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A STRONG CONVERGENCE THEOREM FOR SOLVING VARIATIONAL
INEQUALITY PROBLEMS WITH PSEUDO-MONOTONE AND LIPSCHITZ

MAPPINGS

XIAO-HUAN LI

School of Mathematics and Statistics, Shandong University of Technology, Shandong 255000, China

Abstract. In this paper, we propose a Mann-type self-adaptive projected reflected subgradient extragra-
dient algorithm for solving the classical variational inequality problem with Lipschitz continuous and
pseudo-monotone mappings in a real Hilbert space. The strong convergence of the proposed algorithm is
proven without the prior knowledge of the Lipschitz constant of the cost function. Finally, we give some
numerical examples to illustrate the superiority of our proposed algorithm.
Keywords. Pseudo-monotone mapping; Strong convergence; Subgradient extragradient; Variational
inequality problem.

1. INTRODUCTION

Let H be a Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let C be a
nonempty, closed, and convex set in H .

Fichera [10, 11] introduced the variational inequality problem (shortly, VIP):

Problem 1.1. Find a point x∗ ∈C such that

〈Ax∗,x− x∗〉 ≥ 0, ∀x ∈C,

where A : H →H is a single-valued mapping.

The solution set of Problem 1.1 is denoted by V I(C,A). Due to the wide applications of
the variational inequality problem in economics, mathematical programming, transportation,
optimization, and other fields, it has attracted extensive attention; see, e.g., [1, 2, 19, 20, 21, 34]
and the references therein. Recently, a number of authors proposed various methods for solving
the variational inequality problem. The simplest one is gradient projection method:

xk+1 = PC(xk−λAxk),
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where PC denotes the metric projection from H onto C. As is known to all, the assumptions
that guarantee the convergence of this method are that the operator A is L-Lipschitz continuous
and α-strongly monotone (or inverse strongly). If the strong monotonicity is reduced to the
monotonicity, then this method may not converge.

In order to deal with this situation, Korpelevich [23] in a finite dimensional Euclidean space
Rn proposed the extragradient method :

x0 ∈ Rn,

yk = PC(xk−λAxk),

xk+1 = PC(xk−λAyk),

where A : Rn→ Rn is a monotone and L-Lipschitz continuous operator, and λ is a constant in
(0, 1

L). It was proved that the sequence {xk} generated by this algorithm converges to an element
of the solution set of Problem 1.1.

It is noted that the extragradient method needs to calculate the projection onto the feasible
set C twice in each iteration. As everyone knows, when C is a general closed convex set, the
evaluation of the projection operator onto C is computationally expensive, which may seriously
affect the computational efficiency of the extragradiet method. Therefore, many authors have
considered how to improve the extragradient method so that one only needs to calculate the
projection onto C once in each iteration. As far as we know, there are two most commonly used
improvement methods. The first one is Tseng’s extragradient method proposed by Tseng [38]:{

yk = PC(xk−λAxk),

xk+1 = yk−λ (Ayk−Axk),

where A is a monotone and L-Lipschitz continuous mapping, and λ is a constant in (0, 1
L). The

generated sequence {xk} by Tseng’s extragradient is weakly convergent in the setting of infinite
dimensional Hilbert spaces.

The second one is the subgradient extragradient method proposed by Censor et al. [5, 6, 7]:
yk = PC(xk−λAxk),

Tk = {x ∈H : 〈xk−λAxk− yk,x− yk〉 ≤ 0},
xk+1 = PTk(x

k−λAyk),

where A is a monotone and L-Lipschitz continuous mapping, and λ is a constant in (0, 1
L).

This method replaces the second projection onto the closed and convex subset C by the projec-
tion onto a half-space. They proved that the sequence generated by subgradient extragradient
method weakly converges to the unique solution of Problem 1.1.

Because Tseng’s extragradient method and subgradient extragradient method only need to
calculate the projection onto the feasible set C once in each iteration, they have been extensively
investigated; see, e.g., [4, 9, 14, 24, 28, 31, 32, 33, 36, 37, 39] and the references therein.

The pseudo-monotone mappings in the sense of Karamardian were introduced in [18] as a
generalization of the monotone mappings. The concept of the pseudo-monotone mapping has
many applications in variational inequalities and economics. Recently, Gibali et al. [12] pro-
posed an adaptive projected reflected subgradient extragradient method for solving the variation
inequality problem with A being a pseudo-monotone and L-Lipschitz continuous mapping.
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Algorithm 1.1 (Adaptive projected reflected subgradient extragradient method)

Step 0. Give λ0 > 0, µ ∈ (0,1). Let x0,x1 ∈H be arbitrary.

Given the current iterates xk, calculate xk+1 as follows:
Step 1. {

wk = 2xk− xk−1,

yk = PC(wk−λkAwk).

If xk = wk = yk = xk+1, then stop. Otherwise:
Step 2. Compute:

xk+1 = (1−αk)xk +αkPTk(w
k),

where
Tk := {x ∈H : hk(x)≤ 0}

and
hk(x) = 〈wk− yk−λk(Awk−Ayk),x− yk〉.

Update:

λk+1 =

min
{

µ‖wk− yk‖
‖Awk−Ayk‖

,λk

}
, if Awk 6= Ayk,

λk, otherwise.
Set k := k+1, and go to Step 1.

Algorithm 1.1 uses self-adaptive step sizes, and the convergence of this algorithm was proven
without any assumption of prior knowledge of the Lipschitz constant of the cost function. How-
ever, this algorithm only weakly converges to the solution of Problem 1.1.

In this paper, motivated and inspired by the above works, we introduce a Mann-type self-
adaptive projected reflected subgradient extragradient algorithm for solving Problem 1.1 in real
Hilbert spaces with A being a pseudo-monotone and L-Lipschitz mapping. Like algorithm 1.1,
our algorithm does not need to know the Lipschitz constant of the mapping. Under some con-
ditions, we prove that the iterative sequence generated by our algorithm strongly converges to
a solution of Problem 1.1. Some numerical experiments are provided to support the theoretical
results.

The remainder of this paper is organized as follows. In Section 2, we recalls some preliminary
results and lemmas for further use. In Section 3, the algorithm is given and its convergence is
analyzed. In Section 4, some numerical examples are presented to illustrate the numerical
behavior of the proposed algorithm and compare it with some existing ones. In the last section,
Section 5, a concluding remark is given.

2. PRELIMINARIES

The weak convergence of a sequence {xk}∞
k=1 to x as k→ ∞ is denoted by xk ⇀ x while the

strong convergence of {xk}∞
k=1 to x as k→ ∞ is denoted by xk→ x.

Definition 2.1. Let A : H →H be an operator. Then
(a) A is said to be L-Lipschitz continuous with Lipschitz constant L > 0 if

‖Fx−Fy‖ ≤ L‖x− y‖, ∀x,y ∈H .
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(b) A is said to be monotone if

〈Ax−Ay,x− y〉 ≥ 0, ∀x,y ∈H .

(c) A is said to be pseudo-monotone if

〈Ax,y− x〉 ≥ 0⇒ 〈Ay,y− x〉 ≥ 0, ∀x,y ∈H .

(d) A is said to be sequentially weakly continuous if, for each sequence {xk}, {xk} converges
weakly to x implies that {Axk} converges weakly to Ax.

Lemma 2.2. [13, 22] Let C be a closed and convex subset of a real Hilbert spaces H , and
x ∈H . Then the following inequalities are true:

(a) ‖PC(x)−PC(y)‖2 ≤ 〈PC(x)−PC(y),x− y〉, ∀y ∈H .
(b) ‖PC(x)− y‖2 ≤ ‖x− y‖2−‖x−PC(x)‖2, ∀y ∈C.
(c) 〈x−PC(x),y−PC(x)〉 ≤ 0, ∀y ∈C.

Lemma 2.3. The following statements hold in any real Hilbert space H :
(a) ‖x+ y‖2 = ‖x‖2 +2〈x,y〉+‖y‖2, ∀x,y ∈H .
(b) ‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉, ∀x,y ∈H .

(c)
∥∥∥∥ m

∑
i=1

tixi

∥∥∥∥2

=
m

∑
i=1

ti‖xi‖2−∑
i6= j

tit j‖xi−x j‖2, where ti≥ 0 and
m

∑
i=1

ti = 1, ∀xi ∈H , 1≤ i≤m.

In [15], the following lemma was given in n-dimensional Euclidean spaces. Similarly, we
can show this lemma in real Hilbert space.

Lemma 2.4. Let h be a real-valued function on a real Hilbert space H , and define K :=
{x ∈H : h(x)≤ 0}. If h is Lipschitz continuous on H with modulus θ > 0, and K is nonempty,
then

dist(x,K)≥ 1
θ

max{0,h(x)} , ∀x ∈H ,

where dist(x,K) is the distance function from x to K.

Lemma 2.5. [26] Let {ak} be a non-negative real number sequence, which satisfies

ak+1 ≤ (1−αk)ak +αkbk, ∀k ≥ 1,

where {αk} ⊂ (0,1) and {bk} are two sequences such that ∑
∞
k=1 αk = ∞ and limsupk→∞ bk ≤ 0.

Then limk→∞ ak = 0.

Lemma 2.6. [8] Let A : C→H be a continuous and pseudo-monotone mapping, where C is
a nonempty, closed, and convex subset of a real Hilbert space H . Then, x∗ is a solution of the
VIP if and only if 〈Ax,x− x∗〉 ≥ 0, ∀x ∈C.

3. MAIN RESULTS

In this section, we propose a Mann-type self-adaptive projected reflected subgradient extra-
gradient algorithm for solving the variational inequality problem and show its strong conver-
gence. In order to state the main results, we need the following assumptions.

Condition 3.1. The feasible set C is a nonempty, closed, and convex subset of H .

Condition 3.2. The operator A : H →H is pseudo-monotone, sequentially weakly and Lips-
chitz continuous on a real Hilbert space H .
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Condition 3.3. The solution set of Problem 1.1 is nonempty, that is, V I(C,A) 6= /0.

Condition 3.4. Let {εk} be a positive sequence such that limk→∞

εk

αk
= 0, where {αk} ⊂ (0,1)

is with the restrictions that ∑
∞
k=1 αk = ∞ and limk→∞ αk = 0. Let {βk} ⊂ (a,b)⊂ (0,1−αk) for

some a > 0, b > 0.

Algorithm 3.1 (Mann-type self-adaptive projected reflected subgradient extragradient algo-
rithm)

Step 0. Give θ > 0, λ1 > 0, µ ∈ (0,1). Choose a nonegative real sequence {ξk} such that
∑

∞
k=1 ξk <+∞. Let x0,x1 ∈H be arbitrary.

Step 1. Given the current iterates xk−1 and xk, set

wk = xk +θk(xk− xk−1),

where

θk =

min
{

εk

‖xk− xk−1‖
,θ

}
, if xk 6= xk−1,

θ , otherwise.

Step 2. Compute
yk = PC(wk−λkAwk).

If xk = yk, then stop, and yk is a solution of Problem 1.1. Otherwise, go to Step 3.
Step 3. Compute

xk+1 = (1−αk−βk)wk +βkPTk(w
k), (3.1)

where Tk := {x ∈H : hk(x)≤ 0} and

hk(x) = 〈wk− yk−λk(Awk−Ayk),x− yk〉. (3.2)

Update

λk+1 =

min
{

µ‖wk− yk‖
‖Awk−Ayk‖

,λk +ξk

}
, if Awk 6= Ayk,

λk +ξk, otherwise.
(3.3)

Set k := k+1, and go to Step 1.

Remark 3.5. It follows from Algorithm 3.1 that

lim
k→∞

θk

αk
‖xk− xk−1‖= 0.

In fact, whether xk = xk−1 or xk 6= xk−1, the definition of {θk} implies that θk‖xk− xk−1‖ ≤ εk

for all k ≥ 1. From limk→∞

εk

αk
= 0, we have

lim
k→∞

θk

αk
‖xk− xk−1‖ ≤ lim

k→∞

εk

αk
= 0.

The following lemmas are quite useful for proving the convergence of Algorithm 3.1.
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Lemma 3.6. [25] Let {λk} be the sequence generated by (3.3). Then limk→∞ λk = λ and

λ ∈
[
min

{
µ

L
,λ1

}
,λ1 +ξ

]
,

where ξ = ∑
∞
k=1 ξk.

Lemma 3.7. Assume that Condition 3.1-3.3 hold. Let p be a solution of Problem 1.1, and the
function {hk} be defined by (3.2). Then, hk(p)≤ 0, and there exists n0 ∈ N such that

hk(wk)≥ 1−µ

2
‖wk− yk‖2, ∀k ≥ n0.

In particular, if wk 6= yk, then hk(wk)> 0.

Proof. Because p is a solution of Problem 1.1, we conclude from Lemma 2.6 that

〈Ayk, p− yk〉 ≤ 0.

It follows from the definition of yk and Lemma 2.4 that

hk(p) =〈wk− yk−λk(Awk−Ayk), p− yk〉

=〈wk− yk−λkAwk, p− yk〉+λk〈Ayk, p− yk〉
≤0.

Hence, the proof of hk(p)≤ 0 is achieved.
Next, we prove

hk(wk)≥ 1−µ

2
‖wk− yk‖2, ∀k ≥ n0.

Clearly, using (3.3), we obtain

‖Awk−Ayk‖ ≤ µ

λk+1
‖wk− yk‖, ∀k ≥ 1. (3.4)

Obviously, if Awk = Ayk, then (3.4) must be true. In fact, (3.4) is satisfied if Awk 6= Ayk. From
the definition of λk+1, it is easy to see

λk+1 = min
{

µ‖wk− yk‖
‖Awk−Ayk‖

,λk +ξk

}
≤ µ‖wk− yk‖
‖Awk−Ayk‖

.

By (3.4), we have
hk(wk) =〈wk− yk−λk(Awk−Ayk),wk− yk〉

=‖wk− yk‖2−λk〈Awk−Ayk,wk− yk〉

≥‖wk− yk‖2−λk‖Awk−Ayk‖‖wk− yk‖

≥‖wk− yk‖2−µ
λk

λk+1
‖wk− yk‖2

=

(
1−µ

λk

λk+1

)
‖wk− yk‖2, ∀k ≥ 1.

(3.5)

From Lemma 3.6, we know

lim
k→∞

(
1−µ

λk

λk+1

)
= 1−µ > 0.
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Therefore, there exists n0 ∈ N such that

1−µ
λk

λk+1
>

1−µ

2
> 0, ∀k ≥ n0.

From (3.5), we have

hk(wk)≥ 1−µ

2
‖wk− yk‖2, ∀k ≥ n0.

This completes the proof. �

The proof of the following lemma is the same as [12, Lemma 11], and we omit it.

Lemma 3.8. Let {wk} be a sequence generated by Algorithm 3.1 and assume that conditions
3.1-3.3 hold. If there exists {wk j}, a subsequence of {wk}, such that {wk j} converges weakly to
z ∈H and lim j→∞ ‖wk j − yk j‖= 0, then z ∈V I(C,A).

Remark 3.9. Imposing the sequential weak continuity on A is not necessary when A is a mono-
tone operator; see [9].

Theorem 3.10. Assume that Condition 3.1-3.4 hold. Then the sequence {xk} generated by
Algorithm 3.1 converges to p ∈V I(C,A) in norm, where

‖p‖= min{‖z‖ : z ∈V I(C,A)} .

Proof. Define uk := PTk(w
k). From Lemma 2.2, we have

‖uk− p‖2 = ‖PTk(w
k)− p‖2

≤ ‖wk− p‖2−‖wk−uk‖2

= ‖wk− p‖2−dist2(wk,Tk),

(3.6)

which implies that

‖uk− p‖ ≤ ‖wk− p‖. (3.7)

Claim 1. We first prove that {xk} is a bounded sequence. Combining (3.1) and (3.7), we
have

‖xk+1− p‖= ‖((1−αk−βk)wk +βkuk− p‖

= ‖(1−αk−βk)(wk− p)+βk(uk− p)−αk p‖

≤ (1−αk−βk)‖wk− p‖+βk‖uk− p‖+αk‖p‖

≤ (1−αk)‖wk− p‖+αk‖p‖.

(3.8)

Note that Remark 3.5 implies that
θk

αk
‖xk−xk−1‖→ 0. Therefore, there exists a constant M1 > 0

such that
θk

αk
‖xk− xk−1‖ ≤M1, ∀k ≥ 1. (3.9)
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Using the definition of wk and (3.9), it is easy to show

‖wk− p‖= ‖xk +θk(xk− xk−1)− p‖

≤ ‖xk− p‖+θk‖xk− xk−1‖

= ‖xk− p‖+αk
θk

αk
‖xk− xk−1‖

≤ ‖xk− p‖+αkM1, ∀k ≥ 1.

(3.10)

From (3.8) and (3.10), we find that

‖xk+1− p‖ ≤(1−αk)‖wk− p‖+αk‖p‖

≤(1−αk)‖xk− p‖+αk(‖p‖+M1)

≤max
{
‖xk− p‖,‖p‖+M1

}
...

≤max
{
‖x1− p‖,‖p‖+M1

}
,

which implies that {xk} is bounded. Therefore, the sequences {wk} and {uk} are also bounded.
Claim 2. There exists M > 0 such that

βk

[(
1
M

1−µ

2
‖wk− yk‖2

)2

+M3‖wk−uk‖2

]

≤‖xk− p‖2−‖xk+1− p‖2 +αk

(
3M2

θk

αk
‖xk− xk−1‖+‖p‖2

)
, ∀k ≥ n0,

where M2 = supk∈N
{
‖xk− p‖,θk‖xk− xk−1‖

}
and M3 > 0. Indeed, by Lemma 2.3, we obtain

‖xk+1− p‖2

=‖(1−αk−βk)(wk− p)+βk(uk− p)+αk(−p)‖2

=(1−αk−βk)‖wk− p‖2 +βk‖uk− p‖2 +αk‖p‖2

−βk(1−αk−βk)‖wk−uk‖2−αk(1−αk−βk)‖wk‖2−αkβk‖uk‖2

≤(1−αk−βk)‖wk− p‖2 +βk‖uk− p‖2 +αk‖p‖2−βk(1−αk−βk)‖wk−uk‖2.

(3.11)

Using Lemma 2.4, Lemma 3.7, and (3.6), we know that exists a modulus M > 0 such that

‖uk− p‖2 ≤ ‖wk− p‖2−
(

1
M

1−µ

2
‖wk− yk‖2

)2

, ∀k ≥ n0. (3.12)

It is easy to know

‖wk− p‖2

=‖xk +θk(xk− xk−1)− p‖2

≤‖xk− p‖2 +2θk‖xk− p‖‖xk− xk−1‖+θ
2
k ‖xk− xk−1‖2

≤‖xk− p‖2 +3M2θk‖xk− xk−1‖, ∀k ≥ 1,

(3.13)
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where M2 = supk∈N
{
‖xk− p‖,θk‖xk− xk−1‖

}
. Combining (3.11), (3.12), and (3.13), we have

‖xk+1− p‖2

≤(1−αk−βk)‖wk− p‖2 +βk‖wk− p‖2−βk

(
1
M

1−µ

2
‖wk− yk‖2

)2

+αk‖p‖2−βk(1−αk−βk)‖wk−uk‖2

≤‖wk− p‖2 +αk‖p‖2−βk

(
1
M

1−µ

2
‖wk− yk‖2

)2

−βk(1−αk−βk)‖wk−uk‖2

≤‖xk− p‖2 +αk

(
3M2

θk

αk
‖xk− xk−1‖+‖p‖2

)
−βk

(
1
M

1−µ

2
‖wk− yk‖2

)2

−βk(1−αk−βk)‖wk−uk‖2, ∀k ≥ n0.

(3.14)

From Condition 3.4, we know that βk < b≤ 1−αk. It is easy to see that there exists a constant
M3 > 0 such that βk +M3 < b≤ 1−αk, which implies that

1−αk−βk ≥M3.

Then (3.14) can be written as

‖xk+1− p‖2 ≤‖xk− p‖2 +αk

(
3M2

θk

αk
‖xk− xk−1‖+‖p‖2

)
−βk

(
1
M

1−µ

2
‖wk− yk‖2

)2

−βkM3‖wk−uk‖2, ∀k ≥ n0.

where M2 = supk∈N
{
‖xk− p‖,θk‖xk− xk−1‖

}
and M3 > 0.

Claim 3. Note that

ak+1 ≤ (1−αk)ak +αkbk,

where ak = ‖xk− p‖2 and

bk = 3M2
θk

αk
‖xk− xk−1‖+2βk‖uk−wk‖‖xk+1− p‖+2〈p, p− xk+1〉,

where M2 = supk∈N
{
‖xk− p‖,θk‖xk− xk−1‖

}
. Let tk = (1−βk)wk +βkuk. Then

‖tk−wk‖= βk‖uk−wk‖. (3.15)

From the definition of tk and (3.7), we obtain

‖tk− p‖= ‖(1−βk)(wk− p)+βk(uk− p)‖

≤ (1−βk)‖wk− p‖+βk‖uk− p‖

≤ ‖wk− p‖.

(3.16)
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Using (3.1), (3.16), and Lemma 2.3, we have

‖xk+1− p‖2

=‖tk−αkwk− p‖2

=‖(1−αk)(tk− p)+αk(tk−wk− p)‖2

≤(1−αk)‖tk− p‖2 +2αk〈tk−wk− p,xk+1− p〉

≤(1−αk)‖tk− p‖2 +2αk‖tk−wk‖‖xk+1− p‖+2αk〈p, p− xk+1〉

≤(1−αk)‖wk− p‖2 +2αk‖tk−wk‖‖xk+1− p‖+2αk〈p, p− xk+1〉.

(3.17)

Combining (3.13), (3.15), and (3.17), we obtain

‖xk+1− p‖2

≤(1−αk)‖xk− p‖2 +3M2(1−αk)θk‖xk− xk−1‖

+2αk‖tk−wk‖‖xk+1− p‖+2αk〈p, p− xk+1〉

≤(1−αk)‖xk− p‖2 +αk

(
3M2

θk

αk
‖xk− xk−1‖

+2βk‖uk−wk‖‖xk+1− p‖+2〈p, p− xk+1〉
)
,

where M2 = supk∈N
{
‖xk− p‖,θk‖xk− xk−1‖

}
.

Claim 4. We prove that {‖xk − p‖2} converges to zero by considering two cases on the
sequence {‖xk− p‖2}.

Case 1. There exists an N ∈ N such that ‖xk+1 − p‖2 ≤ ‖xk − p‖2 for all k ≥ N. This
implies that limk→∞ ‖xk− p‖2 exists. By Lemma 2.5 and Claim 3, we just need to show that
limsupk→∞ bk ≤ 0. From the boundedness of {xk} and

lim
k→∞

θk

αk
‖xk− xk−1‖= 0,

we need to show limsupk→∞ ‖uk−wk‖ ≤ 0 and limsupk→∞〈p, p− xk+1〉 ≤ 0. By Claim 2 and
µ ∈ (0,1), we obtain

lim
k→0
‖wk− yk‖= 0, lim

k→0
‖wk−uk‖= 0. (3.18)

According the definition of wk, we have

lim
k→0
‖xk−wk‖= lim

k→0
αk

θk

αk
‖xk− xk−1‖= 0. (3.19)

On the other hand, we see that

lim
k→0
‖xk+1−wk‖= lim

k→0
αk‖wk‖+ lim

k→0
βk‖wk−uk‖= 0.

This together with (3.19) obtains

lim
k→∞
‖xk+1− xk‖= 0. (3.20)
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Since {xk} is bounded, it follows that there exists a subsequence {xk j} of {xk}, which converges
weakly to some q ∈H such that

limsup
k→∞

〈p, p− xk〉= lim
j→∞
〈p, p− xk j〉= 〈p, p−q〉.

Due to ‖wk− xk‖ → 0, we know that wk j converges weakly to q. From ‖wk j − yk j‖ → 0 and
Lemma 3.8, we have q∈V I(C,A). Since ‖p‖= min{‖z‖ : z ∈V I(C,A)} , that is, p = PV I(C,A)0,
we obtain

limsup
k→∞

〈p, p− xk〉= 〈p, p−q〉 ≤ 0. (3.21)

Combining (3.20) and (3.21), we have

limsup
k→∞

〈p, p− xk+1〉 ≤ limsup
k→∞

〈p, p− xk〉= 〈p, p−q〉 ≤ 0. (3.22)

Hence, it follows from (3.18), (3.22), Claim 3, and Lemma 2.5 that

lim
k→∞
‖xk− p‖= 0.

Case 2. Assume that there is no N ∈ N such that {‖xk− p‖} is monotonically decreasing.
The technique of proof used here is adapted from [29, 30]. Let τ : N→N be a mapping defined
for all k ≥ N (for some N large enough) by

τ(k) := max{n ∈ N : n≤ k, ‖xn− p‖ ≤ ‖xn+1− p‖},

i.e., τ(k) is the largest number n in {1,2, ...,k} such that ‖xn− p‖ increases at n = τ(k). Note
that, in view of Case 2, this τ(k) is well-defined for all sufficiently large k. Clearly, τ is a
non-decreasing sequence such that τ(k)→ ∞ as k→ ∞ and

‖xτ(k)− p‖ ≤ ‖xτ(k)+1− p‖, ∀k ≥ N. (3.23)

From Claim 2, we have

βτ(k)

[(
1
M

1−µ

2
‖wτ(k)− yτ(k)‖2

)2

+M3‖wτ(k)−uτ(k)‖2

]

≤‖xτ(k)− p‖2−‖xτ(k)+1− p‖2 +ατ(k)

(
3M2

θτ(k)

ατ(k)
‖xτ(k)− xτ(k)−1‖+‖p‖2

)

≤ατ(k)

(
3M2

θτ(k)

ατ(k)
‖xτ(k)− xτ(k)−1‖+‖p‖2

)
, ∀τ(k)> n0.

Since limk→∞ αk = 0, we know

lim
k→∞
‖wτ(k)− yτ(k)‖= 0, lim

k→∞
‖wτ(k)−uτ(k)‖= 0.

As proved in the first case, it is easy to see ‖xτ(k)+1 − xτ(k)‖ → 0 and limsupk→∞〈p, p−
xτ(k)+1〉 ≤ 0. Using Claim 3, we obtain

‖xτ(k)+1− p‖2 ≤(1−ατ(k))‖xτ(k)− p‖2 +ατ(k)

(
3M2

θτ(k)

ατ(k)
‖xτ(k)− xτ(k)−1‖

+2βτ(k)‖uτ(k)−wτ(k)‖‖xτ(k)+1− p‖+2〈p, p− xτ(k)+1〉
)
.
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From (3.23), we obtain

‖xτ(k)− p‖2 ≤3M2
θτ(k)

ατ(k)
‖xτ(k)− xτ(k)−1‖+2〈p, p− xτ(k)+1〉

+2βτ(k)‖uτ(k)−wτ(k)‖‖xτ(k)+1− p‖.
(3.24)

Using Remark 3.5, limk→∞ ‖uτ(k)−wτ(k)‖ = 0, and limsupk→∞〈p, p− xτ(k)+1〉 ≤ 0, (3.24) im-
plies limk→∞ ‖xτ(k)− p‖= 0. Therefore, limk→∞ ‖xτ(k)+1− p‖= 0.

Furthermore, for k ≥ N, it is easy to see ‖xk − p‖ ≤ ‖xτ(k)+1− p‖. Next, we prove this.
Because τ(k) ≤ k, we consider the following three cases: τ(k) = k, τ(k) = k− 1, and τ(k) ≤
k−2. For the first and second cases, it is obvious that ‖xk− p‖ ≤ ‖xτ(k)+1− p‖, for k ≥ N. For
the third case τ(k) ≤ k−2, we have from the definition of τ(k) and for any integer k ≥ N that
‖x j− p‖> ‖x j+1− p‖ for τ(k)+1≤ j ≤ k−1. Thus,

‖xτ(k)+1− p‖ ≥ ‖xτ(k)+2− p‖ ≥ ...≥ ‖xk−1− p‖ ≥ ‖xk− p‖.

As a sequence, we obtain for all sufficiently large k that 0 ≤ ‖xk− p‖ ≤ ‖xτ(k)+1− p‖. Hence
limk→∞ ‖xk− p‖= 0. Therefore, {xk} converges strongly to p. This completes the proof. �

4. NUMERICAL EXPERIMENTS

In this section, we provide three numerical examples to test the proposed algorithm. We show
the practicability of our proposed algorithm and compare them with the algorithm 3.1 and the
algorithm 3.2 in [35] and the algorithm 1 in [27]. All the codes were written in Matlab (R2016a)
and run on PC with Intel(R) Core(TM) i3-370M Processor 2.40 GHz.

Take θ = 0.3, λ1 = 4, µ = 0.8, αk =
1
k , βk = 0.9(1−αk), and εk =

1
k2 in Algorithm 3.1 and,

the algorithms 3.1 and 3.2 in [35]. Choose ξk =
1
k2 in Algorithm 3.1 and λk =

0.8
L , αk =

1
k2 ,

µk =
1
k and νk = 0.9(1−µk) in the algorithm 1 in [27].

Example 4.1. Consider C := {x ∈ H : ‖x‖ ≤ 2}. Let g : C→ R be defined by

g(u) :=
1

1+‖u‖2 .

Observe that g is Lg-Lipchitz continuous with Lg =
16
25

and 0.2≤ g(u)≤ 1, ∀ u ∈C. Define the

Volterra integral operator F : L2([0,1])→ L2([0,1]) by

F(u)(t) :=
∫ t

0
u(s)ds, ∀ u ∈ L2([0,1]), t ∈ [0,1].

Then F is bounded linear monotone (see [3, Exercise 20.12]) and ‖F‖ = 2
π

. Now, define

A : C→ L2([0,1]) by

A(u)(t) := g(u)F(u)(t), ∀ u ∈C, t ∈ [0,1].

Thus, A is pseudo-monotone and LA-Lipschitz-continuous with LA = 82
π

.
Let x0 = x1 = sin(2πt2) and take ‖xk− xk−1‖ ≤ 10−15 as the stopping criterion in Figure 1.
We compared Algorithm 3.1, the algorithms 3.1 and 3.2 in [35], and the algorithm 1 in [27].

The numerical result is described in Figure 1. This illustrates that the performance of Algorithm
3.1 is better than others.
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Algorithm 3.1 in [32]

Algorithm 3.2 in [32]
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FIGURE 1. Comparison results of this algorithms in Example 4.1.

Example 4.2. [16] Let H = L2([0,1]) with norm ‖x‖ :=
(∫ 1

0 |x(t)|2dt
) 1

2 and inner product

〈x,y〉 :=
∫ 1

0 x(t)y(t)dt, ∀x,y ∈ H. Let C := {x ∈ H : ‖x‖ ≤ 1} be the unit ball. Define an
operator A : C→ H by

A(x)(t) =
∫ 1

0
(x(t)− f (t,s)g(x(s)))ds+h(t), ∀x ∈C, t ∈ [0,1],

where

f (t,s) =
2tset+s

e
√

e2−1
, g(x) = cosx, h(t) =

2tet

e
√

e2−1
.

It is known that A is monotone (hence pseudo-monotone) and L-Lipschitz-continuous with L =
2, and {0} is the solution of the corresponding variational inequality problem.
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100

1020

‖x
k
‖

Algorithm 3.1

Algorithm 3.1 in [32]

Algorithm 3.2 in [32]

Algorithm 1 in [27]

FIGURE 2. Comparison results of this algorithms in Example 4.2.

Let x0 = [2,−10] and take k = 500 as the stopping criterion in Figure 2.
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Figure 2 shows that when the number of iteration steps is the same, the error of Algorithm
3.1 is smaller that of the algorithms 3.1 and 3.2 in [35] and the algorithm 1 in [27].

Example 4.3. Consider a two-dimensional variational inequality problem. Let us define

A(x) =
(

(x2
1 +(x2−1)2)(1+ x2)
−x3

1− x1(x2−1)2

)
and C := {x ∈ R2 : (x1 − 2)2 + (x2 − 2)2 ≤ 3}. It is easy to see that A is not a monotone
map. However, using the Monte Carlo approach (see [17]), it can be shown that A is pseudo-
monotone.

0 100 200 300 400 500

k

10-4

10-3

10-2

10-1

100

101

‖x
k
−
x
k
−
1
‖

Algorithm 3.1

Algorithm 3.1 in [32]

Algorithm 3.2 in [32]

FIGURE 3. Comparison results of this algorithms in Example 4.3.

The initial point x0 and x1 are randomly chosen. Take k = 500 as the stopping criterion in
Figure 3.

The numerical result is described in Figure 3, which illustrates that the performance of Algo-
rithm 3.1 is better than that of the algorithms 3.1 and 3.2 in [35].

5. CONCLUSIONS

In this paper, we introduced a Mann-type self-adaptive projected reflected subgradient extra-
gradient algorithm for solving the variational inequality problem with a pseudo-monotone and
Lipschitz contiuous mapping in real Hilbert spaces. For this method, we do not need to know
the Lipschitz constant of the involved operator. We proved that the sequence {xk} generated by
the proposed algorithm converges to p ∈V I(C,A). Finally, three numerical examples show that
the proposed algorithm is better than some existing algorithms.
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