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APPROXIMATION OF SOLUTIONS TO THE SFPMOS PROBLEM

LIN XUE, HUANHUAN CUI∗

Department of Mathematics, Luoyang Normal University, Luoyang 471934, China

Abstract. In this paper, we study the split feasibility problem with multiple output sets in Hilbert spaces. For
solving this problem, we propose an iterative method and construct two selection strategies of stepsizes. Under
appropriate conditions, we prove the strong convergence of the proposed iterative method.
Keywords. Demiclosedness principle; Metric projection; Split feasibility problem; stepsize.

1. INTRODUCTION

Given two Hilbert spaces H and H1, the split feasibility problem (SFP) [5] can be mathemat-
ically expressed as the problem of finding a point x† ∈ H such that

x† ∈C
⋂

A−1(Q). (1.1)

Here C and Q are respectively nonempty, closed and convex subsets in H and H1, and A−1(Q) =
{x ∈H : Ax ∈Q} with A : H→H1 a given bounded linear mapping. This problem has attracted
increasing attention due to its wide applications in applied disciplines, such as signal processing
and image reconstruction [3, 4, 7]. Historically, there are many iterative methods to solve
(1.1), among which the most popular method is the CQ method proposed by Byrne [2], which
generates the sequence {xn} through a recursive process:

xn+1 = PC
[
xn− τA∗(I−PQ)Axn

]
, (1.2)

where A∗ is the conjugate of A, I stands for the identity mapping, τ > 0 is a properly chosen
stepsize, and PC and PQ are the metric projections onto C and Q, respectively. It was shown that
if τ is chosen in (0, 2

‖A‖2 ), then (1.2) converges weakly to a solution of (1.1) whenever such a
solution exists. For more progress on this issue, we refer the reader to [6, 14, 15, ?, 16, 17, 18,
19] and the references therein.
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In the literature, there are various generalizations of SFP, one of which is the split feasibility
problem with multiple output sets (SFPMOS) [11]. For real Hilbert spaces H and Hi, i =
1,2, . . . ,N, the SFPMOS consists of finding an element x† ∈ H such that

x† ∈C∩
( N⋂

i=1

A−1
i (Qi)

)
, (1.3)

where C ⊂ H and Qi ⊂ Hi are closed and convex subsets, and each Ai : H → Hi is a bounded
linear mapping for i= 1,2, . . . ,N. To solve problem (1.3), Reich, Truong and Mai [11] proposed
two novel iterative methods. For any initial guesses x0, let {xn} be a sequence generated by:

xn+1 = PC

[
xn− τ

N

∑
i=1

A∗i
(
I−PQi

)
Aixn

]
, (1.4)

where τ > 0 is a properly chosen stepsize. It was shown that if τ is chosen such that

0 < τ <
2

N max1≤i≤N ‖Ai‖2 , (1.5)

then method (1.4) converges weakly to a solution of problem (1.3). In order to reach a strongly
convergent method, they modified the above method as the following form: for any initial
guesses y0, let {yn} be a sequence generated by:

yn+1 = γn f (yn)+(1− γn)PC

[
yn− τ

N

∑
i=1

A∗i
(
I−PQi

)
Aiyn

]
, (1.6)

where {γn} ⊂ (0,1), and f is a contraction. It was shown that method (1.6) converges strongly
to a solution of problem (1.3) under some certain conditions. For more progress on this issue,
we refer the reader to [11, 13] and the references therein.

In this paper, we continue to study the SFPMOS and construct a new class of strongly con-
vergent iterative methods. The paper is organized as follows. In Section 2, we gather some
preliminary knowledge and some related lemmas. In Section 3, we show that the problem
under consideration is equivalent to a fixed point equation. In Section 4, we propose another
iteration method and prove that the method has strong convergence. In Section 5, we construct
the variable step size strategy and prove its strong convergence.

2. PRELIMINARIES

In this section, we assume that T is a mapping from H into itself and C ⊂ H is a nonempty
closed convex subset in H. We first recall the definition of several important classes of nonlinear
mappings.

Definition 2.1. T is called firmly nonexpansive if, for each x,y ∈ H,

‖T x−Ty‖2 ≤ ‖x− y‖2−‖(I−T )x− (I−T )y‖2.

T is called nonexpansive if, for each x,y ∈ H,

‖T x−Ty‖ ≤ ‖x− y‖.
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Definition 2.2. T is said to satisfy the demiclosedness principle if I−T is demiclosed at 0, that
is, for any sequence {xn} ⊂ H and x† ∈ H,

xn ⇀ x†

xn−T xn→ 0

]
=⇒ T x† = x†.

Here “→” stands for strong convergence and “⇀” weak convergence.

Lemma 2.3. [1, 9] Every nonexpansive mapping and firmly nonexpansive mapping have the
demiclosedness principle.

More information on firmly nonexpansive and nonexpansive mappings can be found, for
example, in [8, 12], and the references therein. A typical example of firmly nonexpansive
mappings is the metric projection.

Definition 2.4. For any x ∈ H, the metric projection PC : H→C is defined by

PCx = argmin
y∈C

‖x− y‖,x ∈ H.

Lemma 2.5. The metric projection PC is firmly nonexpansive. Moreover, for any x ∈ H, it
follows that

‖x−PCx‖2 ≤ 〈x−PCx,x− z〉, ∀z ∈C.

The following lemma plays an important role in our convergence analysis.

Lemma 2.6. Suppose that {xn} is a sequence in H satisfying the following conditions:

(1) ωw(xn)⊆C;
(2) {‖xn− x0‖} is convergent;
(3) ‖xn− x0‖ ≤ ‖x0−PC(x0)‖,∀n≥ 0.

Then {xn} converges strongly to PC(x0).

Proof. Fix any weak cluster point x of {xn}. Hence there exists a subsequence {xnk} that con-
verges weakly to x ∈ C. It then follows from the property of metric projections and the lower
semi-continuity of the norm that

‖x0−PC(x0)‖ ≤ ‖x0− x‖
≤ lim

k→∞
‖x0− xnk‖

≤ ‖x0−PC(x0)‖,

where the last inequality follows from conditon (3). Hence,

lim
k→∞
‖x0− xnk‖= ‖x0−PC(x0)‖= ‖x0− x‖.

This implies that {xn} converges weakly to PC(x0) and ‖x0− xn‖ → ‖x0−PC(x0)‖ as n→ ∞.
By property of the inner product, we conclude that

‖xn−PC(x0)‖2 = ‖xn− x0‖2 +2〈xn− x0,x0−PC(x0)〉+‖x0−PC(x0)‖2.

Hence, {xn} converges strongly to PC(x0) as desired. �
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3. EQUIVALENT FIXED POINT PROBLEMS

In this section, problem (1.3) is first transformed into a fixed point problem. The the SFPMOS
is called consistent, which means that its solution set denoted by S is nonempty. For the
convenience, we set below Q0 =C and A0 = I the identity mapping onto H.

Theorem 3.1. For r > 0, let

T := I− r
N

∑
i=0

A∗i (Ai−PQi(Ai)).

If the SFPMOS is consistent, then S = Fix(T ).

Proof. We just verify Fix(T ) ⊆S since the converse is obvious. Fix x† ∈ Fix(T ) and choose
any z ∈S . It then follows from Lemma 2.5 that

‖Aix†−PQi(Aix†)‖2

≤ 〈(Aix†−PQi(Aix†)),Aix†−Aiz〉

= 〈A∗i (Aix†−PQi(Aix†)),x†− z〉,

for each i = 0,1, . . . ,N. Adding up these inequalities, we have

N

∑
i=0
‖Aix†−PQi(Aix†)‖2

≤
N

∑
i=0
〈A∗i (Aix†−PQi(Aix†)),x†− z〉

≤

〈
N

∑
i=0

A∗i (Aix†−PQi(Aix†)),x†− z

〉

≤ 1
r

〈
(x†−T x†),x†− z

〉
= 0.

This yields Fix(T )⊆S and thus S = Fix(T ). �

4. ITERATIVE METHOD WITH CONSTANT STEPSIZES

Motivated by Theorem 3.1, we propose our first method for solving the problem.

Algorithm 4.1. Choose an arbitrary initial guess x0 ∈ H. Given the current iteration xn, update
the next iteration xn+1 by the formula:

zn = xn− rn
[
∑

N
i=0 A∗i (Aixn−PQi(Aixn))

]
En = {z ∈ H : 〈zn− z,xn− zn〉 ≥ 0}
Fn = {z ∈ H : 〈xn− z,(x0− xn)〉 ≥ 0}
xn+1 = PEn∩Fn(x0),

where {rn} is an appropriately chosen step size.

Now let us state the convergence of {xn} generated by the above method.
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Theorem 4.2. For each n≥ 0, let the step size rn satisfy

0 < r ≤ rn ≤
1

∑
N
i=0 ‖Ai‖2

. (4.1)

If the SFPMOS is consistent, then the sequence {xn} generated by Algorithm 4.1 is well defined
and converges strongly to PS (x0).

Proof. We first show that {xn} generated by Algorithm 4.1 is well defined. To this end, it
suffices to show that En∩Fn is nonempty because the set En∩Fn is clearly closed and convex.
Fix any z ∈S . By Lemma 2.5, we have

〈xn− z,xn− zn〉= rn

〈
xn− z,

N

∑
i=0

A∗i (Aixn−PQi(Aixn))

〉

= rn

N

∑
i=0
〈xn− z,A∗i (Aixn−PQi(Aixn))〉

= rn

N

∑
i=0
〈Aixn−Aiz,(Aixn−PQi(Aixn))〉

≥ rn

N

∑
i=0
‖Aixn−PQi(Aixn)‖2. (4.2)

By Cauchy-Schwarz inequality, we have

‖xn− zn‖2 = r2
n

∥∥∥∥∥ N

∑
i=0

A∗i (Aixn−PQi(Aixn))

∥∥∥∥∥
2

≤ r2
n

(
N

∑
i=0
‖A∗i (Aixn−PQi(Aixn))‖

)2

≤ r2
n

(
N

∑
i=0
‖A∗i ‖‖(Aixn−PQi(Aixn))‖

)2

= r2
n

(
N

∑
i=0
‖Ai‖‖Aixn−PQi(Aixn)‖

)2

≤ r2
n

(
N

∑
i=0
‖Ai‖2

)(
N

∑
i=0
‖Aixn−PQi(Aixn)‖2

)
.

Combining the last two inequalities, we have

〈zn− z,xn− zn〉= 〈zn− xn,xn− zn〉+ 〈xn− z,xn− zn〉

=−‖zn− xn‖2 + 〈xn− z,xn− zn〉

≥ rn

(
1− rn

(
N

∑
i=0
‖Ai‖2

))
N

∑
i=0
‖Aixn−PQi(Aixn)‖2.

In view of (4.1), we deduce that
〈zn− z,xn− zn〉 ≥ 0,
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which yields S ⊆ En for all n ≥ 0. We now show S ⊆Fn by induction. It is easy to check
that S ⊆ Q0. Now assume that S ⊆ Qk for some k ≥ 1, which implies S ⊆ Ek ∩Fk. Since
xk+1 lies in Ek∩Fk, this gives 〈xk+1− z,(x0−xk+1)〉 ≥ 0, ∀z ∈S , which implyies S ⊆Fk+1.
Hence, S ⊆Fn for all n≥ 0. Altogether, S ⊆ En∩Fn and the set En∩Fn is thus nonempty.
Therefore, the sequence {xn} defined above is well defined.

Next, we show limn ‖zn− xn‖= 0. Indeed, as PS (x0) ∈S ⊆ En∩Fn, we have

‖x0− xn+1‖= ‖x0−PEn∩Fn(x0)‖ ≤ ‖x0−PS (x0)‖

for all n≥ 0. On the other hand, since xn+1 is in Fn, we arrive at

‖x0− xn‖= ‖x0−PFn(x0)‖ ≤ ‖x0− xn+1‖.

Hence the sequence {‖x0− xn‖} is convergent. Note that 1
2(xn + xn+1) is also in Fn, we arrive

at

‖x0− xn‖= ‖x0−PFn(x0)‖ ≤
∥∥∥∥x0−

1
2
(xn + xn+1)

∥∥∥∥ .
Since zn = PEn(xn), we have that

‖xn− zn‖2 ≤ ‖xn− x0 + x0− xn+1‖2

= 2‖xn− x0‖2 +2‖x0− xn+1‖2−4
∥∥∥∥x0−

1
2
(xn + xn+1)

∥∥∥∥2

≤ 2‖xn− x0‖2 +2‖x0− xn+1‖2−4‖x0− xn‖2

= 2‖xn− x0‖2−‖x0−2xn+1‖2.

Letting n→ ∞, we obtain the desired result.
Finally, we prove limn xn = PS (x0). It suffices to verify ωw(xn)⊆S . As a matter of fact, we

deduce from (4.2) that

lim
n→∞

N

∑
i=0
‖Aixn−PQi(Aixn)‖2 ≤ lim

n→∞

1
rn
〈xn− z,xn− zn〉

≤ lim
n→∞

1
r
‖xn− z‖‖xn− zn‖

= 0.

Fix any x∈ωw(xn) and take a subsequence {xnk} that converges weakly to x. Since Aixnk ⇀ Aix,
the demiclosedness principle implies

‖Aix−PQi(Aix)‖= 0, i = 0,1, . . . ,N.

This indicates ωw(xn)⊆S and the proof is complete. �

5. ITERATIVE METHOD WITH VARIABLE STEPSIZES

Obviously, for the realization of the previous method, one has to calculate the value of ‖Ai‖
since its upper bound depends on the value of ‖Ai‖. However, this is usually not easy in practice.
In order to avoid this situation, we thus construct a variable step size so that its calculation is
independent of ‖Ai‖.



APPROXIMATION OF SOLUTIONS TO THE SFPMOS PROBLEM 7

Algorithm 5.1. Choose an arbitrary initial guess x0 ∈ H. Given the current iteration xn, if∥∥∥∥∥ N

∑
i=0

A∗i (Aixn−PQi(Aixn))

∥∥∥∥∥= 0, (5.1)

then stop; otherwise update the next iteration xn+1 by the formula:
zn = xn− rn[∑

N
i=0 A∗i (Aixn−PQi(Aixn))]

En = {z ∈ H : 〈zn− z,xn− zn〉 ≥ 0}
Fn = {z ∈ H : 〈xn− z,(x0− xn)〉 ≥ 0}
xn+1 = PEn∩Fn(x0),

where the step size rn is chosen as

rn =
∑

N
i=0 ‖Aixn−PQi(Aixn)‖2

‖∑
N
i=0 A∗i (Aixn−PQi(Aixn))‖2

. (5.2)

It is easy to check that the current iteration xn is a solution of the SFPMOS if it satisfies
conditon (5.1). Without loss of generality, we assume that the above method produces an infinite
iterative sequence.

Theorem 5.2. If the SFPMOS is consistent, then {xn} produced by Algorithm 5.1 is well defined
and converges strongly to PS (x0).

Proof. To show the first assertion, it is enough to verify S ⊆ En∩Fn for each n ≥ 0. To see
this, fix any z ∈S . It then follows from Lemma 2.5 that

〈zn− z,xn− zn〉
= 〈zn− xn,xn− zn〉+ 〈xn− z,xn− zn〉

≥ rn

(
N

∑
i=0
‖Aixn−PQi(Aixn)‖2

)
−‖xn− zn‖2

= rn

(
N

∑
i=0
‖Aixn−PQi(Aixn)‖2

)
− r2

n

∥∥∥∥∥ N

∑
i=0

A∗i (Aixn−PQi(Aixn))

∥∥∥∥∥
2

.

By formula (5.2), we have 〈zn− z,xn− zn〉 ≥ 0, that is, z ∈ En. Since z is chosen arbitrarily,
we conclude that S ⊆ En for all n ≥ 0. By induction, we can show S ⊆ Fn for all n ≥ 0.
Altogether, we obtain S ⊆ En∩Fn for each n≥ 0 as desired.

We next show the norm convergence of {xn}. Similarly, we can prove that the sequences
{‖x0− xn‖} is convergent and ‖x0− xn‖ ≤ ‖x0−PS (x0)‖ for all n ≥ 0. It remains to show
ωw(xn)⊆S holds true. As a matter of fact, it follows from (4.2) that

lim
n→∞

rn

N

∑
i=0
‖Aixn−PQi(Aixn)‖2 ≤ lim

n→∞
〈xn− z,xn− zn〉

≤ lim
n→∞
‖xn− z‖‖xn− zn‖= 0.
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However, from the Cauchy-Schwarz inequality, we have

rn =
∑

N
i=0 ‖Aixn−PQi(Aixn)‖2

‖∑
N
i=0 A∗i (Aixn−PQi(Aixn))‖2

≥ ∑
N
i=0 ‖Aixn−PQi(Aixn)‖2

(∑N
i=0 ‖A∗i ‖‖(Aixn−PQi(Aixn))‖)2

=
∑

N
i=0 ‖Aixn−PQi(Aixn)‖2

(∑N
i=0 ‖Ai‖‖Aixn−PQi(Aixn)‖)2

≥ ∑
N
i=0 ‖Aixn−PQi(Aixn)‖2

(∑N
i=0 ‖Ai‖2)(∑N

i=0 ‖Aixn−PQi(Aixn)‖2)

≥ 1

∑
N
i=0 ‖Ai‖2

.

Consequently, this yields limn ∑
N
i=0 ‖Aixn−PQi(Aixn)‖ = 0. Thus we can prove by a similar

method that ωw(xn)⊆S . �
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