
J. Nonlinear Funct. Anal. 2022 (2022) 32 https://doi.org/10.23952/jnfa.2022.32

MK VISCOSITY APPROXIMATION FOR FIXED POINTS AND EQUILIBRIUM
PROBLEMS IN HILBERT SPACES

WENLING LI∗, SHENGJU YANG

School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, China

Abstract. In this paper, an MK viscosity iteration is introduced and investigated for solving an equilib-
rium problem and a fixed point problem with a nonexpansive operator. A theorem of strong convergence
is established in the setting of Hilbert spaces. There is no any compact restriction imposed on the operator
and the subset involved.

Keywords. Approximate solution; Equilibrium problem; Fixed point; Viscosity method.

1. INTRODUCTION

Let H be a Hilbert space with inner 〈·, ·〉 and induced norm ‖ · ‖. Let B be a bifunction from
S×S to R with B(x,x) = 0, ∀x ∈ S, where S is a convex, closed, and nonempty subset of space
H. By an equilibrium problem, as understood by Blum and Oettli [1] is the problem, which
consists of finding

x̄ ∈ S such that B(x̄,y)≥ 0, ∀y ∈ S.
The equilibrium problem is quite general, and its solution set is presented by Sol(B,S) in
this paper. For example, let B(x,x) = 〈Ay,x− y〉 for all x,y ∈ S. Then, z ∈ Sol(B,S) if and
only if 〈Az,x− z〉 ≥ 0 for all x ∈ S, that is, point z solve the classical variational inequality.
The equilibrium problem also includes celebrated saddle problems as special cases. In the
real world, numerous problems in computer science, physics, and economics reduce to find a
solution of the equilibrium problem. Recently, various solution methods have been presented
to solve the equilibrium problem numerically; see, e.g., [10, 20, 25] and the references therein.

Let N be mapping on H. A point x in H is said to be a fixed point of N iff N x = x. The
fixed point set of the mapping is denoted by Fix(N ). Finding fixed points of nonlinear oper-
ators is an interesting field. It has many theoretical applications, such as differential equations
and real applications, such as machine learning; see, e.g., [7, 13, 27] and the references therein.

Recall that N is contractive if

‖N x−N y‖ ≤ c‖x− y‖, ∀x,y ∈ H,
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where c is a constant in (0,1). It is known that every contractive mapping has a unique fixed
point and the simple Picard works for the contractive mappings.

Recall that N is Meir-Keeler contractive (MK contractive for short) if, for each ε > 0, there
exists δ = δ (ε)> 0 such that, for each x,y ∈ X with ε ≤ ‖x− y‖< ε +δ , ‖ f (x)− f (y)‖< ε .

In 1969, Meir and Keeler [16] proved that every MK contractive mapping has a unique fixed
point in metric spaces.

Recall that N is nonexpansive if

‖N x−N y‖ ≤ ‖x− y‖, ∀x,y ∈ H.

Recall that N is firmly nonexpansive if

‖N x−N y‖2 ≤ 〈x− y,N x−N y〉, ∀x,y ∈ H.

The class of (firmly) nonexpansive mappings is important from the viewpoint of mathematical
programming computation. Indeed, many optimization problems can be solved via its resolvent
operators, which are firmly nonexpansive; see, e.g., [2,3,14,21] and the references therein. One
important example is nearest point projection, Pro jS, which reads Pro jS(y) := argmin{‖x−
y‖, x ∈ S} for any y ∈ H.

‖Pro jSy−Pro jSx‖2 ≤ 〈y− x,Pro jSy−Pro jS(x)〉, ∀x,y ∈ H.

For fixed points of nonlinear operators, Mann iteration [15] is efficient in finding approximate
fixed points of nonexpansive operators in Euclidean spaces. Let {αn} be a real number sequence
in the interval (0,1). The Mann iteration reads as follows

x0 ∈ H, xn+1 = (1−αn)N xn +αnxn, n≥ 0.

It deserves mentioning that the Mann iteration is only weakly convergent in the framework
of infinite dimensional spaces; see, e.g., [8] and the references therein. To force the strong
convergence of the Mann iteration, various modified methods were introduced and stuided in
Hilbert spaces and Banach spaces recently; see, e.g., [4, 11, 12, 18]. Here, we mention the
celebrated Halpern iteration [9]. It was introuced by Halpern and reads as follows

x0 ∈ H, xn+1 = (1−αn)N xn +αnu, ∀n≥ 0,

where N is a nonexpansive mapping on S, u is a fixed anchor in S, and {αn} is a real sequence
in (0,1). To force the convergence, It is known that the conditions (c1) αn→ 0 as n→ ∞ and
(c2) ∑

∞
n=1 αn = ∞ are necessary if the Halpern iteration converges strongly (due to the convex

combination of a nonexpansive maping with the fixed anchor is a contractive mapping). From
the structure, we hope that αn → 0 as fast as possible. In view of restriction (c2), Halpern
iteration may not be a fast iteration.

In 2000, Moudafi [17] introduced a viscosity approximation iteration, which is known as the
Moudafi’s viscosity and reads as follows

x0 ∈ S, xn+1 = αnC xn +(1−αn)N xn, ∀n≥ 0,

where {αn} is a real sequence in (0,1), N is a nonexpansive mapping with fixed points, and
C is a contractive mapping. Moudafi proved that {xn} converges strongly a fixed point, x, of
mapping N under some assumptions on {αn}, and the fixed point also is a unique solution
to the variational inequality: 〈C x− x,x− y〉 ≥ 0 for all y ∈ Fix(N ). Recently, many authors
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investigated the fixed point problems of various nonlinear operators based on the Moudafi’s
viscosity; see, e.g., [22, 28] and the references therein.

Now, let us turn back to the equilibrium problem. To study approximate solutions of the
equilibrium problem, one usually imposes the following restrictions on the bifunction B.

(R1) B(y,y) = 0, ∀y ∈ S;
(R2) B(y,x)+B(x,y)≤ 0, ∀x,y ∈ S (monotone);
(R3) limsupt→1 B((1− t)z+ x,y)≤B(x,y);
(R4) for each x ∈ S, y 7→B(x,y) is convex and lower semicontinuous.
In 2007, S. Takahashi and W. Takahashi [26] introduced a moudafi’s viscosity methods for

fixed points of nonexpansive mappings and an equilibrium problem in Hilbert spaces. Their
viscosity methods reads as follows{

B(yn,y)+ 1
rn
〈y− yn,yn− xn〉 ≥ 0, ∀y ∈ S,

xn+1 = αnC xn +(1−αn)N yn, ∀n≥ 0,

where {αn} is a real sequence in (0,1) and {rn} is a nonnegative real sequence. They proved
that the sequence {xn} generated by their method converges strongly to a common solution of
the two problem, and it also is a unique solution to another variational inequality involving C .
Subsequently, numerous new methods were introduced and investigated; see, e.g., [5,10,20,23,
25] and the references.

In this paper, we consider the fixed points of nonexpansive mappings and the solutions of
the equilibrium problem via a MK viscosity method. Under some mild conditions on the con-
trol sequences, we obtain a strongly convergent theorem without compact assumptions on any
operators and subsets.

2. TOOLS

In this section, we list some lemmas, which are needed for the main convergence theorem.

Lemma 2.1. [30] Let H be a Hilbert space and let S be a nonempty, convex, and closed subset
of H. Let N be a nonexpansive mapping on S. Then Fix(N ) is convex and closed.

Lemma 2.2. [1] Let H be a Hilbert space and let S be a nonempty, convex, and closed subset
of H. Let B be a bifunction of S×S to R satisfying (R1), (R2), (R3), and (R4). Let x ∈ H and
r > 0. Then, there exists z such that

〈y− z,z− x〉+ rB(z,y)≥ 0, ∀y ∈ S.

Lemma 2.3. [6] Let H be a Hilbert space and let S be a nonempty, convex, and closed subset
of H. Let B be a bifunction of S×S to R satisfying (R1), (R2), (R3), and (R4). Let x ∈ H and
r > 0. Define the resolvent ResB

r from H to S by

ResB
r x = {z ∈ S : 〈y− z,z− x〉+ rB(z,y)≥ 0, ∀y ∈ S}.

Then ResB
r is single-valued and firmly nonexpansive, i.e.,

‖ResB
r x−ResB

r x′‖2 ≤ 〈x− x′,ResB
r x−ResB

r x′〉, ∀x,x′ ∈ H.

Additionly, Fix(ResB
r ) = Sol(B,S) is a convex and close set.

Lemma 2.4. [30] Let H be a Hilbert space, and let C be a MK contraction. Then, for each
ε > 0, there exists cε in (0,1) such that ‖x−y‖≥ ε implies ‖ f (x)− f (y)‖≤ cε‖x−y‖, ∀x,y∈H.
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Lemma 2.5. [24] Let {yn} and {xn} be two bounded vector sequences in a Hilbert space H.
Let εn be a real sequence in (0,1) with 0 < liminfn→∞ εn ≤ limsupn→∞ εn < 1. Put xn+1 =
(1− εn)xn + εnyn. If limsupn→∞(‖εn− εn+1‖−‖xn− xn+1‖) = 0, then limn→∞ ‖xn− εn‖= 0.

Lemma 2.6. [19] Let H be a Hilbert space. Let {xn} be a sequence in X converging converges
weakly to a point y. Then liminfn→∞ ‖xn− y‖< liminfn→∞ ‖xn− y′‖ for any y′ 6= y in H.

Lemma 2.7. [29] Let {an} be a nonnegative real sequence such that an+1 ≤ (1− tn)an + bn,
for all n, where {tn} and {bn} are sequences of real numbers with {tn} ⊂ (0,1), ∑

∞
n=0 tn = ∞,

limn→∞ tn = 0, and limsupn→∞
bn
tn
≤ 0. Then limn→∞ an = 0.

3. MAIN RESULTS

Theorem 3.1. Let H be a Hilbert space with inner 〈·, ·〉 and induced norm ‖ · ‖. Let B be a
bifunction from S× S to R with restrictions (R1), (R2), (R3), and (R4), where S is a convex,
closed, and nonempty subset of space H. Let N be a nonexpansive from S to H, and let C be
a fixed MK contractive mapping from S to H. Let {rn} be a nonnegative regular sequence. Let
{xn} be the iterative sequence generated in the following process with x0 ∈ H and{

〈y− yn,yn− xn〉+ rnB(yn,y)≥ 0, ∀y ∈ S,
xn+1 = αnN yn +βnC yn + γnxn, ∀n≥ 0,

where {αn}, {βn}, and {γn} are real number sequences in (0,1) with αn + βn + γn = 1. As-
sumed that rn ≥ r, where r is some positive real number, ∑

∞
n=0 βn = ∞, limn→∞ βn = 0, 0 <

liminfn→∞ γn ≤ limsupn→∞ γn < 1, and limn→∞ |rn+1− rn|= 0. If Ω := Fix(N )∩Sol(B,S) is
not empty, then {xn} converges strongly to a point x̄ ∈Ω, and Pro jΩC (x̄) = x̄.

Proof. From Lemma 2.2, we have that {yn} is well defined. From the assumption and Lemmas
2.1 and 2.3, we see that Ω is closed, convex, and nonempty set. Hence, the nearest point
projection on it is well defined. In view of Lemma 2.3, we have yn = ResB

rn
xn, where ResB

rn
is

the resolvent of bifunction B. Fix a common solution in Ω, say x′ ∈ Ω. Thus x′ = ResB
rn

x′ and
x′ = N x′ It follows from the nonexpansivity of the resolvent that

‖x′− yn‖= ‖ResB
rn

x′−ResB
rn

xn‖ ≤ ‖x′− xn‖.
Next, we show both {xn} and {yn} are bounded. Let ε > be any positive constant. If ‖x′−xn‖<
ε , then {xn} is bounded. This is obvious. If ‖x′−xn‖ ≥ ε , From Lemma 2.4, we have that there
holds ‖C x−C y‖ ≤ cε‖x− y‖, ∀x,y ∈ S, where cε is a real constant in (0,1). Thus

‖x′− xn+1‖
= ‖x′−αnN yn−βnC yn− γnxn‖
≤ αn‖N x′−N yn‖+βn‖x′−C yn‖+ γn‖x′− xn‖
≤ αn‖x′− yn‖+βn‖x′−C x′‖+βn‖C x′−C yn‖+ γn‖x′− xn‖
≤ (1−βn)‖x′− xn‖+βn‖x′−C x′‖+βnc‖x′− yn‖
≤ (1−βn(1− c))‖x′− xn‖+βn‖x′−C x′‖,

which implies that

‖x′− xn+1‖ ≤ (1−βn(1− c))‖x′− xn‖+βn(1− c)
‖x′−C x′‖

1− c
,
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that is, ‖x′− xn+1‖ ≤max{‖x′− xn‖, ‖x
′−C x′‖
1−c }. Mathematical induction indicates that

‖x′− xn+1‖ ≤max{‖x′− x0‖,
‖x′−C x′‖

1− c
}.

This proves that {xn} is bounded. Hence, {xn} is always bounded for the two cases. From the
way that {yn} is generated, we see that

〈y− yn+1,yn+1− xn+1〉+ rn+1B(yn+1,y)≥ 0, ∀y ∈ S (3.1)

and
〈y− yn,yn− xn〉+ rnB(yn,y)≥ 0, ∀y ∈ S. (3.2)

Putting yn into (3.1) and yn+1 into (3.2), we have

〈yn− yn+1,yn+1− xn+1〉+ rn+1B(yn+1,yn)≥ 0 (3.3)

and
〈yn+1− yn,yn− xn〉+ rnB(yn,yn+1)≥ 0. (3.4)

Using Lemma 2.3, we conclude from (3.3) and (3.4) that

〈yn− yn+1,
yn+1− xn+1

rn+1
− yn− xn

rn
〉 ≥ 0,

that is, 〈yn+1− yn,yn+1− xn− rn
rn+1

(yn+1− xn+1)〉 ≥ ‖yn− yn+1‖2, which is equivalent to

‖yn− yn+1‖2 ≤ 〈yn+1− yn,(1−
rn

rn+1
)(yn+1− xn+1)〉+ 〈yn+1− yn,xn+1− xn〉

≤ |1− rn

rn+1
|‖yn+1− xn+1‖‖yn+1− yn‖+‖xn− xn+1‖‖yn+1− yn‖.

It follows that
‖yn− yn+1‖ ≤ |1−

rn

rn+1
|‖yn+1− xn+1‖+‖xn− xn+1‖.

Without loss of generality, one may assume that there exists a positive constant r such that
0 < r < rn, ∀n≥ 0. Thus

‖yn− yn+1‖ ≤
|rn+1− rn|

rn+1
‖yn+1− xn+1‖+‖xn− xn+1‖

≤ |rn+1− rn|
r

‖yn+1− xn+1‖+‖xn− xn+1‖

≤ ‖xn− xn+1‖+
M
r
|rn+1− rn|,

where M is an appropriate constant such M ≥ supn≥0{‖yn+1− xn+1‖}.
To use Lemma 2.5, one sets εn =

xn+1−γnxn
1−γn

. Hence,

εn− εn+1

=
αnN yn +βnC yn

1− γn
− αn+1N yn+1 +βn+1C yn+1

1− γn+1

=
(1−βn− γn)N yn +βnC yn

1− γn
− (1−βn+1− γn+1)N yn+1 +βn+1C yn+1

1− γn+1

=
(1− γn)N yn +βn(C yn−N yn)

1− γn
− (1− γn+1)N yn+1 +βn+1(C yn+1−N yn+1)

1− γn+1
.
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Hence,

εn− εn+1 = N yn +
βn

1− γn
(C yn−N yn)−N yn+1−

βn+1

1− γn+1
(C yn+1−N yn+1).

We estimate as follows
‖εn− εn+1‖

≤ βn

1− γn
‖C yn−N yn‖+

βn+1

1− γn+1
‖C yn+1−N yn+1‖+‖N yn−N yn+1‖

≤ βn

1− γn
‖C yn−N yn‖+

βn+1

1− γn+1
‖C yn+1−N yn+1‖+‖yn− yn+1‖

≤ βn

1− γn
‖C yn−N yn‖+

βn+1

1− γn+1
‖C yn+1−N yn+1‖+‖xn− xn+1‖+

M
r
|rn+1− rn|.

This indicates that
‖εn+1− εn‖−‖xn+1− xn‖

≤ βn

1− γn
‖C yn−N yn‖+

βn+1

1− γn+1
‖C yn+1−N yn+1‖+

M
r
|rn+1− rn|.

From the assumptions on the parameters, we find that

limsup
n→∞

(‖εn− εn+1‖−‖xn− xn+1‖) = 0.

An application of Lemma 2.5 indicates that, as n→ ∞, ‖εn− xn‖ → 0. Observe that xn+1−
xn = (1− γn)(εn− xn), which further indicates that, as n→ ∞, ‖xn+1− xn‖ → 0 due to 0 <
liminfn→∞ γn ≤ limsupn→∞ γn < 1. We also have ‖yn+1− yn‖→ 0 as n→ ∞. Observe that

‖xn−N yn‖ ≤ ‖xn− xn+1‖+‖xn+1−N yn‖
≤ ‖xn− xn+1‖+βn‖C yn−N yn‖+ γn‖xn−N yn‖,

which together with the assumptions on {β} and {γn} and the boundedness of {xn} and {yn}
that ‖xn−N yn‖→ 0 as n→ ∞. Since the resolvent is firmly nonexpansive, then

‖µ− yn‖2 = ‖ResB
rn

µ−ResB
rn

xn‖2

≤ 〈µ− xn,ResB
rn

µ−ResB
rn

xn〉
= 〈µ− xn,µ− yn〉

=
1
2
(‖µ− xn‖2 +‖µ− yn‖2−‖xn− yn‖2).

This shows ‖µ− yn‖2 ≤ ‖µ− xn‖2−‖xn− yn‖2. In view of the convexity of ‖ · ‖2, we have

‖µ− xn+1‖2 = ‖αn(µ−N yn)+βn(µ−C yn)+ γn(µ− xn)‖2

≤ αn‖N µ−N yn‖2 +βn‖µ−C yn‖2 + γn‖µ− xn‖2

≤ αn‖µ− yn‖2 +βn‖µ−C yn‖2 + γn‖µ− xn‖2

≤ αn‖µ− xn‖2−αn‖xn− yn‖2 +βn‖µ−C yn‖2 + γn‖µ− xn‖2

≤ ‖µ− xn‖2−αn‖xn− yn‖2 +βn‖µ−C yn‖2.
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It follows that

αn‖xn− yn‖2 ≤ βn‖µ−C yn‖2 +‖µ− xn‖2−‖µ− xn+1‖2

≤ βn‖µ−C yn‖2 +(‖µ− xn‖+‖µ− xn+1‖)‖xn− xn+1‖.

From the assumptions on {αn} and {βn}, we have limn→∞ ‖xn− yn‖= 0.
Next, we prove limsupn→∞〈xn− x̄,C x̄− x̄〉 ≤ 0. To prove this inequality, we choose a subse-

quence {xn j} of {xn} such that

limsup
n→∞

〈xn− x̄,C x̄− x̄〉= lim
n→∞
〈xn j − x̄,C x̄− x̄〉.

Since {xn j} is a bounded vector sequence, one asserts that there exists a weakly converging
subsequence {x ji} of {x j}. Without loss of generality, one just assume that {xn j}⇀ x∗ ∈ S.
Further, one proves x∗ ∈Ω. Indeed, from the way that {yn} is generated, one has 1

rn
〈y−yn,yn−

xn〉+B(yn,y)≥ 0, ∀y ∈ S. By (R2), we have 1
rn
〈y−yn,yn−xn〉 ≥B(y,yn), ∀y ∈ S. Obviously,

〈y− yn j ,
yn j − xn j

rn j

〉 ≥B(y,yn j), ∀y ∈ S.

Note that limn→∞ ‖
yn j−xn j

rn j
‖= 0 and {yn j}⇀ x∗. Hence,

B(y,x∗)≤ 0, ∀y ∈ S.

Let yz
x∗ = (1− z)x∗+ zy, where z is a constant in 0 ≤ z < 1. Since both x∗ and y are in S, we

have yz
x∗ ∈ S. It follows that B(yz

x∗,x
∗)≤ 0, ∀y ∈ S. By restrictions (R1) and (R4), we have

B(yz
x∗ ,y

z
x∗) = B(yz

x∗,(1− z)x∗+ zy) = (1− z)B(yz
x∗,x

∗)+ zB(yz
x∗,y).

This shows that B((1− z)x∗+ zy,y) ≥ 0. By (R3), we have B(x∗,y) ≥ 0, ∀y ∈ S, that is,
x∗ ∈ Sol(B,S). On the other hand,

‖xn−N xn‖ ≤ ‖xn−N yn‖+‖N yn−N xn‖
≤ ‖xn−N yn‖+‖yn− xn‖.

This finds ‖xn−N xn‖→ 0 as n→∞. Assume x∗ /∈ Fix(N ). From Opial’s condition (Lemma
2.6), we have

‖xni− x∗‖< ‖xni−N x∗‖
≤ ‖xni−N xni‖+‖N xni−N x∗‖
≤ ‖xni− x∗‖.

This reach a contradiction, which presents x∗ ∈ Fix(N ). This finishes the proof that

limsup
n→∞

〈xn− x̄,C x̄− x̄〉 ≤ 0.

Finally, we show that ‖xn− x̄‖ → ∞ as n→ ∞. Assume that the sequence {xn} does not
converge to x̄ strongly. Thus there exists ε > 0 and a subsequence {xni} such that ‖xni− x̄‖ ≥ ε
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for all i. From Lemma 2.4, we observe that

‖xn+1− x̄‖2

= 〈αn(N yn− x̄)+βn(C yn− x̄)+ γn(xn− x̄),xn+1− x̄〉
= αn〈N yn− x̄,xn+1− x̄〉+βn〈C yn−C x̄,xn+1− x̄〉+βn〈C x̄− x̄,xn+1− x̄〉
+ γn〈xn− x̄,xn+1− x̄〉
≤ αn‖N yn−N x̄‖‖xn+1− x̄‖+βn‖C yn−C x̄‖‖xn+1− x̄‖+βn〈C x̄− x̄,xn+1− x̄〉
+ γn‖xn− x̄‖‖xn+1− x̄‖
≤ αn‖yn− x̄‖‖xn+1− x̄‖+βncε‖yn− x̄‖‖xn+1− x̄‖+βn〈C x̄− x̄,xn+1− x̄〉
+ γn‖xn− x̄‖‖xn+1− x̄‖
≤ (1−βn(1− cε))‖xn− x̄‖‖xn+1− x̄‖+βn〈C x̄− x̄,xn+1− x̄〉

≤ 1−βn(1− cε)

2
(‖xn− x̄‖2 +‖xn+1− x̄‖2)+βn〈C x̄− x̄,xn+1− x̄〉.

It follows that

‖xn+1− x̄‖2 ≤ (1−βn(1− cε))‖xn− x̄‖2 +2βn〈C x̄− x̄,xn+1− x̄〉.
By using Lemma 2.7, one obtains xn→ x̄ as n→ ∞. This finishes the proof of this theorem.

�

From Theorem 3.1, we have the following result on the Halpern-based method immediately.

Corollary 3.1. Let H be a Hilbert space with inner 〈·, ·〉 and induced norm ‖ · ‖. Let B be
a bifunction from S× S to R with restrictions (R1), (R2), (R3), and (R4), where S is a con-
vex, closed, and nonempty subset of space H. Let N be a nonexpansive from S to H. Let
{rn} be a nonnegative regular sequence. Let {xn} be the iterative sequence generated in the
following process with x0 ∈ H and xn+1 = αnN yn + βnu + γnxn, where {yn} is defined by
〈y− yn,yn− xn〉+ rnB(yn,y)≥ 0, ∀y ∈ S, where u is a fixed vector in S, {αn}, {βn}, and {γn}
are real number sequences in (0,1) with αn+βn+γn = 1. Assumed that rn ≥ r, where r is some
positive real number, ∑

∞
n=0 βn = ∞, limn→∞ βn = 0, 0 < liminfn→∞ γn ≤ limsupn→∞ γn < 1, and

limn→∞ |rn+1− rn|= 0. If Ω := Fix(N )∩Sol(B,S) is not empty, then {xn} converges strongly
to a point x̄ ∈Ω, and Pro jΩu = x̄.

From Theorem 3.1, we also have the following result on fixed points of nonself mappings
method immediately.

Corollary 3.2. Let H be a Hilbert space with inner 〈·, ·〉 and induced norm ‖ · ‖. Let N be a
nonexpansive from S to H, and let C be a fixed MK contractive mapping from S to H, where S is
a convex, closed, and nonempty subset of space H. Let {xn} be the iterative sequence generated
in the following process with x0 ∈ H and xn+1 = αnN Pro jSxn +βnC Pro jSxn + γnxn, ∀n ≥ 0,
where {αn}, {βn}, and {γn} are real number sequences in (0,1) with αn+βn+γn = 1. Assumed
that ∑

∞
n=0 βn = ∞, limn→∞ βn = 0, and 0 < liminfn→∞ γn ≤ limsupn→∞ γn < 1. If Fix(N ) is not

empty, then {xn} converges strongly to a point x̄ ∈ Fix(N ), and Pro jFix(N )C (x̄) = x̄.
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