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Abstract. In a real uniformly convex and q-uniformly smooth Banach space, a new iterative algorithm
is devised for approximating a zero point of the sum of countable accretive-type mappings. The zero
point also solves generalized variational inequalities. The highlight of this paper is the framework of the
space. The application to capillarity systems is also considered.
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1. INTRODUCTION AND PRELIMINARIES

Let E be a real Banach space with E∗ being its dual space. The value of g ∈ E∗ at x ∈ E
is denoted by 〈x,g〉, and “→” denotes strong convergence in E. A Banach space E is said to
be uniformly convex [3, 18] if any two sequences {xn} and {yn} in E with ‖xn‖ = ‖yn‖ = 1
and limn→∞ ‖xn + yn‖ = 2 imply limn→∞ ‖xn− yn‖ = 0. The function δ : [0,+∞)→ [0,+∞) is
called the modulus of smoothness of E [3, 18] if it is defined as follows: δ (t) = sup{1

2(‖x+
y‖+ ‖x− y‖)− 1 : x,y ∈ E, ‖x‖ = 1, ‖y‖ ≤ t}. A Banach space E is said to be uniformly
smooth [3, 18] if limt→0

δ (t)
t = 0. Let q > 1 be a real number. A Banach space E is said to be

q-uniformly smooth with constant Kq if Kq > 0 and δ (t)≤ Kqtq for t > 0. It is well-known that
every q-uniformly smooth Banach space is uniformly smooth. For q> 1, the generalized duality
mapping Jq : E→ 2E∗ is defined by (see, e.g., [3, 18]) Jq(x) = {g ∈ E∗ : 〈x,g〉= ‖x‖q,‖x‖q−1 =
‖g‖}, ∀x ∈ E. In particular, J := J2 is called the normalized duality mapping. The single-valued
generalized duality mapping and the single-valued normalized duality mapping are denoted by
jq or j, respectively. Let T : D(T ) ⊂ E → E be a nonlinear mapping. We use T−10 to denote
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the set of zero points of T . That is, T−10 = {x ∈ D(T ) : T x = 0}. We use F(T ) to denote the
set of fixed points of T . That is, F(T ) = {x ∈ D(T ) : T x = x}. Recall that

(1) T is said to be accretive if, for all x,y ∈ D(T ), 〈T x−Ty, j(x− y)〉 ≥ 0, where j(x− y) ∈
J(x− y);

(2) T is said to be m-accretive if T is accretive and R(I +λT ) = E, for ∀λ > 0;
(3) T is said to be θ -inversely-strongly accretive if, for all x,y∈D(T ), 〈T x−Ty, jq(x−y)〉 ≥

θ‖T x−Ty‖q, where jq(x− y) ∈ Jq(x− y), for some θ > 0;
(4) T is said to be ϑ -strongly accretive if, for all x,y∈D(T ), 〈T x−Ty, j(x−y)〉 ≥ϑ‖x−y‖2,

where j(x− y) ∈ J(x− y), for some ϑ > 0;
(5) T is said to be a contraction with coefficient k if k ∈ (0,1) such that, for all x,y ∈ D(T ),
‖T x−Ty‖ ≤ k‖x− y‖;

(6) T is said to be nonexpansive if, for all x,y ∈ D(T ), ‖T x−Ty‖ ≤ ‖x− y‖;
(7) T is said to be a strongly positive mapping with coefficient ξ if ξ > 0 such that 〈T x, j(x)〉≥

ξ‖x‖2 for x ∈D(T ), where j(x) ∈ J(x). In this case, ‖aI−bT‖= sup‖x‖≤1 |〈(aI−bT )x, j(x)〉|,
where j(x) ∈ J(x), I is the identity mapping, a ∈ [0,1], and b ∈ [−1,1];

(8) T is said to be µ-strictly pseudo-contractive if, for all x,y ∈ D(T ), there exists j(x− y) ∈
J(x−y) such that 〈T x−Ty, j(x−y)〉 ≤ ‖x−y‖2−µ‖x−y− (T x−Ty)‖2, for some µ ∈ (0,1).

The Lyapunov functional ω : E×E → R+ is defined by ω(x,y) = ‖x‖2− 2〈x, j(y)〉+ ‖y‖2,
∀x,y ∈ E, j(y) ∈ J(y).

If E is a real uniformly smooth and uniformly convex Banach space, and C is a nonempty,
closed, and convex subset of E, then [4, 11, 16] (1) for each x∈ E, there exists a unique element
v ∈ C such that ‖x− v‖ = inf{‖x− y‖ : y ∈ C}. Such an element v is denoted by PCx, and it
is called the metric projection of E onto C; (2) ∀x ∈ E, there exists a unique element x0 ∈
C satisfying ω(x0,x) = inf{ω(z,x) : z ∈ C}. In this case, for any x ∈ E, define ΠC : E → C
by ΠCx = x0, and then ΠC is called the generalized projection from E onto C. If E is a real
uniformly smooth Banach space, and K is a nonempty closed subset of E, then T : K → K is
said to be generalized nonexpansive [17] if F(T ) 6= /0 and ω(T x,y)≤ω(x,y) for each x ∈D(T )
and y ∈ F(T ). Let Q be a mapping of E onto K, where K is a nonempty closed subset of E.
Then Q is said to be sunny [4, 11, 16] if Q(Q(x)+ t(x−Q(x))) = Q(x), for all x ∈ E and t ≥ 0.
A mapping Q : E→K is said to be a retraction [4, 11, 16] if Q2 = Q. If E is a uniformly smooth
and uniformly convex Banach space, then the sunny generalized nonexpansive retraction of E
onto K is uniquely decided, which is denoted by RK.

Recently, a hot topic to find zero points of the sum of two accretive-type mappings, namely,
a solution of the following inclusion problem: 0 ∈ Au+Bu, where A : E → 2E is m-accretive
and B : E → E is θ -inversely-strongly accretive. A number of problems, which are related to
evolution equations, convex programming, variational inequalities, split feasibility problems,
minimization problems, inverse problems, and image processing, can be modeled via the inclu-
sion problem. Many efforts have been devoted to constructing iterative algorithms for the solu-
tions of the inclusion problem. The forward-backward splitting method is a popular one among
the recent iterative algorithms. Forward-backward splitting method means an iteration involves
only A as the forward step and B as the backward step, not the sum A+B. The classical forward-
backward splitting iterative method is stated as follows: x1 ∈H, xn+1 =(I+rnA)−1(xn−rnBxn),
∀n ∈ N. Some of the related work can be found in [10, 12, 14, 15, 19, 20, 21, 22, 23] and the
references therein.



ACCRETIVE-TYPE MAPPINGS AND VARIATIONAL INEQUALITIES 3

In 2012, Ceng et al. [7] proposed the following iterative algorithm with a perturbed operator
for approximating a zero point of the m-accretive mapping A in a real Hilbert space H:

x1 ∈ H,

yn = αnxn +(1−αn)(I + rnA)−1xn,

xn+1 = βn f (xn)+(1−βn)[(I + rnA)−1yn−λnµnW ((I + rnA)−1yn)], ∀n ∈ N,

(1.1)

where W : H → H is a ϑ -strongly accretive and µ-strictly pseudo-contractive mapping with
ϑ +µ > 1, f : H→H is a contraction, and A : H→H is m-accretive. Under some assumptions,
{xn} was proved to be strongly convergent to the unique element p0 ∈ A−10, which solves the
following variational inequality: 〈p0− f (p0), p0−u〉 ≤ 0, ∀u ∈ A−10. Notice that the mapping
W , which is called a perturbed operator, only plays a role in the construction of the iterative
algorithm for selecting a particular zero point of A, but not involved in the variational inequality.

In [20], the study of the inclusion problem 0 ∈ Au+Bu was extended to the system of inclu-
sion problems 0 ∈ Aiu+Biu, where Ai : H→ H is m-accretive, and Bi : H→ H is θi-inversely-
strongly accretive for each i ∈ N. The algorithmm in [20] reads

x1 ∈C,

un = QC(αnxn +βnan),

vn = τnun +χn ∑
∞
i=1 ω

(2)
i (I + rn,iAi)

−1(I− rn,iBi)(
un+vn

2 )+ξnbn,

xn+1 = δn f (xn)

+(1−δn)(I−ζn ∑
∞
i=1 ω

(1)
i Wi)∑

∞
i=1 ω

(2)
i (I + rn,iAi)

−1(I− rn,iBi)(
un+vn

2 ), ∀n ∈ N.
(1.2)

where ∑
∞
i=1 ω

(1)
i Wi is called a superposition perturbation, Wi : H → H is a perturbed operator

in the sense of (1.1), that is, Wi : H → H is a ϑi-strongly accretive and µi-strictly pseudo-
contractive mapping with ϑi + µi > 1, for each i ∈ N. The iterative sequence {xn} was proved
to be strongly convergent to p0 ∈

⋂
∞
i=1(Ai +Bi)

−10, which solves the variational inequality:
〈p0− f (p0), j(p0−u)〉 ≤ 0, ∀u ∈

⋂
∞
i=1(Ai +Bi)

−10.
In 2019, Wei et al. [21] injected some new ideas by proposing the following inertial forward-

backward iterative algorithm for approximating the solution of the inclusion problems, consid-
ered in [20] 

x0,x1,e1 ∈ H,

yn = xn + kn(xn− xn−1),

wn = αnxn +βn ∑
∞
i=1 ωn,i(I + rn,iAi)

−1(I− rn,iBi)yn + γnen,

C1 = H = Q1,

Cn+1 = {p ∈Cn : ‖wn− p‖2 ≤ (1− γn)‖xn− p‖2 + γn‖en− p‖2

+k2
n‖xn− xn−1‖2−2βnkn〈xn− p,xn−1− xn〉},

Qn+1 = {p ∈Cn+1 : ‖x1− p‖2 ≤ ‖x1−PCn+1(x1)‖2 +σn+1},
xn+1 ∈ Qn+1, n ∈ N.

The result that xn→ P⋂
∞
m=1 Cm(x1) ∈

⋂
∞
i=1(Ai +Bi)

−10, as n→ ∞, was proved under some con-
ditions. To set up the relationship between the limit of {xn}, P⋂

∞
m=1 Cm(x1), and the solution of

variational inequalities, a mid-point inertial forward-backward iterative algorithm was presented
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as follows: 

z0 = x0,x1,e1 ∈ H,

zn = δnλ f (xn)+(I−δnF)xn,

vn = zn + kn(zn− zn−1),

wn = αnvn +βn ∑
∞
i=1 ωn,i(I + rn,iAi)

−1(I− rn,iBi)(
vn+wn

2 )+ γnen,

C1 = H = Q1,

Cn+1 = {p ∈Cn : ‖wn− p‖2 ≤ 2αn+βn
2−βn

‖zn− p‖2 + 2γn
2−βn
‖en− p‖2

+2αn+βn
2−βn

kn‖zn− zn−1‖2−22αn+βn
2−βn

kn〈zn− p,zn−1− zn〉},
Qn+1 = {p ∈Cn+1 : ‖x1− p‖2 ≤ ‖x1−PCn+1(x1)‖2 +σn+1},
xn+1 ∈ Qn+1, n ∈ N,

where f is a contraction, and F is a strongly positive linear bounded mapping. The result that
xn → P⋂

∞
m=1 Cm(x1) = P⋂

∞
i=1(Ai+Bi)−10(x1), as n→ ∞, was proved under some conditions. Un-

der the additional assumptions that x̃ = P⋂
∞
i=1(Ai+Bi)−10(x1) and x̃ = P⋂

∞
i=1(Ai+Bi)−10(x1)[λ f (x̃)−

F(x̃)+ x̃], it was proved that x̃ solves the variational inequality

〈Fx̃−λ f (x̃), x̃− z〉 ≤ 0, ∀z ∈
∞⋂

i=1

(Ai +Bi)
−10. (1.3)

Very recently, a new forward-backward multi-choice iterative algorithm with superposition
perturbations in a real Hilbert space was constructed in [22]. Some strong convergence theorems
of common solutions of inclusion problems and variational inequalities were proved

x1,y1,e1,ε1 ∈ H,
C1 = H = Q1,
un = ωnxn + εn,
vn = βnun +(1−βn)∑

∞
i=1 ai(I + rn,iAi)

−1(I− rn,iBi)vn,
zn = δn f (xn)+(1−δn)(I−ζn ∑

∞
i=1 ciWi)∑

∞
i=1 ai(I + rn,iAi)

−1(I− rn,iBi)vn,
wn = αnxn +(1−αn)∑

∞
i=1 ai(I + rn,iAi)

−1(I− rn,iBi)zn,
xn+1 = λnη f (xn)+(I−λnF)wn + en,
Cn+1 = {p ∈Cn : 2〈αnxn +(1−αn)zn−wn, p〉
≤ αn‖xn‖2 +(1−αn)‖zn‖2−‖wn‖2}

Qn+1 = {p ∈Cn+1 : ‖x1− p‖2 ≤ ‖PCn+1(x1)− x1‖2 +σn+1}, n ∈ N,
yn+1 ∈ Qn+1, n ∈ N,

(1.4)

It was shown that xn → q0 ∈
⋂

∞
i=1(Ai + Bi)

−10, as n→ ∞, where q0 satisfies the following
variational inequalities:

〈Fq0−η f (q0),q0− y〉 ≤ 0, ∀y ∈ ∩∞
i=1(Ai +Bi)

−10, (1.5)

and

〈q0− f (q0),q0− y〉 ≤ 0, ∀y ∈ ∩∞
i=1(Ai +Bi)

−10. (1.6)

In addition, yn→ P⋂
∞
m=1 Cm(x1) ∈

⋂
∞
i=1(Ai +Bi)

−10, as n→ ∞.
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Motivated by the above results, in particular, those in [11, 21, 22], a new iterative algorithm
is constructed, which extends the corresponding results from a real Hilbert space to a real uni-
formly convex and q-uniformly smooth Banach space in this paper. The superposition pertur-
bation is considered. Moreover, the strong convergent limit of the iterative sequence is proved
to solve not only the inclusion problems but also two different types of generalized variational
inequalities. Also, the application to capillarity systems is demonstrated.

To begin our study, the following tools are needed.

Lemma 1.1. [3, 18] Let E is a real uniformly smooth and uniformly convex Banach space. Then
the normalized duality mapping J : E→ 2E∗ is single-valued and J(−x) =−Jx, for x ∈ E.

Lemma 1.2. [23] Let C be a nonempty, closed, and convex subset of a real Banach space E.
Let A : C→ E be a single-valued mapping, and let B : E → 2E be m-accretive. Then F((I +
rB)−1(I− rA)) = (A+B)−10, where r is any positive real number.

Lemma 1.3. [5] Let E is a real uniformly convex Banach space, and let C be a nonempty,
closed, and convex subset of E. Let Ti : C→C be a nonexpansive mapping for each i ∈ N and
∑

∞
i=1 ai = 1 for {ai} ⊂ (0,1). Then, ∑

∞
i=1 aiTi is nonexpansive with F(∑∞

i=1 aiTi) =
⋂

∞
i=1 F(Ti)

under the assumption that
⋂

∞
i=1 F(Ti) 6= /0.

Lemma 1.4. [1] Let E be a real uniformly convex and uniformly smooth Banach space with
K being its nonempty, closed, and convex subset. Let RK : E → K be the sunny generalized
nonexpansive retraction. Then ω(x,RKx)+ω(RKx,u)≤ ω(x,u) for x ∈ E and u ∈ K.

Lemma 1.5. [2] Let E be a real uniformly convex and uniformly smooth Banach space, and let
C be a nonempty closed and convex subset of E. Then, for any x ∈ E and y ∈C, ω(y,ΠCx)+
ω(ΠCx,x)≤ ω(y,x).

Lemma 1.6. [13] Let E be a real uniformly smooth and uniformly convex Banach space. Let
{xn} and {yn} be two sequences in E. If either {xn} or {yn} is bounded and ω(xn,yn)→ 0 as
n→ ∞, then xn− yn→ 0 as n→ ∞.

Lemma 1.7. [8, 12] Let E be a real q-uniformly smooth Banach space, where q > 1 is a real
number, then the following inequality is true ‖x+ y‖q ≤ ‖x‖q + q〈y, jq(x+ y)〉, where x,y ∈ E
and jq(x+ y) ∈ Jq(x+ y). Further, if E is smooth, then ‖x+ y‖2 ≤ ‖x‖2 +2〈y, j(x+ y)〉.

Lemma 1.8. [4] Let E be a real uniformly smooth and uniformly convex Banach space. Let
f : E → E be a contraction with coefficient k ∈ (0,1). Let F : E → E be a strongly positive
linear bounded mapping with coefficient ξ > 0, and let U : E→ E be a nonexpansive mapping.
Suppose 0 < η ≤ ξ/2k and F(U) 6= /0. If, for each t ∈ (0,1), Tt : E → E is defined by Ttx :=
tη f (x)+(I− tF)Ux, then Tt has a fixed point xt for each t ∈ (0,‖F‖−1]. Moreover, xt → q0, as
t→ 0, where q0 ∈ F(U), which satisfies the variational inequality: 〈Fq0−η f (q0), j(q0−z)〉 ≤
0, ∀z ∈ F(U).

Lemma 1.9. [6] Let E be a Banach space. Let F : E→ E be a strongly positive linear bounded
mapping with coefficient ξ > 0 and 0 < ρ ≤ ‖F‖−1. Then ‖I−ρF‖ ≤ 1−ρξ .

Lemma 1.10. [26] Let {xn} and {bn} be two sequences of nonnegative real number sequences
satisfying xn+1 ≤ (1− tn)xn + bn, ∀n ∈ N, where {tn} ⊂ (0,1) with ∑

∞
n=1 tn = +∞ and tn→ 0,

as n→ ∞. If limsupn→∞
bn
tn
≤ 0, then limn→∞ xn = 0.
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Lemma 1.11. [11] Let E be a real uniformly convex and q-uniformly smooth Banach space
with constant Kq, where q ∈ (1,2], and let f : E → E be a contraction with coefficient k ∈
(0,1). Let Ai : E → E be a m-accretive mapping, and let Bi : E → E be a θi-inversely-strongly
accretive mapping. Let Wi : E → E be ϑi-strongly accretive and µi-strictly pseudo-contractive
with ϑi + µi > 1, for i ∈ N. Suppose 0 < rn,i ≤ (qθi

Kq
)

1
q−1 for i ∈ N and n ∈ N, kt ∈ (0,1) for

t ∈ (0,1),∑∞
n=1 cn‖Wn‖ < +∞, ∑

∞
i=1 ai = 1 = ∑

∞
i=1 ci and

⋂
∞
i=1(Ai +Bi)

−10 6= /0. If, for each
t ∈ (0,1), define Zn

t : E→ E by

Zn
t u = t f (u)+(1− t)(I− kt

∞

∑
i=1

ciWi)
∞

∑
i=1

ai(I− rn,iAi)
−1(I− rn,iBi)u.

Then Zn
t has a fixed point un

t , that is,

un
t = t f (un

t )+(1− t)(I− kt

∞

∑
i=1

ciWi)
∞

∑
i=1

ai(I− rn,iAi)
−1(I− rn,iBi)un

t .

Moreover, if kt
t → 0, then un

t → p0, as t→ 0, where p0 is the solution of variational inequality:
〈p0− f (p0), j(p0− z)〉 ≤ 0, ∀z ∈

⋂
∞
i=1(Ai +Bi)

−10.

Lemma 1.12. [9] Let E be a real uniformly convex Banach space, and let W : E → E be ϑ -
strongly accretive and µ-strictly pseudo-contractive with ϑ +µ > 1. Then, for any fixed number
δ ∈ (0,1), I−δW is a contraction with coefficient [1−δ (1−

√
1−ϑ

µ
)].

Lemma 1.13. [12] Let E be a real uniformly convex and q-uniformly smooth Banach space
with constant Kq, where q∈ (1,2]. Let A : E→ E be an m-accretive mapping, and let B : E→ E
be a θ -inversely-strongly accretive mapping. Then (I + rA)−1(I− rB) is nonexpansive for 0 <

r ≤ (qθ

Kq
)

1
q−1 .

2. NEW ITERATIVE ALGORITHMS AND STRONG CONVERGENCE THEOREMS

In this section, unless otherwise stated, we always assume that:
(1) E is a real uniformly convex and q-uniformly smooth Banach space with constant Kq,

where q ∈ (1,2];
(2) Ai : E→E is m-accretive and Bi : E→E is θi-inversely-strongly accretive, for each i∈N;
(3) f : E → E is a contraction with coefficient k ∈ (0, 1

2 ]. If 〈 f (x)− x, j(y− x)〉 = 0, then
x = 0 or y = x, for x,y ∈ E;
(4) F : E → E is a strongly positive linear bounded mapping with coefficient ξ > 0 and
〈F(x)−η f (x)+ f (y)− y, j(x− y)〉 ≥ 0, for x,y ∈ E;
(5) Wi : E→ E is ϑi-strongly accretive and µi-strictly pseudo-contractive, for i ∈ N;
(6) {en} ⊂ H and {εn} ⊂ E are the computational errors;
(7) {ai} and {ci} are two real sequences in (0,1) with ∑

∞
i=1 ai = ∑

∞
i=1 ci = 1;

(8) {αn}, {βn}, {δn}, {ζn}, {ωn}, {τn}, {χn}, and {λn} are real sequences in (0,1);
(9) {rn,i} is a real number sequence in (0,+∞);
(10) αn + τn +χn ≡ 1.
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Theorem 2.1. Let {xn} be a sequence generated by the following iterative algorithm:

x1,y1,e1,ε1 ∈ E, K1 = E,
un = ωnxn + εn,

vn = βnun +(1−βn)∑
∞
i=1 ai(I + rn,iAi)

−1(I− rn,iBi)vn,

zn = δn f (xn)+(1−δn)(I−ζn ∑
∞
i=1 ciWi)∑

∞
i=1 ai(I + rn,iAi)

−1(I− rn,iBi)vn,

wn = αnxn + τn ∑
∞
i=1 ai(I + rn,iAi)

−1(I− rn,iBi)zn +χnyn,

xn+1 = λnη f (xn)+(I−λnF)wn + en,

Kn+1 = {p ∈ Kn : ‖wn− p‖2 ≤ αn‖xn− p‖2 + τn‖zn− p‖2 +χn‖yn− p‖2},
yn+1 = RKn+1(x1), n ∈ N,

(2.1)

where RKn+1 stands for the sunny generalized nonexpansive retraction from E onto Kn+1. If (i)
0 ∈

⋂
∞
i=1(Ai +Bi)

−10;
(ii) µi +ϑi > 1, µi ∈ (0,1) and ϑi ∈ (0,1), for i ∈ N;

(iii) 0 < rn,i ≤ (qθi
Kq
)

1
q−1 , for i,n ∈ N;

(iv) αn→ 0,βn→ 0,δn→ 0, and ζn→ 0, as n→ ∞;
(v) 0 < η < ξ

2k ;
(vi) ∑

∞
i=1 ci‖Wi‖<+∞; ∑

∞
n=1 ‖en‖<+∞, ∑

∞
n=1 ‖εn‖<+∞, ∑

∞
n=1(1−ωn)<+∞ and ∑

∞
n=1 χn <

+∞;
(vii) δn

λn
→ 0, ‖en‖

λn
→ 0, ‖εn‖

λn
→ 0, 1−ωn

λn
→ 0, ζn

λn
→ 0 and αnχn

λn
→ 0, as n→ ∞;

(viii) ∑
∞
n=1 λn =+∞ and λn→ 0, as n→ ∞,

then yn → q0 ∈
⋂

∞
i=1(Ai +Bi)

−10, as n→ ∞, where q0 satisfies the following variational
inequalities:

〈Fq0−η f (q0), j(q0− y)〉 ≤ 0, ∀y ∈ ∩∞
i=1(Ai +Bi)

−10, (2.2)

and

〈q0− f (q0), j(q0− y)〉 ≤ 0, ∀y ∈ ∩∞
i=1(Ai +Bi)

−10. (2.3)

Proof. We split the proof into eight steps.
Step 1. {vn} is well-defined.
For s ∈ (0,1), defined Us : E→ E by Usx := su+(1− s)T x, ∀x ∈ E, where u is a fixed vector

in E, and T : E→E is a fixed nonexpansive mapping. It is easy to check that ‖Usx−Usy‖=(1−
s)‖T x−Ty‖ ≤ (1− s)‖x− y‖. Thus Us is a contraction, which ensures that there exists xs ∈ E
such that Usxs = xs, that is, xs = su+(1− s)T xs. It follows from Lemma 1.13 and assumption
(iii) that (I + rn,iAi)

−1(I− rn,iBi) : E → E is nonexpansive for i,n ∈ N. Since ∑
∞
i=1 ai = 1, then

from Lemmas 1.2 and 1.3, one has that ∑
∞
i=1 ai(I+rn,iAi)

−1(I−rn,iBi) : E→ E is nonexpansive
for n∈N. Moreover, F(∑∞

i=1 ai(I+rn,iAi)
−1(I−rn,iBi)) =

⋂
∞
i=1(Ai+Bi)

−10. Consider T above
as ∑

∞
i=1 ai(I + rn,iAi)

−1(I− rn,iBi), one can see that {vn} is well-defined.
Step 2. Kn is a nonempty closed subset of E.
It is easy to see from the construction of Kn that Kn is a closed subset of E. We are left to

show that Kn 6= /0. For this, it suffices to show that
⋂

∞
i=1(Ai +Bi)

−10 ⊂ Kn, for n ≥ 2. In fact,
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∀p ∈
⋂

∞
i=1(Ai +Bi)

−10, in view of Lemmas 1.2 and 1.3, one has

‖wn− p‖2

≤ αn‖xn− p‖2 + τn

∞

∑
i=1

ai‖(I + rn,iAi)
−1(I− rn,iBi)zn− p‖2 +χn‖yn− p‖2

≤ αn‖xn− p‖2 + τn‖zn− p‖2 +χn‖yn− p‖2.

Then Kn 6= /0, for n ∈ N.
Step 3. {un},{vn}, {zn}, {wn}, {xn}, and {yn} are all bounded.
For p ∈

⋂
∞
i=1(Ai +Bi)

−10, one find from Lemma 1.4 that

ω(x1,yn+1) = ω(x1,RKn+1(x1))≤ ω(x1, p)−ω(RKn+1(x1), p)≤ ω(x1, p),

which implies that {yn} is bounded. Note that

‖un− p‖ ≤ ωn‖xn− p‖+(1−ωn)‖p‖+‖εn‖, (2.4)

and ‖vn− p‖ ≤ βn‖un− p‖+(1−βn)‖vn− p‖, implies that

‖vn− p‖ ≤ ‖un− p‖. (2.5)

In view of Lemma 1.12, one has

‖zn− p‖
≤ δn‖ f (xn)− f (p)‖+δn‖ f (p)− p‖

+(1−δn)‖(I−ζn

∞

∑
i=1

ciWi)
∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)vn− p‖

≤ δnk‖xn− p‖+δn‖ f (p)− p‖

+(1−δn)‖(I−ζn

∞

∑
i=1

ciWi)
∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)(vn− p)‖

+(1−δn)‖(I−ζn

∞

∑
i=1

ciWi)
∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)p− p‖

≤ δnk‖xn− p‖+δn‖ f (p)− p‖+(1−δn)[1−ζn(1−
∞

∑
i=1

ci

√
1−ϑi

µi
)]‖un− p‖

+(1−δn)ζn

∞

∑
i=1

ci‖Wi‖‖p‖.

(2.6)

Note that

‖wn− p‖ ≤ αn‖xn− p‖+ τn‖zn− p‖+χn‖yn− p‖. (2.7)

Fro Lemma 1.9, one has

‖xn+1− p‖ ≤ λn‖η f (xn)−F p‖+‖(I−λnF)(wn− p)‖+‖en‖
≤ λnηk‖xn− p‖+λn‖η f (p)−F p‖+(1−λnξ )‖wn− p‖+‖en‖.

(2.8)



ACCRETIVE-TYPE MAPPINGS AND VARIATIONAL INEQUALITIES 9

Combing with inequalities (2.4), (2.5), (2.6), (2.7), and (2.8), one has

‖xn+1− p‖
≤ {λnηk+(1−λnξ )αn +(1−λnξ )(1−αn)δnk+(1−λnξ )(1−αn)(1−δn)[1

−ζn(1−
∞

∑
i=1

ci

√
1−ϑi

µi
)]ωn}‖xn− p‖+λn‖η f (p)−F(p)‖

+‖en‖+(1−λnξ )(1−αn)δn‖ f (p)− p‖+(1−λnξ )(1−αn)(1−δn)ζn

∞

∑
i=1

ci‖Wi‖‖p‖

+(1−λnξ )(1−αn)(1−ωn)(1−δn)[1−ζn(1−
∞

∑
i=1

ci

√
1−ϑi

µi
)]‖p‖

+(1−λnξ )(1−αn)(1−δn)[1−ζn(1−
∞

∑
i=1

ci

√
1−ϑi

µi
)]‖εn‖

≤ {λnηk+(1−λnξ )αn +(1−λnξ )(1−αn)δnk

+(1−λnξ )(1−αn)(1−δn)[1−ζn(1−
∞

∑
i=1

ci

√
1−ϑi

µi
)]}‖xn− p‖

+λn(ξ −ηk)
‖η f (p)−F(p)‖

ξ −ηk
+‖en‖+(1−λnξ )(1−αn)δn(1− k)

‖ f (p)− p‖
1− k

+(1−λnξ )(1−αn)(1−δn)ζn(1−
∞

∑
i=1

ci

√
1−ϑi

µi
)

∑
∞
i=1 ci‖Wi‖‖p‖

1−∑
∞
i=1 ci

√
1−ϑi

µi

+(1−ωn)‖p‖+‖εn‖+χnM

≤max{‖xn− p‖, ‖η f (p)−F(p)‖
ξ −ηk

,
‖ f (p)− p‖

1− k
,

∑
∞
i=1 ci‖Wi‖‖p‖

1−∑
∞
i=1 ci

√
1−ϑi

µi

}+‖en‖

+(1−ωn)‖p‖+‖εn‖+χnM

≤ ·· ·

≤max{‖x1− p‖, ‖η f (p)−F(p)‖
ξ −ηk

,
‖ f (p)− p‖

1− k
,

∑
∞
i=1 ci‖Wi‖‖p‖

1−∑
∞
i=1 ci

√
1−ϑi

µi

}

+
n

∑
i=1
‖ei‖+

n

∑
i=1

(1−ωi)‖p‖+
n

∑
i=1
‖εi‖+M

n

∑
i=1

χi,

where M = sup{‖yn− p‖ : n ∈ N} < +∞. The above estimation implies that {xn} is bounded.
Following (2.4), (2.5), (2.6), and (2.7), we easily see that {un}, {vn}, {zn}, and {wn} are all
bounded. Note that, for p ∈

⋂
∞
i=1(Ai +Bi)

−10,

‖
∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)vn− p‖ ≤ ‖vn− p‖.
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Then {∑∞
i=1 ai(I + rn,iAi)

−1(I − rn,iBi)vn} is bounded. Similarly, {∑∞
i=1 ai(I + rn,iAi)

−1(I −
rn,iBi)zn} is bounded. Since

‖
∞

∑
i=1

ciWi

∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)vn‖

≤
∞

∑
i=1

ci‖Wi‖
∞

∑
i=1
‖ai(I + rn,iAi)

−1(I− rn,iBi)vn‖,

then {∑∞
i=1 ciWi ∑

∞
i=1 ai(I + rn,iAi)

−1(I− rn,iBi)vn} is bounded.
Step 4. There exists q0 ∈

⋂
∞
i=1(Ai+Bi)

−10, which is a solution to variational inclusion (2.2).
In view of Lemmas 1.3 and 1.8, there exists zt such that zt = tη f (zt)+ (I− tF)∑

∞
i=1 ai(I +

rn,iAi)
−1(I− rn,iBi)zt and zt → q0, as t→ 0, where q0 is the solution of (2.2).

Step 5. limsupn→∞〈η f (q0)−Fq0, j(xn+1−q0)〉 ≤ 0, where q0 is the same as that in Step 4.
Note that

‖zn− vn‖ ≤ δn‖ f (xn)‖+ζn(1−δn)‖
∞

∑
i=1

ciWi

∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)vn‖

+βn‖un−
∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)vn‖

+δn‖
∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)vn‖,

which implies

‖wn− zn‖

≤ αn‖xn−
∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)zn‖+χn‖yn−

∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)zn‖

+2δn‖ f (xn)‖+2βn‖
∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)vn−un‖

+2ζn(1−δn)‖
∞

∑
i=1

ciWi

∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)vn‖

+2δn‖
∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)vn‖+βn‖

∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)vn−un‖.

(2.9)

Since {xn}, {un},{vn}, {yn} , {∑∞
i=1 ai(I + rn,iAi)

−1(I− rn,iBi)vn}, {∑∞
i=1 ai(I + rn,iAi)

−1(I−
rn,iBi)zn}, and {∑∞

i=1 ciWi ∑
∞
i=1 ai(I+rn,iAi)

−1(I−rn,iBi)vn} are all bounded, we find from (2.9)
that wn− zn→ 0, as n→ ∞. Therefore,

‖
∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)wn−wn‖

≤ ‖wn− zn‖+αn‖xn−
∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)zn‖

+χn‖yn−
∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)zn‖→ 0, n→ ∞.

(2.10)



ACCRETIVE-TYPE MAPPINGS AND VARIATIONAL INEQUALITIES 11

Let zt be the same as that in Step 4. Then ‖zt‖ ≤ ‖zt − q0‖+ ‖q0‖, which implies that {zt} is
bounded. Observe that

‖zt−wn‖2

≤ ‖zt−
∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)wn‖2 +2〈

∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)wn−wn, j(zt−wn)〉

≤ ‖zt−wn‖2 +2〈tη f (zt)− tF(
∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)zt), j(zt−

∞

∑
i=1

ai(I + rn,iAi)
−1(I

− rn,iBi)wn)〉+2‖zt−wn‖‖
∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)wn−wn‖.

Thus, t〈F(∑∞
i=1 ai(I+rn,iAi)

−1(I−rn,iBi)zt)−η f (zt), j(zt−∑
∞
i=1 ai(I+rn,iAi)

−1(I−rn,iBi)wn)〉
≤ ‖zt −wn‖‖∑

∞
i=1 ai(I + rn,iAi)

−1(I− rn,iBi)wn−wn‖, which implies from (2.10) that limt→0
limsupn→∞〈F (∑∞

i=1 ai(I+rn,iAi)
−1(I−rn,iBi)zt)−η f (zt), j(zt−∑

∞
i=1 ai(I+rn,iAi)

−1(I−rn,iBi)
wn)〉≤ 0. Since zt→ q0 as t→ 0, then limsupn→∞〈Fq0−η f (q0), j(q0−∑

∞
i=1 ai(I+rn,iAi)

−1(I−
rn,iBi)wn)〉 ≤ 0. Since en→ 0, λn→ 0 as n→ ∞, and {xn} and {wn} are bounded, then xn+1−
wn = λn(η f (xn)−Fwn)+ en→ 0, as n→ ∞. Based on the facts that ∑

∞
i=1 ai(I + rn,iAi)

−1(I−
rn,iBi)wn−wn→ 0 and xn+1−wn→ 0, one has limsupn→∞〈Fq0−η f (q0), j(q0− xn+1)〉 ≤ 0.

Step 6. xn→ q0 as n→ ∞, where q0 is the same as that in Steps 4 and 5.
Observe ‖un − q0‖2 ≤ ωn‖xn − q0‖2 + 2‖εn‖‖un − q0‖+ 2(1− ωn)‖q0‖‖un − q0‖. ‖vn −

q0‖2 ≤ βn‖un− q0‖2 + (1− βn)‖vn− q0‖2 ensures that ‖vn− q0‖2 ≤ ‖un− q0‖2. In view of
Lemmas 1.1, one has

‖zn−q0‖2 ≤ (1−δn)‖vn−q0‖2 +2δn〈 f (xn)− f (q0), j(zn−q0)〉+2δn〈 f (q0)−q0, j(zn−q0)〉

+2(1−δn)ζn‖
∞

∑
i=1

ciWi

∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)vn‖‖zn−q0‖

≤ (1−δn)‖vn−q0‖2 +2δnk‖zn− xn‖‖xn−q0‖+2δnk‖xn−q0‖2 +2δn〈 f (q0)−q0,

j(zn−q0)〉+2ζn‖
∞

∑
i=1

ciWi

∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)vn‖‖zn−q0‖.

Note that ‖wn−q0‖2 ≤ αn‖xn−q0‖2 + τn‖zn−q0‖2 + χn‖yn−q0‖2. Now, in view of Lemma
1.9 and the inequalities above, one has

‖xn+1−q0‖2

≤ (1−λnξ )‖wn−q0‖2 +2‖en‖‖xn+1−q0‖+2λnηk‖xn−q0‖‖xn+1−q0‖
+2λn〈η f (q0)−F(q0), j(xn+1−q0)〉

≤ {(1−λnξ )αn +λnηk+2(1−λnξ )(1−αn)δnk+(1−λnξ )(1−αn)(1−δn)ωn}‖xn−q0‖2

+2‖en‖‖xn+1−q0‖+2(1−λnξ )(1−αn)(1−δn)‖εn‖‖un−q0‖+2(1−λnξ )(1−αn)(1−δn)

(1−ωn)‖q0‖‖un−q0‖+2δnk(1−λnξ )(1−αn)‖xn−q0‖‖xn− zn‖+(1−λnξ )αnχn‖yn−q0‖2

+2(1−λnξ )(1−αn)δn‖zn−q0‖‖ f (q0)−q0‖+2(1−λnξ )(1−αn)ζn‖zn−q0‖‖
∞

∑
i=1

ciWi

∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)vn‖+λnηk‖xn+1−q0‖2 +2λn〈η f (q0)−F(q0), j(xn+1−q0)〉.
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Let M′= supn{2‖xn+1−q0‖,2‖un−q0‖,2k‖xn−q0‖‖xn−zn‖,2‖un−q0‖‖q0‖,2‖ f (q0)−q0‖‖
zn− q0‖,2‖zn− q0‖‖∑

∞
i=1 ciWi ∑

∞
i=1 ai(I + rn,iAi)

−1(I− rn,iBi)vn‖,‖yn− q0‖2 : n ∈ N}. From
Step 3, one has M′ <+∞. Therefore, it follows that

(1−λnηk)‖xn+1−q0‖2

≤ {(1−λnξ )αn +λnηk+2(1−λnξ )(1−αn)δnk+(1−λnξ )(1−αn)(1−δn)}‖xn−q0‖2

+[‖en‖+‖εn‖+(1−ωn)+2δn +ζn +αnχn]M′+2λn〈η f (q0)−F(q0), j(xn+1−q0)〉.

Set b(1)n = λn(ξ−2ηk)
1−λnηk ,b(2)n = M′

1−λnηk [‖en‖+‖εn‖+(1−ωn)+2δn+ζn+αnχn]+
2λn

1−λnηk〈η f (q0)−
Fq0, j(xn+1−q0)〉. Then ‖xn+1−q0‖2 ≤ (1−b(1)n )‖xn−q0‖2+b(2)n . Based on assumptions (v),

(vii), (viii), and Step 5, we see that b(1)n → 0, as n→∞, ∑
∞
n=1 b(1)n =+∞, and limsupn→∞

b(2)n

b(1)n
≤ 0.

It follows from Lemma 1.10 that xn→ q0, as n→ ∞.
Step 7. There exists p0 ∈

⋂
∞
i=1(Ai+Bi)

−10, which is the solution of the variational inequality

〈p0− f (p0), j(p0− y)〉 ≤ 0, ∀y ∈ ∩∞
i=1(Ai +Bi)

−10. (2.11)

In fact, it follows from Lemma 1.11 that there exists un
t such that

un
t = t f (un

t )+(1− t)(I− kt

∞

∑
i=1

ciWi)
∞

∑
i=1

ai(I + rn,iAi)
−1(I− rn,iBi)un

t

and un
t → p0, as t→ 0, where p0 is the solution of (2.11).

Step 8. xn→ p0, as n→ ∞, where p0 is the same as that in Step 7.
It suffices to show that p0 = q0. Since p0 ∈ ∩∞

i=1(Ai +Bi)
−10, then (2.2) implies that 〈Fq0−

η f (q0), j(q0− p0)〉 ≤ 0. Since F is strongly positive linear bounded, f is a contraction, and
0 < η < ξ

2k , then

〈(Fq0−η f (q0))− (F p0−η f (p0)), j(q0− p0)〉
= 〈F(q0− p0), j(q0− p0)〉+η〈 f (p0)− f (q0), j(q0− p0)〉

≥ ξ‖q0− p0‖2−ηk‖q0− p0‖2 ≥ 0.

Therefore,
〈F p0−η f (p0), j(q0− p0)〉 ≤ 〈Fq0−η f (q0), j(q0− p0)〉 ≤ 0. (2.12)

On the other hand, it follows from (2.11) and Lemma 1.1 that

〈 f (p0)− p0, j(q0− p0)〉 ≤ 0, (2.13)

which together with (2.12) yields 〈Fq0−η f (q0)+ f (p0)− p0, j(q0− p0)〉 ≤ 0. Following the
condition imposed on F and f , we know that 〈Fq0−η f (q0)+ f (p0)− p0, j(q0− p0)〉= 0. In
view of (2.12) and (2.13), one has 〈Fq0−η f (q0), j(q0− p0)〉= 〈 f (p0)− p0, j(q0− p0)〉= 0.
Since 0∈

⋂
∞
i=1(Ai+Bi)

−10, then p0 = 0 or p0 = q0. If p0 = q0, then the result follows. If p0 = 0,
then 〈Fq0−η f (q0), j(q0− p0)〉= 0, which implies that 〈Fq0−η f (q0), j(q0)〉= 0. Therefore,
ξ‖q0‖2≤ 〈Fq0, j(q0)〉=η〈 f (q0), j(q0)〉 ≤ηk‖q0‖2. Since ξ > 2ηk, then q0 = 0, which means
that p0 = q0 = 0. Therefore, xn→ p0 = q0, as n→ ∞. This completes the proof. �

Remark 2.2. If E reduces to a Hilbert space H, then Kn+1 in Theorem 2.1 can be simplified as

Kn+1 = {p∈Kn : 2〈αnxn+χnyn+τnzn−wn, p〉≤αn‖xn‖2+τn‖zn‖2+χn‖yn‖2−‖wn‖2}, n∈N,
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which implies that Kn+1 is a closed and convex subset H. Then yn+1 = RKn+1(x1) = PKn+1(x1),
for n ∈ N, where PKn+1(x1) means the metric projection of H onto Kn+1.

The following corollary is easy to derive.

Corollary 2.3. Let H be a Hilbert space. Let {xn} be generated by the following iterative
algorithm:

x1,y1,e1,ε1 ∈ H, K1 = H,
un = ωnxn + εn,
vn = βnun +(1−βn)∑

∞
i=1 ai(I + rn,iAi)

−1(I− rn,iBi)vn,
zn = δn f (xn)+(1−δn)(I−ζn ∑

∞
i=1 ciWi)∑

∞
i=1 ai(I + rn,iAi)

−1(I− rn,iBi)vn,
wn = αnxn + τn ∑

∞
i=1 ai(I + rn,iAi)

−1(I− rn,iBi)zn +χnyn,
xn+1 = λnη f (xn)+(I−λnF)wn + en,
Kn+1 = {p ∈ Kn : 2〈αnxn +χnyn + τnzn−wn, p〉
≤ αn‖xn‖2 + τn‖zn‖2 +χn‖yn‖2−‖wn‖2},
yn+1 = PKn+1(x1), n ∈ N.

(2.14)

Then, under the assumptions of Theorem 2.1, yn→ q0 ∈
⋂

∞
i=1(Ai +Bi)

−10, as n→ ∞, where q0
satisfies the following variational inequalities:

〈Fq0−η f (q0),q0− y〉 ≤ 0, ∀y ∈ ∩∞
i=1(Ai +Bi)

−10, (2.15)

and

〈q0− f (q0),q0− y〉 ≤ 0, ∀y ∈ ∩∞
i=1(Ai +Bi)

−10. (2.16)

Remark 2.4. Compare (2.1) (or (2.14)) with (1.2), one finds that iterative sequence yn con-
verges strongly not only to the solution of the inclusion problem but also to the solution of
two generalized variational inequalities (2.2) (or (2.15)) and (2.3) (or (2.16)). This connects the
study on the topics of iterative construction of zero points of the sum of accretive-type mappings
and the iterative construction of the solutions of variational inequalities.

Remark 2.5. Comparing (2.1) with [22, (11)], one see that the corresponding work in [22] is
extended from a Hilbert space H to a real uniformly convex and q-uniformly smooth Banach
space in which the choice of yn+1 as the sunny generalized non-expansive retraction RKn+1(x1)
plays an important role.

Remark 2.6. In (2.1) or (2.14), the superposition perturbation ∑
∞
i=1 ciWi is considered in the

construction of zn, and a forward-backward splitting method is involved in the construction of
vn, zn, and wn, and a series of decreasing sets Kn, which is defined by employing the convexity
of ‖ · ‖2 and the relationship among iterative elements wn, zn, xn, and yn.

3. THE APPLICATION TO CAPILLARITY SYSTEMS

The capillarity equation is a kind of important equation in capillarity phenomenon. It was
studied as an example of m-d-accretive mappings, which were studied in [22] in a Hilbert space.
In this section, we examine the following capillarity systems (see [22]) again and study in a
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different space
−div[(1+ |∇u(i)|pi√

1+|∇u(i)|2pi
)|∇u(i)|pi−2∇u(i)]

+λi(|u(i)|qi−2u(i)+ |u(i)|ri−2u(i))+u(i)(x) = fi(x), x ∈Ω

−< ν ,(1+ |∇u(i)|pi√
1+|∇u(i)|2pi

)|∇u(i)|pi−2∇u(i) >= 0, x ∈ Γ, i ∈ N.

(3.1)

The discussion of (3.1) is under the following assumptions:

(1) Ω is a bounded conical domain in Rn (n ∈ N) with its boundary Γ ∈C1;
(2) ν is the exterior normal derivative of Γ;
(3) λi is a positive number, for i ∈ N;
(4) pi ∈ ( 2n

n+1 ,+∞), for i∈N. Moreover, if pi ≥ n, then 1≤ qi,ri <+∞, for i∈N. If pi < n,
then 1≤ qi,ri ≤ npi

n−pi
, for i ∈ N;

(5) | · | denotes the norm in RN , and < ·, ·> denotes the inner-product.

Definition 3.1. [24] Define the mapping Bi : W 1,pi(Ω)→ (W 1,pi(Ω))∗ by 〈v,Biu〉=
∫

Ω
< (1+

|∇u|pi√
1+|∇u|2pi

)|∇u|pi−2∇u,∇v > dx + λi
∫

Ω
|u(x)|qi−2u(x)v(x)dx + λi

∫
Ω
|u(x)|ri−2u(x)v(x)dx, for

any u,v ∈W 1,pi(Ω), i ∈ N.

Definition 3.2. [24] For each i ∈ N, define the mapping Ai : Lpi(Ω)→ 2Lpi(Ω) by D(Ai) = {u ∈
Lpi(Ω)| ∃ f ∈ Lpi(Ω) such that f ∈ Biu}, Aiu = { f ∈ Lpi(Ω) | f ∈ Biu}.

Lemma 3.3. [24] For each i ∈ N, the mapping Ai : Lpi(Ω)→ 2Lpi(Ω) is m-accretive.

Lemma 3.4. [25] For each i∈N, define the mapping Si : Lpi(Ω)→ 2Lpi(Ω) by (Siu)(x) = u(x)−
fi(x), for all u(x) ∈ D(Si), then Si is θi-inversely-strongly accretive for θi ∈ (0,1] and i ∈ N.

Lemma 3.5. [21, 22] If, in (3.1), fi(x) ≡ λi(|k|qi−1 + |k|ri−1)sgnk+ k, where k is a constant,
then {u(i)(x)≡ k : i∈N} is the solution of capillarity system (3.1), and {k}=

⋂
∞
i=1(Ai+Bi)

−10.

Theorem 3.6. [9] Let fi(x) ≡ λi(|k|qi−1 + |k|ri−1)sgnk+ k. Let Ai and Bi be defined in Defi-
nitions 3.1 and 3.2. Let F : Lpi(Ω)→ Lpi(Ω) be a strongly positive linear bounded operator
with coefficient ξ > 0. Let f : Lpi(Ω)→ Lpi(Ω) be a contraction with coefficient k ∈ (0,1). Let
Wi : Lpi(Ω)→ Lpi(Ω) be ϑi-strongly accretive and µi-strictly pseudo-contractive mapping for
i ∈ N. Let {yn} be generated as follows:

x1,y1,e1,ε1 ∈ Lpi(Ω) chosen arbitrarily, K1 = Lpi(Ω),

un = ωnxn + εn,

vn = βnun +(1−βn)∑
∞
i=1 ai(I + rn,iAi)

−1(I− rn,iBi)vn,

zn = δn f (xn)+(1−δn)(I−ζn ∑
∞
i=1 ciWi)∑

∞
i=1 ai(I + rn,iAi)

−1(I− rn,iBi)vn,

wn = αnxn + τn ∑
∞
i=1 ai(I + rn,iAi)

−1(I− rn,iBi)zn +χnyn,

xn+1 = λnη f (xn)+(I−λnF)wn + en,

Kn+1 = {p ∈ Kn : ‖wn− p‖2 ≤ αn‖xn− p‖2 + τn‖zn− p‖2 +χn‖yn− p‖2}
yn+1 = RKn+1, n ∈ N, i ∈ N.
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Then, under the assumptions of Theorem 2.1, yn → q0(x) ∈
⋂

∞
i=1(Ai +Bi)

−10, where q0(x) is
not only the solution of capillarity system (3.1) but also a solution of variational inequalities
(2.2) and (2.3).
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