnM6 +
1

1−βn
(‖xn− p‖+‖xn−1− p‖)‖xn− xn+1‖

≤ αnM6 +
M7

1−βn
‖xn− xn+1‖,

(3.27)

where M7 > 0 is an appropriate constant. Therefore, by conditions (C1) and (C3), and Step 2,
we derive from (3.27) that ‖un− zn‖→ 0 as n→ ∞.

Step 4. Show that limn→∞ ‖zn− xn‖= limn→∞ ‖JB1
λn

un− xn‖= 0.
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From (3.24) and (3.26), we derive

‖xn+1− p‖2 ≤ βn‖xn− p‖2 +(1−βn)[αnM6 +(1−αnτ)‖zn− p‖2]

≤ βn‖xn− p‖2 +(1−βn)[αnM6 +‖un− p‖2−‖un− zn‖2]

≤ βn‖xn− p‖2 +(1−βn)[αnM6 +‖un− p‖2]

≤ ‖xn− p‖2 +(1−βn)[αnM6 +‖xn− p‖2 +ηn(Lηn−1)‖(JB2
νn − I)Axn‖2]

= ‖xn− p‖2 +(1−βn)αnM6 +(1−βn)ηn(Lηn−1)‖(JB2
νn − I)Axn‖2,

and hence

ηn(1−Lηn)‖(JB2
νn − I)Axn‖2 ≤ αnM6 +

1
1−βn

(‖xn− p‖2−‖xn+1− p‖2)

≤ αnM6 +
M7

1−βn
‖xn− xn+1‖.

Since (1−Lηn)> 0 and 0 < liminfn→∞ ηn, we induce from conditions (C1) and (C3) and Step
2 that

‖(JB2
νn − I)Axn‖→ 0 as n→ ∞. (3.28)

From (2.1), (2.3), (3.7), and ηn ∈ (0, 1
L), we have

‖zn− p‖2 = ‖JB1
λn
(xn +ηnA∗(JB2

νn − I)Axn)− p‖2

= ‖JB1
λn
(xn +ηnA∗(JB2

νn − I)Axn)− JB1
λn

p‖2

≤ 〈zn− p,xn +ηnA∗(JB2
νn − I)Axn− p〉

=
1
2
{‖zn− p‖2 +‖xn +ηnA∗(JB2

νn − I)Axn− p‖2

−‖(zn− p)− (xn +ηnA∗(JB2
νn − I)Axn− p)‖2}

≤ 1
2
{‖zn− p‖2 +‖xn− p‖2 +ηn(Lηn−1)‖(JB2

νn − I)Axn‖2

−‖(zn− xn)−ηnA∗(JB2
νn − I)Axn‖2}

≤ 1
2
{‖zn− p‖2 +‖xn− p‖2− [‖zn− xn‖2

+η
2
n‖A∗(J

B2
νn − I)Axn‖2−2ηn〈zn− xn,A∗(J

B2
νn − I)Axn〉]}

≤ 1
2
{‖zn− p‖2 +‖xn− p‖2−‖zn− xn‖2 +2ηn‖A(zn− xn)‖‖(JB2

νn − I)Axn‖}.
(3.29)

Hence, by (3.29), we obtain

‖zn− p‖2 ≤ ‖xn− p‖2−‖zn− xn‖2 +2ηn‖A(zn− xn)‖‖(JB2
νn − I)Axn‖. (3.30)
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Again, from (2.4), (3.1) and (3.30), we derive that

‖xn+1− p‖2 ≤ βn‖xn− p‖2 +(1−βn)[αn‖γV xn−µGp‖+(1−αnτ)‖zn− p‖]2

≤ βn‖xn− p‖2 +(1−βn)[αnM6 +‖zn− p‖2]

≤ βn‖xn− p‖2

+(1−βn)[αnM6 +(‖xn− p‖2−‖zn− xn‖2 +2ηn‖A(zn− xn)‖‖(JB2
νn − I)Axn‖)]

= ‖xn− p‖2 +(1−βn)αnM6− (1−βn)‖zn− xn‖2

+2(1−βn)ηn‖A(zn− xn)‖‖(JB2
νn − I)Axn‖

and hence

‖zn− xn‖2 ≤αnM6 +2ηn‖A(zn− xn)‖‖(JB2
νn − I)Axn‖+

1
1−βn

(‖xn− p‖2−‖xn+1− p‖2)

≤αnM6 +2ηn‖A(zn− xn)‖‖(JB2
νn − I)Axn‖

+
1

1−βn
(‖xn− p‖+‖xn+1− p‖)‖xn− xn+1‖

≤αnM6 +2ηn‖A(zn− xn)‖‖(JB2
νn − I)Axn‖+

1
1−βn

‖xn− xn+1‖M7.

(3.31)
From conditions (C1) and (C3), Step 2, (3.28), and (3.31), we obtain

‖zn− xn‖→ 0 as n→ ∞.

Step 5. Show that limn→∞ ‖xn−un‖= 0.
In fact, by Steps 3 and 4, we have

‖xn−un‖ ≤ ‖xn− zn‖+‖zn−un‖→ 0 as n→ ∞.

Step 6. Show that limn→∞ ‖xn− yn‖= 0.
In fact, since

‖xn− yn‖= ‖xn− (αnγV xn +(I−αnµG)zn)‖
≤ αn‖µGxn− γV xn‖+‖(I−αnµG)xn− (I−αnµG)zn‖
≤ αnM8 +(1−αnτ)‖xn− zn‖
≤ αnM8 +‖xn− zn‖,

where M8 > 0 is an appropriate constant, by condition (C1) and Step 4, we obtain

‖xn− yn‖→ 0 as n→ ∞.

Step 7. Show that limn→∞ ‖yn−Trnyn‖= limn→∞ ‖yn−wn‖= 0.
Indeed, from (3.23) and Step 6, we obtain

‖yn−Trnyn‖ ≤ ‖yn− xn‖+‖xn−wn‖→ 0 as n→ ∞.

Step 8. Show that
limsup

n→∞

〈(γV −µG)q,yn−q〉 ≤ 0.
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For this purpose, we can choose a subsequence {yni} of {yn} such that

lim
i→∞
〈(γV −µG)q,yni−q〉= limsup

n→∞

〈(γV −µG)q,yn−q〉.

Since {yni} is bounded, there exists a subsequence {yni j
} of {yni} which converges weakly to

some point z. Without loss of generality, we can assume that yni ⇀ z. First of all, we show
z ∈Ω. To this end, we divide its proof into three steps.

(i) We prove that z ∈ Fix(T ). To show this, put wn = Trnyn. Then, by Lemma 2.4, we have

〈y−wn,Twn〉−
1
rn
〈y−wn,(1+ rn)wn− yn〉 ≤ 0 for all y ∈ H1. (3.32)

Put vε = εv+(1− ε)z for ε ∈ (0,1] and v ∈ H1. Then vε ∈ H1, and we derive from (3.32) and
pseudocontractivity of T that

〈wn− vε ,T vε〉 ≥ 〈wn− vε ,T vε〉+ 〈vε −wn,Twn〉−
1
rn
〈vε −wn,(1+ rn)wn− yn〉

= −〈vε −wn,T vε −Twn〉−
1
rn
〈vε −wn,wn− yn〉−〈vε −wn,wn〉

≥ −‖vε −wn‖2− 1
rn
〈vε −wn,wn− yn〉−〈vε −wn,wn〉

= −〈vε −wn,vε〉−〈vε −wn,
wn− yn

rn
〉.

(3.33)

Since {yn} and {wn} have the same asymptotical behavior (due to Step 7), {wni} converges
weakly to z as i→ ∞. Also, by Step 7, we have ‖wn−yn‖

rn
≤ ‖wn−yn‖

r → 0. So, replacing n by ni
and letting i→ ∞, we derive from (3.33) that

〈z− vε ,T vε〉 ≥ 〈z− vε ,vε〉
and

−〈v− z,T vε〉 ≥ −〈v− z,vε〉 for all v ∈ H1.

Letting ε → 0 and using the fact that T is continuous, we obtain

−〈v− z,T z〉 ≥ −〈v− z,z〉 for all v ∈ H1. (3.34)

Let v = T z in (3.34). Then, z = T z, that is, z ∈ Fix(T ).

(ii) We prove that z ∈ B−1
1 0. To this end, let zn = JB1

λn
un. Then it follows that

un ∈ (I +λnB1)zn, that is,
un− zn

λn
∈ B1zn.

Since B is monotone, we know that, for any v ∈ B1u,

〈zn−u,
un− zn

λn
− v〉 ≥ 0. (3.35)

And, by Step 3, Step 5, and Step 6, we obtain that

‖yn− zn‖ ≤ ‖yn− xn‖+‖xn−un‖+‖un− zn‖→ 0 as n→ ∞

and ‖un−zn‖
λn

≤ ‖un−zn‖
λ
→ 0 as n→ ∞. Thus, uni ⇀ z and zni ⇀ z as i→ ∞. By replacing n by

ni in (3.35) and letting i→ ∞, we have 〈z−u,−v〉 ≥ 0. Since B1 is maximal monotone, we get
0 ∈ B1z, that is, z ∈ SOLV IP(B1).
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(iii) We prove that Az ∈ SOLV IP(B2). In fact, since {xn} and {un} have the same asymptotical
behavior (due to Step 5), {Axni} converges weakly to Az. Again, let ν̂ > 0. Then, using the
resolvent identity (2.2), condition (C6) (0 < ν ≤ νn for n≥ 0), and (3.28), we estimate

‖JB2
νni

Axni− JB2
ν̂

Axni‖=
∥∥∥∥JB2

ν̂

(
ν̂

νni

Axni +

(
1− ν̂

νni

)
JB2

νni
Axni

)
− JB2

ν̂
Axni

∥∥∥∥
≤
∣∣∣∣1− ν̂

νni

∣∣∣∣‖JB2
νni

Axni−Axni‖

≤ |νni− ν̂ |
ν

‖(JB2
νni
− I)Axni‖→ 0 as i→ ∞.

(3.36)

Hence, from (3.36), it follows that

lim
i→∞
‖(JB2

ν̂
− I)Axni‖= lim

i→∞
‖(JB2

νni
− I)Axni‖= 0. (3.37)

Since JB2
ν̂

is nonexpansive, we obtain from (3.37) and Lemma 2.7 that Az = JB2
ν̂
(Az), that is,

Az ∈ SOLV IP(B2) This along with (i) and (ii) obtains z ∈Ω.

Thus,
limsup

n→∞

〈(γV −µG)q,yn−q〉= lim
i→∞
〈(γV −µG)q,yni−q〉

= 〈(γV −µG)q,z−q〉 ≤ 0.

Step 9. Show that limn→∞ ‖xn−q‖= 0.
Indeed, from Lemma 2.1, we derive

‖yn−q‖2 =‖αnγV xn +(I−αnµG)zn−q‖2

= ‖αn(γV xn− γV q)+αn(γV q−µGq)+(I−αnµG)zn− (I−αnµG)q‖2

≤ ‖αn(γV xn− γV q)+(I−αnµG)zn− (I−αnµG)q‖2 +2αn〈γV q−µGq,yn−q〉

≤ (αnγl‖xn−q‖+(1−αnτ)‖xn−q‖)2 +2αn〈γV q−µGq,yn−q〉

= ((1− (τ− γl)αn)‖xn−q‖)2 +2αn〈γV q−µGq,yn−q〉.
(3.38)

Thus, by (2.3), (3.1), and (3.38), we obtain

‖xn+1−q‖2 ≤ βn‖xn−q‖2 +(1−βn)‖Trnyn−q‖2

≤ βn‖xn−q‖2 +(1−βn)‖yn−q‖2

≤ βn‖xn−q‖2 +(1−βn)((1− (τ− γl)αn)‖xn−q‖)2

+2(1−βn)αn〈γV q−µGq,yn−q〉

≤ βn‖xn−q‖2 +(1−βn)(1− (τ− γl)αn)‖xn−q‖2

+2(1−βn)αn〈γV q−µGq,yn−q〉

= (1− (1−βn)(τ− γl)αn)‖xn−q‖2 +2(1−βn)(τ− γl)αn
〈γV q−µGq,yn−q〉

τ− γl

= (1−ξn)‖xn−q‖2 +ξnδn,
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where ξn = (1−βn)(τ− γl)αn and δn =
2〈γV q−µG,yn−q〉

τ−γl . From conditions (C1), (C2), and (C3),
it is easy to see from Step 8 that ξn→ 0, ∑

∞
n=1 ξn =∞, and limsupn→∞ δn≤ 0. Hence, by Lemma

2.3, we conclude limn→∞ ‖xn−q‖= 0. This completes the proof. �

By taking V ≡ 0 , G≡ I, and µ = 1 in Theorem 3.1, we obtain the following result.

Corollary 3.2. Let the sequence {xn} be generated by{
zn = JB1

rn
(xn +ηnA∗(JB2

νn − I)Axn),

xn+1 = βnxn +(1−βn)Trn((1−αn)zn), n≥ 0,

where {αn}, {βn} ⊂ (0,1), {rn},{λn},{νn} ⊂ (0,∞), and {ηn} ⊂ (0, 1
L) satisfy the conditions

(C1), (C2), (C3), (C4), (C5), (C6), and (C7) in Theorem 3.1. Then {xn} converges strongly to a
point q ∈Ω, which is the minimum-norm element of Ω.

Proof. From (3.2) with V ≡ 0, G ≡ I, and µ = 1, we derive 0 ≤ 〈q, p− q〉 for all p ∈ Ω. This
obviously implies that ‖q‖2 ≤ 〈p,q〉 ≤ ‖p‖‖q‖ for all p ∈Ω. It turns out that ‖q‖ ≤ ‖p‖ for all
p ∈Ω. Therefore, q is the minimum-norm point of Ω. �

If, in Theorem 3.1, we take T ≡ I, identity mapping on H1, then we obtain the following
result.

Corollary 3.3. Let the sequence {xn} be generated by{
zn = JB1

λn
(xn +ηnA∗(JB2

νn − I)Axn),

xn+1 =βnxn +(1−βn)(αnγV xn +(I−αnµG)zn), n≥ 0.

where {αn}, {βn} ⊂ (0,1), {λn},{νn} ⊂ (0,∞), and {ηn} ⊂ (0, 1
L) satisfy the conditions (C1),

(C2), (C3), (C5), (C6), and (C7) in Theorem 3.1. Then {xn} converges strongly to a point q∈ Γ,
which is the unique solution of the following variational inequality: 〈(µG− γV )q, p− q〉 ≥ 0
for all p ∈ Γ.

By taking V ≡ 0 , G≡ I, and µ = 1 in Corollary 3.3, we obtain the following result.

Corollary 3.4. Let the sequence {xn} be generated by{
zn = JB1

λn
(xn +ηnA∗(JB2

νn − I)Axn),

xn+1 = βnxn +(1−βn)(1−αn)zn, n≥ 0.

Let {αn}, {βn}⊂ (0,1), {rn},{λn},{νn} ⊂ (0,∞) and {ηn}⊂ (0, 1
L) satisfy the conditions (C1),

(C2), (C3), (C5), (C6) and (C7) in Theorem 3.1. Then {xn} converges strongly to a point q ∈ Γ,
which is the minimum-norm element of Γ.

Remark 3.5. 1) It is worth pointing out that our iterative algorithms are new different from
those announced by several authors; see, e.g., [5, 14, 17, 22] and the references therein.
In particular, we use the variable parameters rn, λn, νn, and ηn in comparison with the
corresponding iterative algorithms in [5, 14, 17, 22] and the references therein.

2) Our general iterative algorithm (3.1) is very different from iterative algorithms (1.6) of
[14], (1.7) of [17] and (1.8) of [22] in Introduction 1 because the first iterative steps un =

JB1
λ
(xn +ηA∗(JB2

λ
− I)Axn) in [14, 17] and un = JB1

λn
(xn +ηA∗(JB2

λn
− I)Axn) in [22] are
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replaced by the first step zn = JB1
λn
(xn+ηnA∗(JB2

νn −I)Axn) in our iterative algorithm (3.1),
and the second iterative steps xn+1 =αn f xn+(1−αn)Sun in [14], xn+1 =αnξ f xn+(I−
αnD)Sun in [17] and xn+1 = Tβnun−µαnGTβnun in [22] are replaced by the second step
xn+1 = βnxn +(1−βn)Trn(αnγV xn +(I−αnµG)zn) in our iterative algorithm (3.1).

3) Theorem 3.1 supplements, improves, and develops the corresponding results in [14, 17,
22] in following aspects:
(a) The nonexpansive mapping S in [14, 17] and the strictly pseudocontractive mapping

T in [22] is extended to the case of the pseudocontractive mapping T .
(b) A strongly positive bounded linear operator D in [17] is extended to the case of a

κ-Lipschitzian and ρ-strongly monotone mapping G. (In fact, from the definitions,
it follows that a strongly positive bounded linear operator D (i.e., there exists a
constant γ > 0 with the property: 〈Dx,x〉 ≥ γ‖x‖2, x ∈ H1) is a ‖D‖-Lipschitzian
and γ-strongly monotone mapping).

(c) The contractive mapping f with a constant α ∈ (0,1) in [14, 17] is extended to the
case of a Lipschizian mapping V with a constant l ≥ 0.

(d) The condition ∑
∞
n=1 |αn+1−αn|< ∞ on the control parameter {αn} in [14, 17, 22]

was dispensed.
4) Corollary 3.2 is a new result for finding a minimum norm point of Γ∩Fix(T ).
5) Corollary 3.4 is also a new result for finding a minimum norm point of Γ.
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