
J. Nonlinear Funct. Anal. 2022 (2022) 2 https://doi.org/10.23952/jnfa.2022.2

SOME IMPROVEMENTS OF RANDOMIZED KACZMARZ ALGORITHMS

SONGNIAN HE1, ZITING WANG1, XIAOLONG QIN2,∗

1College of Science, Civil Aviation University of China, Tianjin, China
2National Yunlin University of Science and Technology, Douliou, Taiwan

Abstract. In this paper, we first introduce a modified randomized Kaczmarz algorithm, and obtain a
better convergence rate estimate than that of the randomized Kaczmarz algorithm. Second, we study
a greedy Kaczmarz algorithm, which can be regarded as a simplification of the greedy randomized
Kaczmarz algorithm. A deterministic (not in the sense of expectation) convergence rate estimate is
obtained for the greedy Kaczmarz algorithm. We find that the greedy Kaczmarz algorithm not only needs
less computational workload in each iteration, but also has faster convergence speed than the greedy
randomized Kaczmarz algorithm. Numerical results are provided to support the theoretical analysis in this
paper.
Keywords. Convergence rate; Greedy randomized Kaczmarz algorithm; Projection; Randomized Kacz-
marz algorithm; System of linear equations.

1. INTRODUCTION

Consider a large-scale linear system
Ax = b, (1.1)

where A∈Rm×n is the coefficient matrix with the row vectors Ai, i = 1,2, · · · ,m, b = (b1,b2, · · · ,
bm)
> ∈ Rm is a known column vector, and x = (x1,x2, · · · ,xn)

> ∈ Rn is the unknown column
vector, respectively. It is known that each equation Aix = bi, i = 1,2, · · · ,m, of (1.1) represents a
hyperplane:

Hi = {x∈ Rn |Aix = bi}, i = 1,2, · · · ,m.

Throughout this paper, we always assume that problem (1.1) is consistent, that is, its solution
set, denoted by S , is nonempty. For convenience, we will use the following notations:

• I = {1,2, · · · ,m} denotes an index set.
• λmin denotes the minimum nonzero eigenvalue of A>A.
• ‖A‖F denotes the Frobenius norm of A.

∗Corresponding author.
E-mail address: qinxl@yuntech.edu.tw (X. Qin).
Received June 2, 2021; Accepted November 25, 2021.

c©2022 Journal of Nonlinear Functional Analysis

1

2 S. HE, Z. WANG, X. QIN

• αF(A) = maxi∈I {‖A‖2
F −‖Ai‖2} denotes a positive constant.

• x† denotes the minimum norm solution of problem (1.1).
• Pi : Rn→ Hi denotes the orthogonal projection operator from Rn onto Hi.

The Kaczmarz algorithm (see, e.g., [3, Chapter 8] and [6]), which was often used to solve
(1.1), starts with an initial guess x0 selected in Rn arbitrarily and generates a sequence {xk}∞

k=0
by the iteration step:

xk+1 = Pi(k)x
k,

where i(k) = (k mod m)+1. It was proved [6] that {xk}∞
k=0 converges to the solution, which is

closest to x0. However, it is difficult to estimate the convergence rate for the Kaczmarz algorithm.
In 2009, Strohmer and Vershynin [8] proposed the following randomized Kaczmarz (RK)

algorithm.

Algorithm 1.1 Randomized Kaczmarz Algorithm

Input: A,b and `(the maximum number of iteration steps)
Output: x`

Step 0: Take x0 ∈ span{A>1 ,A>2 , · · · ,A>m} arbitrarily.
for k = 0,1, · · · , `−1 do
Step 1: Select an index ik ∈I with probability pik =

‖Aik‖
2

‖A‖2
F

and calculate xk+1 = Pikxk.
endfor

Recently, Strohmer and Vershynin [8], Ma, Needell, and Ramdas, [7], and Gower and Richtárik
[4] studied the convergence of Algorithm 1.1, respectively. From these results, we have the
following fact.

Let the initial guess x0 be selected in span{A>1 ,A>2 , · · · ,A>m} arbitrarily. Then the sequence
{xk}∞

k=0 generated by Algorithm 1.1 converges linearly in expectation to x† for linear system
(1.1), i.e.,

E
[
‖xk− x†‖2

]
≤
(

1− λmin

‖A‖2
F

)k

‖x0− x†‖2, ∀k ≥ 1. (1.2)

In 2018, Bai and Wu [1] proposed the greedy randomized Kaczmarz (GRK) algorithm for
solving (1.1) as follows.

Indeed, they proved the following interesting convergence result.

Theorem 1.1. ([1]) Choose x0 ∈ span{A>1 ,A>2 , · · · ,A>m} arbitrarily and let
{

xk}∞

k=0 be a se-
quence generated by Algorithm 1.2. Then

{
xk}∞

k=0 converges linearly to x† ∈S . Precisely, for
all k ≥ 0, there holds the convergence rate estimate:

E
[
‖xk+1− x†‖2

]
≤
[

1− 1
2

(
‖A‖2

F
αF(A)

+1
)

λmin

‖A‖2
F

]k(
1− λmin

‖A‖2
F

)
‖x0− x†‖2. (1.6)

We note that the same index i ∈I may be selected in two adjacent iterations in the imple-
mentation of Algorithm 1.1, which is a defect because it affects the convergence speed of the
algorithm. In this paper, we first give a modified version of Algorithm 1.1 (MRK) and give a
convergence rate estimate, which is better than (1.2). Second, we study the greedy Kaczmarz

SOME IMPROVEMENTS OF RANDOMIZED KACZMARZ ALGORITHMS 3

Algorithm 1.2 Greedy Randomized Kaczmarz Algorithm (GRK)

Input: A,b and `
Output: x`

Step 0: Take x0 ∈ span{A>1 ,A>2 , · · · ,A>m} arbitrarily.
for k = 0,1, · · · , `−1 do
Step 1: Compute

εk =
1
2

(
1

‖b−Axk‖2 max
1≤i≤m

{
|bi−Aixk|2

‖Ai‖2

}
+

1
‖A‖2

F

)
(1.3)

Step 2: Determine the index set of positive integers

Uk =
{

i ∈I
∣∣ |bi−Aixk|2 ≥ εk‖b−Axk‖2‖Ai‖2

}
(1.4)

Step 3: Compute the ith entry of the column vector r̃k according to

r̃k
i =

{
bi−Aixk, if i ∈Uk,

0, otherwise
(1.5)

Step 4: Select ik ∈Uk with probability pik =
|r̃k

ik
|2

‖r̃k‖2

Step 5: Set xk+1 = Pikxk

endfor

(GK) algorithm, which can be regarded as a simplified form of Algorithm 1.2 (the greedy ran-
domized Kaczmarz (GRK) algorithm), in which the random steps in Algorithm 1.2 are deleted.
A deterministic (not in the sense of expectation) convergence rate estimate is obtained for the
GK algorithm. We find that the GK algorithm not only needs less computational workload in
each iteration, but also has a better convergence rate than the GRK algorithm. Numerical results
support the theoretical analysis in this paper.

2. PRELIMINARIES

In this section, we list some basic lemmas that will be used in the convergence analysis.
Let v be a fixed nonzero vector in Rn, and let d be a number in R. Then the subset

H := {x ∈ Rn | 〈x,v〉= d}, (2.1)

is called a hyperplane.

Lemma 2.1. ([2, 5]) Let H be a hyperplane of form (2.1). Then

PHu = u− 〈u,v〉−d
‖v‖2 v, ∀u ∈ Rn. (2.2)

Lemma 2.2. ([9]) Let C be a closed convex subset of Rn. Given x ∈ Rn and z ∈C, z = PCx if
and only if

〈x− z,c− z〉 ≤ 0, ∀c ∈C. (2.3)

Moreover, if C is a hyperplane, then z = PCx if and only if

〈x− z,c− z〉= 0, ∀c ∈C. (2.4)

4 S. HE, Z. WANG, X. QIN

Lemma 2.3. [4] Let A ∈ Rm×n be a matrix with row vectors A1,A2, · · · ,Am. Then the inequality

‖Ax‖2 ≥ λmin‖x‖2 (2.5)

holds for all x ∈ span{A>1 ,A>2 , · · · ,A>m}.

3. A MODIFIED RANDOMIZED KACZMARZ ALGORITHM

It is easy to see that the same index i ∈I may be selected in two adjacent iterations in the
implementation of the RK algorithm (Algorithm 1.1), which is a defect of the RK algorithm
because this makes the latter iteration meaningless, and hence the convergence speed of the
RK algorithm would be affected. To overcome this defect, we give the modified randomized
Kaczmarz (MRK) algorithm as follows.

Algorithm 3.1 Modified Randomized Kaczmarz Algorithm

Input: A,b and `
Output: x`

Step 0: Take x0 ∈ span{A>1 ,A>2 , · · · ,A>m} arbitrarily.

Step 1: Select an index i0 ∈I with probability pi0 =
‖Ai0‖

2

‖A‖2
F

and calculate x1 = Pi0x0.
for k = 1,2, · · · , `−1 do
Step 2: For the current xk, k ≥ 1, select an index ik ∈I −{ik−1} with probability

pik =
‖Aik‖

2

‖A‖2
F−‖Aik−1‖

2 and calculate xk+1 = Pikxk.

endfor

We are in a position to prove the following convergence result for Algorithm 3.1.

Theorem 3.1. Let the initial guess x0 be selected in span{A>1 ,A>2 , · · · ,A>m} arbitrarily. Then the
sequence {xk}∞

k=0 generated by Algorithm 3.1 converges linearly in expectation to x† for linear
system (1.1), i.e.,

E
[
‖xk+1− x†‖2

]
≤
(

1− λmin

αF(A)

)k(
1− λmin

‖A‖2
F

)
‖x0− x†‖2, ∀k ≥ 0. (3.1)

Proof. For any k ≥ 0, note that Aikx† = bik . From Algorithm 3.1 and (2.2), we conclude that

‖xk+1− x†‖2 =‖Pikxk− x†‖2

=

∥∥∥∥xk− x†−
Aikxk−bik
‖Aik‖2 A>ik

∥∥∥∥2

=‖xk− x†‖2−2
〈

xk− x†,
Aikxk−bik
‖Aik‖2 A>ik

〉
+
|Aikxk−bik |2

‖Aik‖2

=‖xk− x†‖2−
|Aikxk−bik |2

‖Aik‖2 .

(3.2)

SOME IMPROVEMENTS OF RANDOMIZED KACZMARZ ALGORITHMS 5

For k = 0, we find that

E
[
‖x1− x†‖2

]
= ‖x0− x†‖2−

m

∑
i=1

‖Ai‖2

‖A‖2
F

|Aix0−bi|2

‖Ai‖2

= ‖x0− x†‖2− 1
‖A‖2

F
‖Ax0−b‖2

= ‖x0− x†‖2− 1
‖A‖2

F
‖A(x0− x†)‖2.

(3.3)

Using Lemma 2.3 and (3.3), we obtain

E
[
‖x1− x†‖2

]
≤
(

1− λmin

‖A‖2
F

)
‖x0− x†‖2. (3.4)

For k ≥ 1, under the condition that xk has been obtained, we have the conditional expectation of
‖xk+1− x†‖2 that

E
[
‖xk+1− x†‖2 ∣∣ xk

]
= ‖xk− x†‖2− ∑

i∈I−{ik−1}

‖Ai‖2

‖A‖2
F −‖Aik−1‖2

|Aixk−bi|2

‖Ai‖2

= ‖xk− x†‖2− 1
‖A‖2

F −‖Aik−1‖2 ∑
i∈I−{ik−1}

|Aixk−bi|2.
(3.5)

Note that xk = Pik−1xk−1 implies Aik−1xk = bik−1 . Then (3.5) can be rewritten as

E
[
‖xk+1− x†‖2 ∣∣ xk

]
= ‖xk− x†‖2− 1

‖A‖2
F −‖Aik−1‖2

m

∑
i=1
|Aixk−bi|2

≤ ‖xk− x†‖2− 1
αF(A)

‖Axk−b‖2

= ‖xk− x†‖2− 1
αF(A)

‖A(xk− x†)‖2.

(3.6)

Applying Lemma 2.3 to (3.6), we have

E
[
‖xk+1− x†‖2 ∣∣ xk

]
≤
(

1− λmin

αF(A)

)
‖xk− x†‖2. (3.7)

Taking full expectation for both sides of (3.7), we obtain

E
[
‖xk+1− x†‖2

]
≤
(

1− λmin

αF(A)

)
E
[
‖xk− x†‖2

]
, ∀k ≥ 1. (3.8)

By (3.8), it can be obtained by mathematical induction that

E
[
‖xk+1− x†‖2

]
≤
(

1− λmin

αF(A)

)k

E
[
‖x1− x†‖2

]
, ∀k ≥ 1. (3.9)

Hence, (3.1) follows from (3.4) and (3.9). This completes the proof. �

Remark 3.2. Obviously, the estimation of convergence rate in (3.1) is better than that in (1.2).

6 S. HE, Z. WANG, X. QIN

4. CONVERGENCE RATE OF THE GREEDY KACZMARZ ALGORITHM

In this section, we mainly analyze the convergence rate of the greedy Kaczmarz algorithm.
First, let us sketch the basic idea of the GK algorithm. Suppose that the iteration step of the

successive projection algorithm for solving (1.1) is

xk+1 = Pikxk, (4.1)

where ik ∈I is selected by some strategy. From (2.2), we have

xk+1 = xk−
Aikxk−bik
‖Aik‖2 A>ik . (4.2)

Similar to (3.2), for any x∗ ∈S , we have

‖xk+1− x∗‖2 = ‖xk− x∗‖2−
|Aikxk−bik |2

‖Aik‖2 . (4.3)

Consequently, for every positive integer N, we obtain
N

∑
k=0

|Aikxk−bik |2

‖Aik‖2 = ‖x0− x∗‖2−‖xN+1− x∗‖2. (4.4)

If {xk}∞
k=0 converges to some x̃ ∈ S, replacing x∗ with x̃ and letting N→ ∞ in (4.4), we arrive at

∞

∑
k=0

|Aikxk−bik |2

‖Aik‖2 = ‖x0− x̃‖2. (4.5)

(4.5) tells us that, for the selected initial guess x0, the sum of the series ∑
∞
k=0

|Aik xk−bik |
2

‖Aik‖
2 is a

fixed constant ‖x0− x̃‖2. Therefore, it is easy to see that in order to make the algorithm obtain
the fastest convergence speed, the optimal selection strategy of ik ∈I is to make ik satisfy the
condition:

|Aikxk−bik |2

‖Aik‖2 = max
i∈I

|Aixk−bi|2

‖Ai‖2 .

Based on the above analysis, the GK algorithm follows below.

Algorithm 4.1 Greedy Kaczmarz Algorithm

Input: A,b and `
Output: x`

step 0: Take x0 ∈ span{A>1 ,A>2 , · · · ,A>m} arbitrarily.
for k = 0,1, · · · , `−1 do
step 1: For the current xk, select an index ik ∈I such that

|Aikxk−bik |2

‖Aik‖2 = max
i∈I

|Aixk−bi|2

‖Ai‖2 , (4.6)

and compute
xk+1 = Pikxk. (4.7)

endfor

SOME IMPROVEMENTS OF RANDOMIZED KACZMARZ ALGORITHMS 7

Remark 4.1. Obviously, Algorithm 4.1 can be regarded as a simplified version of Algorithm 1.2,
i.e., the GRK algorithm. Because it does not need to construct the index set Uk and randomly
select an index in Uk in each iteration step, Algorithm 4.1 has less computational workload than
the GRK algorithm.

We now analyze the convergence rate of Algorithm 4.1 as follows.

Theorem 4.2. Choose x0 ∈ span{A>1 ,A>2 , · · · ,A>m} arbitrarily and let
{

xk}∞

k=0 be a sequence
generated by Algorithm 4.1. Then

{
xk}∞

k=0 converges linearly to x†. Precisely, for all k ≥ 0,
there holds the convergence rate estimate:

‖xk+1− x†‖2 ≤
(

1− λmin

αF(A)

)k(
1− λmin

‖A‖2
F

)
‖x0− x†‖2. (4.8)

Proof. From (2.2) and (4.7), it is easy to see that xk ∈ span{A>1 ,A>2 , · · · ,A>m} holds for all k ≥ 0
thanks to x0 ∈ span{A>1 ,A>2 , · · · ,A>m}. Thus xk− x† ∈ span{A>1 ,A>2 , · · · ,A>m} also holds for all
k ≥ 0 due to x† ∈ span{A>1 ,A>2 , · · · ,A>m}. Similar to (3.2), for all k ≥ 0, we have

‖xk+1− x†‖2 = ‖xk− x†‖2−
|Aikxk−bik |2

‖Aik‖2 . (4.9)

For k = 0, we have from (4.6) that

|Ai0x0−bi0|2

‖Ai0‖2 ≥ ∑
i∈I

‖Ai‖2

‖A‖2
F

|Aix0−bi|2

‖Ai‖2

=
1
‖A‖2

F
∑

i∈I
|Ai(x0− x†)|2

=
1
‖A‖2

F
‖A(x0− x†)‖2 ≥ λmin

‖A‖2
F
‖x0− x†‖2,

(4.10)

where the last inequality holds thanks to x0 − x† ∈ span{A>1 ,A>2 , · · · ,A>m} and Lemma 2.3.
Combining (4.9) and (4.10), we obtain

‖x1− x†‖2 = ‖x0− x†‖2− |Ai0x0−bi0|2

‖Ai0‖2

≤
(

1− λmin

‖A‖2
F

)
‖x0− x†‖2.

(4.11)

8 S. HE, Z. WANG, X. QIN

For each k ≥ 1, note that Aik−1xk− bik−1 = Aik−1(x
k− x†) = 0 due to xk = Pik−1xk−1. By using

(4.6) and Lemma 2.3, we obtain that

|Aikxk−bik |2

‖Aik‖2 ≥ ∑
i∈I−{ik−1}

‖Ai‖2

‖A‖2
F −‖Aik−1‖2

|Aixk−bi|2

‖Ai‖2

=
1

‖A‖2
F −‖Aik−1‖2 ∑

i∈I
|Ai(xk− x†)|2

≥ 1
αF(A)

‖A(xk− x†)‖2

≥ λmin

αF(A)
‖xk− x†‖2.

(4.12)

Consequently, it follows from (4.9) and (4.12) that

‖xk+1− x†‖2 ≤
(

1− λmin

αF(A)

)
‖xk− x†‖2. (4.13)

Hence, in view of (4.11) and (4.13), we obtain (4.8). This completes the proof. �

Remark 4.3. Note that

1− λmin

αF(A)
≤ 1− 1

2

(
‖A‖2

F
αF(A)

+1
)

λmin

‖A‖2
F
.

holds, and (4.8) is deterministic, however (1.6) is only in the sense of expectation. Hence the
convergence rate estimate of Algorithm 4.1 is better than that of Algorithm 1.2.

5. NUMERICAL RESULTS

In this section, we perform several experiments to compare the convergence speed of the RK
algorithm (Algorithm 1.1) with the MRK algorithm (Algorithm 3.1), and the GRK algorithm
(Algorithm 1.2) with the GK algorithm (Algorithm 4.1), respectively.

We use “IT” and “CPU” to represent the average number of iterations required and the average
CPU time taken to run these algorithms 50 times, respectively. We report the speed-up1 of MRK
against RK, which is defined as

speed-up1 =
CPU of RK

CPU of MRK
.

Similarly, we report the speed-up2 of GK against GRK, which is defined as

speed-up2 =
CPU of GRK
CPU of GK

.

To test these algorithms, we use the function uni f rnd in MATLAB to randomly construct
various types of m×n matrices A and, set the entries of A to be independent identically distributed
uniform random variables on some interval [c,1]. Changing the value of c will appropriately
change the coherence of A.

In the algorithm implementation, we randomly generate a vector x and calculate b = Ax to
get b, so that we can ensure that problem (1.1) is consistent. For each implementation, RK and
MRK start with the same initial x0 = 0, and stop when it reaches the number of iteration steps

SOME IMPROVEMENTS OF RANDOMIZED KACZMARZ ALGORITHMS 9

TABLE 1. CPU of RK and MRK for m-by-n matrices with n = 1000 and
different m when c = 0.

m 100 300 500 700 900
RK-CPU 4.3125 5.2344 6.2344 8.0469 9.9063

MRK-CPU 4.2344 4.9531 5.9219 7.8594 9.5781
speed-up1 1.0184 1.0568 1.0528 1.0239 1.0343

TABLE 2. CPU of RK and MRK for m-by-n matrices with n = 1000 and
different m when c = 0.9.

m 100 300 500 700 900
RK-CPU 4.1563 5.0625 5.9375 7.8594 9.4844

MRK-CPU 4.1094 4.9375 5.8125 7.7813 9.4375
speed-up1 1.0114 1.0253 1.0215 1.0100 1.0050

100 200 300 400 500 600 700 800 900

m

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

C
P

U

RK

MRK

(a)

100 200 300 400 500 600 700 800 900

m

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

C
P

U

RK

MRK

(b)

FIGURE 1. CPU versus m with n = 1000 matrices for RK and MRK, when
c = 0(a) and c = 0.9(b).

`= 500000. GRK and GK start with the same initial x0 = 0, and stop once the relative error of
the current xk, defined by

RSE =
‖xk− x†‖2

‖x†‖2 ,

satisfies RSE≤ 10−6.
In addition, all experiments are carried out using MATLAB (version R2018a) on a personal

computer with 2.80 GHz central processing unit (Intel(R) Core(TM) i7-1165G7 CPU), 16.00GB
memory, and Windows operating system (Windows 10).

The experimental results are presented in the tables and figures.
From Table 1-4 and Figure 1-2, it is clear that the MRK algorithm always outperforms the RK

algorithm in terms of CPU time.
From Table 5-6 and Figure 3-4, we find that, for any type of the underdetermined linear

equations, the GK algorithm always has a great advantage over the GRK algorithm, no matter in
terms of CPU time or the number of iteration steps.

10 S. HE, Z. WANG, X. QIN

TABLE 3. CPU of RK and MRK for m-by-n matrices with m = 1000 and
different n when c = 0.

n 100 300 500 700 900
RK-CPU 7.3438 7.9531 8.7656 9.4531 10.0469

MRK-CPU 7.2969 7.8438 8.5938 9.1719 9.9844
speed-up1 1.0064 1.0139 1.0200 1.0307 1.0063

TABLE 4. CPU of RK and MRK for m-by-n matrices with m = 1000 and
different n when c = 0.9.

n 100 300 500 700 900
RK-CPU 7.5469 8.0938 8.9063 9.5000 10.1094

MRK-CPU 7.5000 8.0781 8.7969 9.4531 10.0625
speed-up1 1.0063 1.0019 1.0124 1.0050 1.0047

100 200 300 400 500 600 700 800 900

n

7.5

8

8.5

9

9.5

10

C
P

U

RK

MRK

(a)

100 200 300 400 500 600 700 800 900

n

7.5

8

8.5

9

9.5

10

C
P

U

RK

MRK

(b)

FIGURE 2. CPU versus n with m = 1000 matrices for RK and MRK, when
c = 0(a) and c = 0.9(b).

TABLE 5. IT and CPU of GRK and GK for m = 100 matrices with different n
when c = 0.

n 1000 2000 3000 4000 5000

GRK
CPU 5.9063 8.9844 14.3438 17.7031 24.3594

IT 7.7495×103 6.9039×103 7.0558×103 7.0150×103 6.6983×103

GK
CPU 0.3125 0.3438 0.5781 0.6406 3.1094

IT 1.3674×103 1.3652×103 1.3082×103 1.2002×103 1.3380×103

speed-up2 18.9000 26.1364 24.8108 27.6341 7.8342

6. CONCLUDING REMARK

In this paper, we first proposed a modified randomized Kaczmarz (MRK) algorithm and
obtain a better convergence rate estimate than that of the randomized Kaczmarz (RK) algorithm.
Second, we proved that the greedy Kaczmarz (GK) algorithm not only needs less computational

SOME IMPROVEMENTS OF RANDOMIZED KACZMARZ ALGORITHMS 11

0 1 2 3 4 5 6

CPU

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
S

E

GK

GRK

(a)

0 1 2 3 4 5 6 7 8 9

CPU

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
S

E

GK

GRK

(b)

0 5 10 15

CPU

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
S

E

GK

GRK

(c)

0 2 4 6 8 10 12 14 16 18

CPU

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
S

E

GK

GRK

(d)

0 5 10 15 20 25

CPU

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
S

E

GK

GRK

(e)

FIGURE 3. RSE versus CPU with m = 100 and c = 0 matrices for GRK and
GK, when n = 1000(a), n = 2000(b), n = 3000(c), n = 4000(d) and n = 5000(e).

workload in each iteration, but also has faster convergence speed than the greedy randomized
Kaczmarz (GRK) algorithm. Numerical results show the advantages of the MRK algorithm and
the GK algorithm.

12 S. HE, Z. WANG, X. QIN

TABLE 6. IT and CPU of GRK and GK for m = 100 matrices with different n
when c = 0.9.

n 1000 2000 3000 4000 5000

GRK
CPU 2.3169×103 3.0237×103 4.1600×103 5.5289×103 7.2854×103

IT 2.1794×106 1.7453×106 1.4632×106 1.5745×106 1.4107×106

GK
CPU 55.7031 83.3438 1.4405×102 1.8498×102 9.8561×102

IT 3.8308×105 3.5505×105 3.5157×105 3.5583×105 3.4260×105

speed-up2 41.5933 36.2795 28.8794 29.8887 7.3918

0 500 1000 1500 2000 2500

CPU

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
S

E

GK

GRK

(a)

0 500 1000 1500 2000 2500 3000 3500

CPU

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
S

E

GK

GRK

(b)

0 500 1000 1500 2000 2500 3000 3500 4000 4500

CPU

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
S

E

GK

GRK

(c)

0 1000 2000 3000 4000 5000 6000

CPU

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
S

E

GK

GRK

(d)

0 1000 2000 3000 4000 5000 6000 7000 8000

CPU

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
S

E

GK

GRK

(e)

FIGURE 4. RSE versus CPU with m = 100 and c = 0.9 matrices for GRK and
GK, when n = 1000(a), n = 2000(b), n = 3000(c), n = 4000(d) and n = 5000(e).

SOME IMPROVEMENTS OF RANDOMIZED KACZMARZ ALGORITHMS 13

Acknowledgements
The authors are grateful to the anonymous referees for useful comments which improved the
presentation of this paper.

REFERENCES

[1] Z.Z. Bai, W.T. Wu, On greedy randomized Kaczmarz method for solving large sparse linear systems, SIAM J.
Sci. Comput. 40 (2018) A592-A606.

[2] H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer,
New York, NY, 2010.

[3] C.L. Byrne, Iterative Optimization in Inverse Problems, CRC Press, Boca Raton, 2014.
[4] R.M. Gower, P. Richtárik, Stochastic dual ascent for solving linear systems, arXiv: 1512.06890, 2015.
[5] S. He, C. Yang, C. Duan, Realization of the hybrid method for Mann iterations, Appl. Math. Comput. 217

(2010) 4239-4247.
[6] S. Kaczmarz, Angenäherte Auflösung von Systemen linearer Gleichungen, Bull. Int. Acad. Polon. Sci. Lett. A,

35 (1937) 355-357.
[7] A. Ma, D. Needell, A. Ramdas, Convergence properties of the randomized extended Gauss-Seidel and

Kaczmarz methods, SIAM J. Matrix Anal. Appl. 36 (2015) 1590-1604.
[8] T. Strohmer, R. Vershynin, A randomized Kaczmarz algorithm with exponential convergence, J. Fourier Anal.

Appl. 15 (2009) 262-278.
[9] H. Zhou, X. Qin, Fixed Points of Nonlinear Operators, De Gruyter, Berlin, 2020.

	1. Introduction
	2. Preliminaries
	3. A Modified Randomized Kaczmarz Algorithm
	4. Convergence Rate of the Greedy Kaczmarz Algorithm
	5. Numerical Results
	6. Concluding remark
	References

