

Journal of Nonlinear Functional Analysis

Available online at http://jnfa.mathres.org

ON PERTURBATIONS OF ACCRETIVE OPERATORS IN LOCALLY CONVEX SPACES

LI YANG

School of Science, South West University of Science and Technology, Mianyang 621010, China

Abstract. Let E be a complete locally convex Hausdorff space, $A:D(A) \subset E \to E$ be an accretive operator satisfying the range condition, $T:D(T) \subset E \to E$ be a continuous compact mapping, and $p \in E$. In this paper, we prove the existence of solutions to the operator equation $p \in Ax + Tx$ and give a sufficient condition for the operator A to satisfy the range condition.

Keywords. Accretive operator; Complete locally convex Hausdorff space; Compact mapping; Topological degree.

1. Introduction and preliminaries

In this paper, let E be a real Hausdorff topological vector space generated by a countable increasing family of semi-norms $\{p_i\}_{i=1}^{+\infty}$, that is, E is a locally convex space. In this paper, we also assume that E is complete. Next, we list some complete locally convex spaces.

Example 1.1. Let $C_0^{\infty}[0,1]$ be the set of infinitely differentiable functions $x(\cdot)$ with $x^{(i)}(0) = x^{(i)}(1) = 0$, $i \ge 0$ } and $p_i(x(\cdot)) = \max\{|x^{(j)}(t)| : j \le i, t \in [0,1]\}, i \ge 0\}$. Then $C_0^{\infty}[0,1]$ is a locally convex space generated by semi-norms $\{p_i\}_{i=0}^{\infty}$, and it is complete.

Example 1.2. Let $C(R) = \{x(\cdot) : R \to R \text{ is continuous}\}$ and $p_i(x\cdot) = \max\{|x(t)| : t \in [-i,i]\}, i \ge 1\}$. Then C(R) is a locally convex space generated by semi-norms $\{p_i\}_{i=1}^{\infty}$.

Example 1.3. Let $L^2(R) = \{x(\cdot) : R \to R \text{ is locally Lebesgue integrable}\}$ and $p_i(x(\cdot)) = (\int_{-i}^i x^2(t) dt)^{\frac{1}{2}}$ for each $i \ge 1$. Then $L^2(R)$ is a locally convex space generated by semi-norms $\{p_i\}_{i=1}^{\infty}$, and it is also complete.

The theory of nonlinear operators in locally convex spaces has been studied by many authors; see, e.g., [10, 11, 13, 14, 15, 16, 17]. In particular, accretive operators in locally convex spaces were extensively studied in [1] and [8].

Now, we recall some definitions for our main results.

E-mail address: scmyxkdyl@163.com.

Received January 2, 2022; Accepted May 4, 2022.

Definition 1.4. Let $A: D(A) \subset E \to 2^E$ be a nonlinear operator. Then A is said to be *accretive* if, for any $x, y \in E$,

$$p_i(x-y) \le p_i(x-y+\lambda(u-v))$$

for all $u \in Ax$, $v \in Ay$, $\lambda > 0$ and $i \ge 1$;

A is said to be maximal accretive if it is accretive and

$$p_i(x-y_0) \le p_i(x-y_0 + \lambda(u-v_0)),$$

for all $x \in D(A)$, $\lambda > 0$, $u \in Ax$ and $i \ge 1$, implies that $y_0 \in D(A)$ and $v_0 \in Ay_0$; An accretive operator A is said to be m-accretive if

$$R(I + \lambda A) = E$$

for any $\lambda > 0$.

Example 1.5. Let $C_0^{\infty}[0,1]$ be same as in Example 1.1 and $A:C_0^{\infty}[0,1]\to C_0^{\infty}[0,1]$ be a mapping defined by

$$Ax(\cdot) = x'(\cdot) + \lambda x(\cdot)$$

for all $x(\cdot) \in C_0^{\infty}[0,1]$, where $\lambda > 0$ is a constant. Then A is an accretive operator on $C_0^{\infty}[0,1]$.

Example 1.6. Let $L^2(R)$ be same as in Example 1.3 and $K(x,y): R \times R$ be a continuous function satisfying the following conditions:

 $|K(x,y)| \le M|y| + N$ for all $(x,y) \in R^2$, where M,N > 0 are constants; $[K(z,x) - K(z,y)](x-y) \ge 0$ for all $x,y,z \in R$.

We define a mapping $A: L^2(R) \to L^2(R)$ as follows:

$$(Af)(x) = K(x, f(x))$$

for all $f \in L^2(R)$ and $x \in R$. Then A is an accretive operator on $L^2(R)$.

Also, we recall the following definitions of semi-inner products in locally convex spaces:

$$[x,y]_{i}^{+} = \lim_{h \to 0^{+}} \frac{p_{i}(x+hy) - p_{i}(x)}{h}$$

and

$$[x,y]_i^- = \lim_{h \to 0^+} \frac{p_i(x) - p_i(x - hy)}{h}$$

for all $x, y \in E$.

For each $i \in I$, $(x,y)_i^+ = p_i(x)[x,y]_i^+$ is called the *upper semi-inner product* with respect to $i \in I$. Analogously, $(x,y)_i^- = p_i(x)[x,y]_i^-$ is said to be the *lower semi-inner product* with respect to $i \in I$. For properties of semi-inner products, we refer to [3].

For each $\lambda > 0$, let

$$J_{\lambda}x := (I + \lambda A)^{-1}x, \quad A_{\lambda}x := \frac{1}{\lambda}(x - J_{\lambda}x)$$

for all $x \in R(I + \lambda A)$, where *I* is the identity mapping on *E*.

Proposition 1.7. [8] Let $A: D(A) \subset E \to 2^E$ be an accretive operator and $\lambda > 0$. Then, $p_i(J_{\lambda}x - J_{\lambda}y) \leq p_i(x - y)$ for all $x, y \in R(I + \lambda A)$ and $i \geq 1$; A_{λ} is accretive.

Proposition 1.8. [8] The following statements are equivalent:

 $A: D(A) \subset E \to 2^E$ is accretive;

$$[x-y, u-v]_i^+ \ge 0$$
 for all $x, y \in D(A)$, $u \in Ax$, $v \in Ay$ and $i \ge 1$; $(x-y, u-v)_i^+ \ge 0$ for all $x, y \in D(A)$, $u \in Ax$, $v \in Ay$ and $i \ge 1$.

In this paper, we show the existence of solutions to the operator equation $p \in Ax + Tx$ and give a sufficient condition for the operator A to satisfy the range condition.

2. Main Results

2.1. **The existence results.** Suppose that E is a real Hausdorff topologoical vector space generated by a countable family of semi-norms $\{p_i\}_{i=1}^{+\infty}$, and E is complete. Let $A:D(A) \subset E \to E$ be an accretive operator, $C:D(C) \subset E \to E$ be a continuous compact mapping, (i.e., C is continuous and $\overline{C(D(C))}$ is compact), and $P \in E$.

In this section, we present several existence results for the operator equation $p \in Ax + Cx$. In fact, such type equations in Banach spaces has been studied by [2, 6, 7, 9] and [12].

First, we need the following result from [14] (see also [15]) for our main results.

Theorem 2.1. Let $U \subset E$ be an open subset and $T : \overline{U} \to E$ be a continuous mapping such that $T\overline{U}$ is compact and $x \neq Tx$ for all $x \in \partial U$. Then there exists a topological degree deg(I - T, U, 0) satisfying the following properties:

- (1) deg(I, U, 0) = 1 if and only if $0 \in U$.
- (2) If $deg(I-T,U,0) \neq 0$, then Tx = x has a solution in U.
- (3) Let $T_t: [0,1] \times \overline{U} \to E$ be a continuous compact operator and $T_t x \neq x$ for all $(t,x) \in [0,1] \times \partial U$. Then $deg(I T_t, U, 0)$ does not depend on $t \in [0,1]$.
- (4) Let U_1, U_2 be two disjoint open subsets of U and $0 \notin (I T)(\overline{U \setminus U_1 \cup U_2})$. Then

$$deg(I-T,U,0) = deg(I-T,U_1,0) + deg(I-T,U_2),0$$
.

Theorem 2.2. [11] Let $U \subset E$ be an open subset, $P \subset E$ be a cone, and $T : \overline{U} \cap P \to P$ be a continuous mapping such that $T\overline{U} \cap P$ is compact and $x \notin Tx$ for all $x \in \partial U \cap P$. Then there exists a fixed point index, ind $(T, \Omega \cap P)$, satisfying the following properties:

- (1) $ind(x_0, U \cap P) = 1 \text{ if } x_0 \in U \cap P.$
- (2) If $ind(T, U \cap P) \neq 0$, then x = Tx has a solution in $U \cap P$;
- (3) If $U_i \subset U$ for i = 1, 2, $U_1 \cap U_2 = \emptyset$ and $0 \notin (I T)[(\overline{U} \setminus (U_1 \cup U_2)) \cap P]$, then

$$ind(T, U \cap P) = ind(T, U_1 \cap P) + ind(T, U_2 \cap P).$$

(4) If $H(t,x): [0,1] \times \overline{U} \cap P \to P$ is a continuous compact mapping and $x \neq H(t,x)$ for all $(t,x) \in [0,1] \times \partial U \cap P$, then $ind(H(t,\cdot), U \cap P)$ does not depend on $t \in [0,1]$.

By using Theorems 2.1 and 2.2, we have the following theorem.

Theorem 2.3. Let $A:D(A) \subset E \to 2^E$ be an accretive operator, $F \subseteq E$ be a closed subspace with $F = (I + \lambda A)(D(A))$ for all $\lambda > 0$, and $U \subset F$ be an open subset with $\overline{U} \cap D(A) \neq \emptyset$. Let $T:D(A) \cap \overline{U} \to F$ be an operator and $V = (I + k_0 A)(U \cap D(A))$, where $k_0 > 0$ is a constant and $p \in F$. Suppose that $(I - k_0 T)(I + k_0 A)^{-1}$ is continuous, $(I - k_0 T)(I + k_0 A)^{-1}\overline{V}$ is compact, and there exists $z \in D(A) \cap U$ such that

$$(g_i, Tx + f - p) \ge 0$$

for all $g_i \in E^*$ with $g_i(x-z) = p_i^2(x-z)$ for each $i \ge 1$, $x \in D(A) \cap U$ and $f \in Ax$. Then $p \in (A+T)(D(A) \cap \overline{U})$.

Proof. We may assume that z = 0, p = 0, and $0 \in A0$. Otherwise, we set U' = U - z and A'x = A(x+z) - a for $x \in D(A') = D(A) - z$, where $a \in Az$ is a fixed element and T'x = T(x+z) + a - p for all $x \in U' \cap D(A')$. We note that $0 \in Ax + Tx$ has a solution $x \in D(A) \cap \overline{U}$ if and only if $y = (I - k_0 T)(I + k_0 A)^{-1}y$ has a solution $y \in \overline{V}$. Since $(I + k_0 A)^{-1}$ is continuous, $V = (I + k_0 A)(D(A) \cap U)$ is an open subset of F. We may assume that $y \neq (I - k_0 T)(I + k_0 A)^{-1}y$ for all $y \in \partial V$.

Now, we claim that $y \neq t(I - k_0 T)(I + k_0 A)^{-1}y$ for all $t \in [0, 1]$ and $y \in \partial V$. If this is not true, then there exist $t_0 \in [0, 1]$ and $y_0 \in \partial V$ such that $y_0 = t_0(I - k_0 T)(I + k_0 A)^{-1}y_0$. Set $x_0 = (I + k_0 A)^{-1}y_0$. Then, $x_0 \in \partial U \cap D(A)$ and

$$t_0(T - k_0T)x_0 \in (I + k_0A)x_0.$$

So there exists $u_0 \in Ax_0$ such that $t_0(x_0 - k_0Tx_0) = x_0 + k_0u_0$, i.e.,

$$(t_0-1)x_0=t_0k_0(Tx_0+u_0)+(1-t_0)k_0u_0.$$

Now, we take $g_i \in E^*$ such that $g_i(x_0) = p_i^2(x_0)$ for each $i \ge 1$ and $g_i(u_0) = (u_0, x_0)_i^+ \ge 0$ for each $i \ge 1$. Such g_i exists due to the Hahn-Banach Theorem. It follows that

$$(t_0-1)p_i^2(x_0) = t_0k_0(Tx_0+u_0,g_i) + (1-t_0)g_i(u_0) \ge 0$$

for each $i \ge 1$. Therefore, $t_0 = 1$ and $0 \in Ax_0 + Tx_0$, which is a contradiction, so we proved the claim. By Theorem 2.1, we have

$$deg(I - (I - k_0T)(I + k_0A)^{-1}, V, 0) = deg(I, V, 0) = 1.$$

So, $y = (I - k_0 T)(I + k_0 A)^{-1}y$ has a solution in V, i.e., $0 \in Ax + Tx$ has a solution in $D(A) \cap U$. This completes the proof.

Theorem 2.4. Let $A:D(A) \subset E \to 2^E$ be an m-accretive operator, and U be an open subset with $0 \in U \cap D(A)$ and $0 \in A0$. Let $T:D(A) \to E$ be an operator and $V = (I+k_0A)(U \cap D(A))$, where $k_0 > 0$ is a constant. Suppose that $(I-k_0T)(I+k_0A)^{-1}$ is continuous, $(I-k_0T)(I+k_0A)^{-1}\overline{V}$ is compact and

$$p_i((I-k_0T)y) \le p_i(y)$$

for all $y \in D(A) \cap \partial U$ and $i \ge 1$. Then $0 \in (A+T)(D(A) \cap \overline{U})$ has a solution.

Proof. We may assume that $0 \notin (A+T)(D(A) \cap \partial U)$. Since $(I+k_0A)^{-1}$ is continuous, V is open in E.

Now, we claim that $y \neq t(I - k_0 T)(I + k_0 A)^{-1}y$ for all $t \in [0, 1]$ and $y \in \partial V$. If this is not true, then there exist $t_0 \in [0, 1]$ and $y_0 \in \partial V$ such that $y_0 = t_0(I - k_0 T)(I + k_0 A)^{-1}y_0$. Set $x_0 = (I + k_0 A)^{-1}y_0$. Then $x_0 \in \partial U \cap D(A)$ and there exists $u_0 \in Ax_0$ such that $x_0 + k_0 u_0 = t_0(x_0 - k_0 T x_0)$. Since A is accretive and $0 \in A0$, we have

$$p_i(x_0) \le p_i(x_0 + k_0u_0) = t_0p_i(x_0 - k_0Tx_0)$$

for each i > 1. This implies that $t_0 = 1$, which is a contradiction. So

$$deg(I - (I - k_0T)(I + k_0A)^{-1}, V, 0) = deg(I, V, 0) = 1$$

and $x = (I - k_0 T)(I + k_0 A)^{-1}x$ has a solution in V, i.e., $0 \in (A + T)(D(A) \cap \overline{U})$ has a solution. This completes the proof.

Theorem 2.5. Let $A: D(A) \subset E \to 2^E$ be an m-accretive operator, U be an open subset with $0 \in U \cap D(A)$ and $0 \in A0$, and let $T: \overline{U} \to E$ be continuous and compact. Suppose that $p_i(Tx) \le p_i(x)$ for all $x \in \partial U \cap D(A)$ and $i \ge 1$. Then -Ax + Tx has a fixed point in $\overline{U} \cap D(A)$.

Proof. Since (I+A)(D(A)) = E, it is easy to see that $x \in -Ax + Tx$ if and only if $x \in (I+A)^{-1}Tx$. We may also assume that $x \neq (I+A)^{-1}Tx$ for all $x \in \partial U$.

Now, we show that $x \neq t(I+A)^{-1}Tx$ for all $t \in [0,1]$ and $x \in \partial U$. If this is not true, then there exist $t_0 \in [0,1]$ and $x_0 \in \partial U$ such that $x_0 = t_0(I+A)^{-1}Tx_0$. Since $0 \in A(0)$, we have $(I+A)^{-1}(0) = 0$. Thus

$$p_i(x_0) = t_0 p_i((I+A)^{-1}Tx_0) \le t_0 p_i(Tx_0)$$

for each $i \ge 1$. From the assumption, we must have $t_0 = 1$, which is a contradiction. Thus $deg(I - (I + A)^{-1}T, U, 0) = deg(I, U, 0) = 1$, and $x = (I + A)^{-1}Tx$ has a solution in U, i.e., -Ax + Tx has a fixed point in $D(A) \cap U$. This completes the proof.

Theorem 2.6. Let $P \subset E$ be a cone, $A : D(A) \subseteq P \to P$ be an accretive operator with $P = (I + \lambda A)(D(A))$ for all $\lambda > 0$, U be an open subset of E with $0 \in U$, and $T : D(A) \to P$ be a mapping such that $(I - k_0 T)(I + k_0 A)^{-1}$ is continuous and compact on \overline{V} , where $V = (I + k_0 A)(U \cap D(A))$ and $V_0 \in P$. Suppose that the following conditions are satisfied:

(1) $Tx \le k_0^{-1} x$ for all $x \in D(A)$;

(2) $(u+Tx-v_0,g_i) \ge 0$ for all $i, x \in \partial U \cap D(A)$ and $g_i \in E^*$ with $g_i(x) = p_i^2(x)$. Then $p \in Ax + Tx$ has a solution in $D(A) \cap \overline{U}$.

Proof. We may assume that $p \notin (A+T)(\partial U \cap D(A))$. Set Sx = Tx - p for all $x \in D(A)$, and note that V is relatively open in P. Since $Tx \le k_0^{-1}x$ for all $x \in D(A)$, we have an operator $I - k_0T : D(A) \to P$, so $(I - k_0S)(I + k_0A)^{-1} : P \to P$ is an operator.

Now, we can easily check that $x \neq t(I - k_0 S)(I + k_0 A)^{-1}x$ for all $x \in \partial V$ and $t \in [0,1]$. By Theorem 2.2, we have $ind((I - k_0 S)(I + k_0 A)^{-1}, V) = ind(0, V)$.

Recall that $(I + \lambda A)D(A) = P$ for all $\lambda > 0$, so there exists $x_0 \in D(A)$ such that $0 \in x_0 + Ax_0$. Since $x_0 \ge 0$ and $Ax_0 \subseteq P$, we must have $x_0 = 0$ and $0 \in A(0)$. Therefore, $0 \in V$. Moreover, ind(0,V) = 1. Thus $y = (I - k_0S)(I + k_0A)^{-1}y$ has a solution in V, i.e., $p \in Ax + Tx$ has a solution in $D(A) \cap \overline{U}$. This completes the proof.

Theorem 2.7. Let $P \subset E$ be a cone, $A: D(A) \subseteq P \to P$ be an accretive operator with $P = (I + \lambda A)(D(A))$ for all $\lambda > 0$, U be an open subset of E with $0 \in U$, and $T: D(A) \to E$ be a mapping such that $Tx \leq k_0^{-1}x$ and $(I - k_0T)(I + k_0A)^{-1}$ is continuous and compact on \overline{V} , where $V = (I + k_0A)(U \cap D(A))$. Suppose that $Tx + u \in P$ for all $x \in D(A)$ and $u \in Ax$. Then $0 \in Ax + Tx$ has a solution $D(A) \cap \overline{U}$.

Proof. We may assume that $0 \notin (A+T)(\partial U \cap D(A))$. Note that V is relatively open in P. Since $Tx \le k_0^{-1}x$ for all $x \in D(A)$, we have $I - k_0T : D(A) \to P$.

Now, we claim that $x \neq t(I - k_0 T)(I + k_0 A)^{-1}x$ for all $x \in \partial V$ and $t \in [0, 1]$. If this is not true, there exist $t_0 \in [0, 1]$ and $x_0 \in \partial V$ such that

$$x_0 = t_0(I - k_0T)(I + k_0A)^{-1}x_0.$$

Setting $y_0 = (I + k_0 A)^{-1} x_0$, we have $y_0 \in \partial U \cap D(A)$ and $t_0(y_0 - k_0 T y_0) \in y_0 + k_0 A y_0$, i.e.,

$$(t_0-1)y_0 \in k_0(t_0Ty_0+Ay_0).$$

Since $Ty_0 + u \in P$ and $u \in P$ for all $u \in Ay_0$, we must have $t_0 = 1$, which is a contradiction. In view of Theorem 2.2, we have $ind((I - k_0T)(I + k_0A)^{-1}, V) = ind(0, V) = 1$. Consequently, $0 \in Ax + Tx$ has a solution $D(A) \cap \overline{U}$. This completes the proof.

Theorem 2.8. Let $P \subset E$ be a cone, $A: D(A) \subseteq P \to P$ be an accretive operator with $P = (I + \lambda A)(D(A))$ for all $\lambda > 0$, U be an open subset of E with $0 \in U$, and $T: D(A) \to E$ be a mapping such that $k_0Tx \le x$ for all $x \in D(A) \cap \overline{U}$, $(I - k_0T)(I + k_0A)^{-1}$ is continuous, and compact on \overline{V} for some $k_0 > 0$, where $V = (I + k_0A)(U \cap D(A))$, and $p \in P$ is a given element. If $p_i(x - k_0Tx + k_0p) \le p_i(x)$ for all i and $x \in D(A) \cap \partial U$ with $p_i(x) > 0$, then $p \in Ax + Tx$ has a solution $D(A) \cap \overline{U}$.

Proof. We may assume that $p \notin (A+T)(\partial U \cap D(A))$. Set Sx = Tx - p for all $x \in D(A)$. It is easy to check that $x \neq t(I - k_0S)(I + k_0A)^{-1}x$ for all $x \in \partial V$ and $t \in [0,1]$. So, we have $ind((I - k_0S)(I + k_0A)^{-1}, V) = ind(0, V) = 1$ and $p \in Ax + Tx$ has a solution $D(A) \cap \overline{U}$. This completes the proof.

Theorem 2.9. Let $P \subset E$ be a cone, $A:D(A) \subseteq P \to P$ be an accretive operator with P=(I+A)(D(A)), U be an open subset of E with $0 \in U$, and $T:P\cap \overline{U} \to P$ be a continuous mapping such that $T(P\cap \overline{U})$ is compact. Suppose that

$$p_i(Tx) \le p_i(x)$$

for all $x \in \partial U \cap D(A)$ and $i \ge 1$ with $p_i(x) > 0$. Then -A + T has a fixed point in $D(A) \cap \overline{U}$.

Proof. It is easy to see that $x \in -Ax + Tx$ if and only if $x = (I+A)^{-}Tx$. We may also assume that $x \neq (I+A)^{-1}Tx$ for all $x \in \partial U$. Then we can easily see that $x \neq t(I+A)^{-1}Tx$ for all $t \in [0,1]$ and $x \in \partial U$. Thus

$$ind((I+A)^{-1}T, U, 0) = ind(U, 0) = 1$$

and $x = (I+A)^{-1}Tx$ has a solution in U, i.e., -Ax + Tx has a fixed point in $D(A) \cap U$. This completes the proof.

2.2. A sufficient condition for the range of accretive operators. We suppose that E is a real Hausdorff topological vector space generated by a countable family $\{p_i\}_{i=1}^{+\infty}$ of semi-norms, and E is complete. Let $A: D(A) \subseteq E \to E$ be an accretive operator.

In this subsection, we provide a sufficient condition for the operator A to satisfy the range condition $D(A) \subseteq (I + \lambda A)(D(A))$. For the range of accretive operators in Banach spaces, we refer to [4] and [5].

Theorem 2.10. Let $P \subset E$ be a cone, and let $A : P \to P$ be an accretive operator satisfying $Ax \leq \beta x$ for all $x \in P$, where $\beta > 0$ is a constant. Suppose that $p_i(Ax - Ay) \leq Lp_i(x - y)$ for all $x, y \in P$ and $i \geq 1$. Then $(I + \lambda A)(P) = P$ for all $\lambda > 0$.

Proof. We only need to prove that (I+A)(P) = P. It is obvious that A(0) = 0 since $0 \le A(0) \le \beta \times 0$. For each $p \in P$ with $p \ne 0$, we prove that $p \in (I+A)(P)$. Set A'x = Ax - p for $x \in P$. Consider the following Cauchy problem:

$$\begin{cases} x'(t) \in -(I+A')x(t), \ t \in (0,+\infty), \\ x(0) = y \in P. \end{cases}$$
 (2.1)

It is easy to see that (2.1) is equivalent to the following equation $x(t) = y + pt - \int_0^t (I + A)x(s)ds$.

First, we assume that y > 0 and take $1 > \alpha > 0$ sufficiently small such that $\alpha \beta < 1$, $\alpha(1+L) < 1$, and $\alpha(1+\beta) < 1$ Set

$$C([0, \alpha], P) = \{y + pt - w(t) : [0, \alpha] \to P : w(t) : [0, \alpha] \to P \text{ is continuous and } w(0) = 0\}.$$

We define semi-norms p_i' on $C([0, \alpha], E) = \{x(t) : [0, \alpha] \to E \text{ is continuous}\}$ by

$$p_i'(x(\cdot)) = \max_{t \in [0,\alpha]} p_i(x(t))$$

for each $i \ge 1$. Then one can easily see that $C([0, \alpha], E)$ is a complete locally convex space, and $C([0, \alpha], P)$ is closed in $C([0, \alpha], E)$.

Now, we define an operator $K: C([0,\alpha],P) \to C([0,\alpha],E)$ by

$$Kx(t) = y + pt - \int_0^t (I+A)x(s)ds$$

for all $x(\cdot) \in C([0, \alpha], P)$ and $t \in [0, \alpha]$. Since $Ax \leq \beta x$, we have

$$Kx(t) \ge y + pt - \int_0^t (1+\beta)x(s)ds$$

and

$$\int_0^t (1+\beta)x(s)ds = (1+\beta)[yt + \frac{1}{2}pt^2 - \int_0^t w(s)ds].$$

Thus $Kx(t) \ge 0$ for all $t \in [0, \alpha]$, so $K : C([0, \alpha], P) \to C([0, \alpha], P)$.

Now, we have

$$p_i'(Kx(\cdot) - Kz(\cdot)) \le (1 + L)\alpha p_i'(x(\cdot) - z(\cdot))$$

for all $x(\cdot), z(\cdot) \in C([0, \alpha], P)$ for $i \ge 1$. By using the standard Picard method, we know that K has a unique fixed point in $C([0, \alpha], P)$, which is the unique solution of the following problem:

$$\begin{cases} x'(t) = -(I+A')x(t), \ t \in (0,\alpha], \\ x(0) = y. \end{cases}$$
 (2.2)

By the standard extension method, we can extend the solution of (2.2) to $(0, \infty)$, which is the unique solution to problem (2.1).

For each $i \ge 1$, let $m_i(t) = p_i(x(t;y) - x(t;z))$, where x(t,y) and x(t,z) are solutions to problem (2.1) corresponding to the initial values y > 0 and z > 0, respectively. Then

$$D^{-}m_{i}(t) = \lim_{h \to 0^{+}} \frac{m_{i}(t) - m_{i}(t-h)}{h} = [x(t,y) - x(t,z), x'(t,y) - x'(t,z)]_{i}^{-},$$

which implies that

$$p_i(x(t,y) - x(t,z)) \le e^{-t}p_i(y-z)$$
 (2.3)

for all y, z > 0, $t \in (0, \infty)$, and $i \ge 1$. Take $y_n > 0$ for each $n \ge 1$ and $y_n \to 0$. By (2.3), we know that $x(t) = \lim_{n \to \infty} x(t, y_n)$ exists for all $t \ge 0$. Thus we can easily see that x(t) is the unique solution to the problem (2.1) with the initial value x(0) = 0.

Finally, for each T > 0, we define a mapping $B_T : P \to P$ by

$$B_T y = x(T, y)$$

for all $y \in P$, where x(t,y) is the unique solution of the problem (2.1) with the initial value x(0) = y. By the same reason as in (2.3), we have

$$p_i(B_T y - B_T z) \le e^{-T} p_i(y - z)$$

for all $y, z \in P$ and $i \ge 1$. So B_T has a unique fixed point $y_0 \in P$. Since $B_T B_S = B_S B_S$ for all T, S > 0, by the uniqueness of solutions of problem (2.1), it follows that $B_t y_0 = x(t, y_0) = y_0$ for all t > 0. So $0 \in (I + A)x_0 - p$ and the conclusion of Theorem 2.10 is proved.

REFERENCES

- [1] S. Aizicovici, Y.Q. Chen, S. Reich, Accretive operators in locally convex spaces, PanAmer. Math. J. 9 (1999) 1-10.
- [2] S.S. Chang, Y.Q. Chen, Coincidence index methods in studying accretive operator equations, Chin. Ann. Math. 5 (1993) 579-583.
- [3] S.S. Chang, Y.Q. Chen, B.S. Lee, On the semi-inner products in locally convex spaces, Internat. J. Math. Math. Sci. 20 (1997) 219-224.
- [4] Y.Q. Chen, On accretive operators in cones of Banach spaces, Nonlinear Anal. 27 (1996) 1125-1135.
- [5] Y.Q. Chen, On the ranges of nonlinear set valued accretive operators in Banach spaces, J. Math. Anal. Appl. 233 (1999) 827-842.
- [6] Y.Q. Chen, Y.J. Cho, On 1-set contraction perturbations of accretive operators in cones of Banach spaces, J. Math. Anal. Appl. 201 (1996) 966-980.
- [7] Y.Q. Chen, Y.J. Cho, D. O'Regan, On perturbations of accretive mappings, Appl. Math. Lett. 18 (2005) 775-781.
- [8] Y.Q. Chen, S.S. Chang, H.B. Thompson, X.Z. Yuan, On nonlinear accretive operators and semigroups in locally convex spaces, Rev. Rouma. Math. Pures Appl. 42 (1997) 215-234.
- [9] Z.Y. Guan, A.G. Kartsatos, Ranges of perturbed maximal and m-accretive operators in Banach spaces, Trans. Amer. Math. Soc. 347 (1995) 2403-2435.
- [10] K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Natl. Acad. Sci. USA, 38 (1952) 121-126.
- [11] P.M. Fitzpatrick, W.V. Petryshyn, Fixed point theorems and the fixed point index for multivalued mappings in cones, J. London Math. Soc. 12 (1975) 75-85.
- [12] N. Hirano, A.K. Kalinde, On perturbations of m-accretive operators in Banach spaces, Proc. Amer. Math. Soc. 124 (1996) 1183-1190.
- [13] Y. Komura, Semigroups of operators in locally convex spaces, J. Funct. Anal. 2 (1968) 258-296.
- [14] M. Nagumo, Degree of mappings in convex linear topological spaces, Amer. J. Math. 73 (1951) 497-511.
- [15] T W. Ma, Topological degree for set-valued compact vector fields in locally convex spaces, Dissert. Math. 92 (1972) 1-43.
- [16] V.M. Millionshchikov, On the theory of differential equations in locally convex spaces, Mat. Sb. 57 (1962) 385-406.
- [17] J. Polewczak, Ordinary differential equations on closed subsets of locally convex spaces with applications to fixed point theorems, J. Math. Anal. Appl. 151 (1990) 208-225.