

Journal of Nonlinear Functional Analysis

Available online at http://jnfa.mathres.org

A NEW TWO-GRID P_0^2 - P_1 MIXED FINITE ELEMENT ALGORITHM FOR GENERAL ELLIPTIC OPTIMAL CONTROL PROBLEMS

HONGBO CHEN

School of Mathematics and Statistics, Beihua University, Jilin 132013, China

Abstract. In this paper, a new two-grid mixed finite element scheme for distributed optimal control governed by general elliptic equations is presented. P_0^2 - P_1 mixed finite elements and piecewise constant functions are used for spatial discretization. Convergence of the proposed two-grid algorithm is discussed. In the two-grid scheme, the solution of the elliptic optimal control problem on a fine grid is reduced to the solution of the elliptic optimal control problem on a much coarser grid and the solution of a symmetric linear algebraic system on the fine grid and the resulting solution still maintains an asymptotically optimal accuracy.

Keywords. Error estimates; General elliptic optimal control problems; P_0^2 - P_1 mixed finite element; Two-grid; Superconvergence.

1. Introduction

We consider the following linear optimal control problems with pointwise constraint:

$$\min_{u \in U_{ad}} \left\{ \frac{1}{2} \| \boldsymbol{p} - \boldsymbol{p}_d \|^2 + \frac{1}{2} \| y - y_d \|^2 + \frac{v}{2} \| u \|^2 \right\}$$
 (1.1)

subject to the state equation

$$-\operatorname{div}(a\nabla y + \boldsymbol{b}y) + cy = u, \ x \in \Omega, \tag{1.2}$$

which can be written in the form of the first order system

$$\operatorname{div} \boldsymbol{p} + c y = u, \quad \boldsymbol{p} = -(a \nabla y + \boldsymbol{b} y), \quad x \in \Omega, \tag{1.3}$$

and the boundary condition

$$y = 0, \ x \in \partial \Omega, \tag{1.4}$$

where Ω is a convex polygon in \mathbb{R}^2 , and U^{ad} denotes the admissible set of the control variable, defined by

$$U^{ad} = \{ u \in L^2(\Omega) : u \ge 0, \text{ a.e. in } \Omega \}.$$

E-mail address: 274944166@qq.com.

Received July 7, 2022; Accepted September 10, 2022.

Moreover, we assume that $0 < a_0 \le a \le a^0$, $a \in W^{1,\infty}(\Omega)$, $0 < c \in W^{1,\infty}(\Omega)$, $\boldsymbol{b} = (b_1,b_2)^T \in (W^{1,\infty}(\Omega))^2$, $y_d \in H^1(\Omega)$, $\boldsymbol{p}_d \in (H^1(\Omega))^2$, and \boldsymbol{v} is a fixed positive number. We also assume that the following condition holds [8]: $b_1^2 + b_2^2 \le 4(1-\gamma)ac$ for some $\gamma \in (0,1)$.

In recent years, numerous numerical methods have been widely applied to various optimal control problems governed by partial differential equations; see, e.g., [5, 21, 22] for standard finite element methods, [3, 16, 17] for mixed finite element methods, [11, 18] for finite volume methods, and [6, 9] for spectral methods. Chen and Liu [2] first used Raviart-Thomas mixed finite element method to solve a class of elliptic optimal control problems, in which objective functional contains the gradient of the state variable. They not only considered a priori error estimates for all variables but also derived the supercolse with order $h^{\frac{3}{2}}$ between average L^2 projection and the approximation of the control variable u. In [3], Chen considered the rectangular mixed finite element approximation for elliptic optimal control problems and obtained the superclose between the centroid interpolation and the numerical solution of the optimal control u with order h^2 . Guo, Fu and Zhang [12] proposed a splitting positive definite mixed finite element method for the approximation of convex optimal control problem governed by elliptic equations with control constraints. Hou [16] discussed a priori and a posteriori error estimates of H^1 -Galerkin mixed finite element methods for elliptic optimal control problems. Hou, Liu and Yang [17] derived a priori error estimates and superconvergence of P_0^2 - P_1 mixed finite element approximation for elliptic optimal control problems. Fu and Rui [10] considered a priori error estimates for least-squares mixed finite element approximation of elliptic optimal control problems.

It is well known that the two-grid method [23, 24] is an effective discretization method for solving nonsymmetric, indefinite, and nonlinear partial differential equations. As far as we know, Liu and Wang [20] first attempted to construct a two-grid finite element scheme of elliptic optimal control problems. Subsequently, Hou and his co-authors [14, 15] designed two-grid mixed finite element schemes for optimal control problems governed by general elliptic equations and Stokes equations respectively.

This paper, motivated by the ideas of the results presented in [14, 20], presents a new two-grid scheme for general elliptic optimal control problems discretized by P_0^2 - P_1 mixed finite element [4]. Compared with the two-grid scheme proposed in [14], the linear algebraic system on the fine grid of our two-grid scheme is symmetric. Therefore, more solvers can be selected to solve the problem.

The paper is organized as follows. In Section 2, we consider the P_0^2 - P_1 mixed finite element approximation for optimal control problem (1.1)-(1.4). In Section 3, the last section, we present our two-grid algorithm and discuss its convergence.

In this paper, we adopt the standard notation $W^{m,p}(\Omega)$ for Sobolev spaces on Ω with the norm $\|\cdot\|_{m,p}$ given by $\|v\|_{m,p}^p = \sum\limits_{|\alpha| \leq m} \|D^\alpha v\|_{L^p(\Omega)}^p$ and the semi-norm $\|\cdot\|_{m,p}$ given by $\|v\|_{m,p}^p = \sum\limits_{|\alpha| = m} \|D^\alpha v\|_{L^p(\Omega)}^p$. We set $W_0^{m,p}(\Omega) = \{v \in W^{m,p}(\Omega) : v|_{\partial\Omega} = 0\}$. For p = 2, we denote $H^m(\Omega) = W^{m,2}(\Omega)$, $H_0^m(\Omega) = W_0^{m,2}(\Omega)$ and $\|\cdot\|_m = \|\cdot\|_{m,2}$, $\|\cdot\| = \|\cdot\|_{0,2}$. In addition, C denotes a general positive constant.

2. MIXED METHODS FOR OPTIMAL CONTROL PROBLEMS

In this section, we give P_0^2 - P_1 mixed finite element approximation of control problem (1.1)-(1.4). Next, we recall a result from Grisvard [13].

Lemma 2.1. For every function $\psi \in L^2(\Omega)$, let ϕ be the solution of

$$-\operatorname{div}(a\nabla\phi) + c\phi = \psi \text{ in } \Omega, \ \phi|_{\partial\Omega} = 0. \tag{2.1}$$

Then (2.1) is solvable and that

$$\|\phi\|_2 \le C\|\psi\|. \tag{2.2}$$

Let

$$V = (L^2(\Omega))^2 \text{ and } W = H_0^1(\Omega).$$

We recast (1.1)-(1.4) as the following weak form: find $(\boldsymbol{p}, y, u) \in \boldsymbol{V} \times W \times U_{ad}$ such that

$$\min_{u \in U^{ad}} \left\{ \frac{1}{2} \| \boldsymbol{p} - \boldsymbol{p}_d \|^2 + \frac{1}{2} \| y - y_d \|^2 + \frac{v}{2} \| u \|^2 \right\}, \tag{2.3}$$

$$(\alpha \mathbf{p}, \mathbf{v}) + (\nabla y, \mathbf{v}) + (\boldsymbol{\beta} y, \mathbf{v}) = 0, \ \forall \ \mathbf{v} \in \mathbf{V},$$
(2.4)

$$-(\mathbf{p}, \nabla w) + (cy, w) = (u, w), \ \forall \ w \in W, \tag{2.5}$$

where $\alpha = a^{-1}$, $\boldsymbol{\beta} = \alpha \boldsymbol{b}$, and (\cdot, \cdot) is the inner product of $L^2(\Omega)$.

It follows from [19] that optimal control problem (2.3)-(2.5) has a unique solution (p, y, u), and that a triplet (p, y, u) is the solution of (2.3)-(2.5) if and only if there is a co-state (q, z) \in $V \times W$ such that (p, y, q, z, u) satisfies the following optimality conditions:

$$(\boldsymbol{\alpha}\boldsymbol{p},\boldsymbol{v}) + (\nabla y,\boldsymbol{v}) + (\boldsymbol{\beta}y,\boldsymbol{v}) = 0, \ \forall \ \boldsymbol{v} \in \boldsymbol{V},$$
(2.6)

$$-(\mathbf{p}, \nabla w) + (cy, w) = (u, w), \ \forall \ w \in W, \tag{2.7}$$

$$(\alpha q, \mathbf{v}) + (\nabla z, \mathbf{v}) = -(\mathbf{p} - \mathbf{p}_d, \mathbf{v}), \ \forall \ \mathbf{v} \in \mathbf{V},$$
(2.8)

$$-(\boldsymbol{q}, \nabla w) - (\boldsymbol{\beta} \cdot \boldsymbol{q}, w) + (cz, w) = (y - y_d, w), \ \forall \ w \in W,$$
(2.9)

$$(\mathbf{v}u + z, \tilde{u} - u) \ge 0, \ \forall \ \tilde{u} \in U^{ad}. \tag{2.10}$$

The inequality (2.10) can be expressed as

$$u = \max\{0, -z\}/v. \tag{2.11}$$

Let \mathscr{T}_h denote a regular triangulation of the polygonal domain Ω , h_T denote the diameter of T, and $h = \max_{T \in \mathscr{T}_h} h_T$. Let $\mathbf{V}_h \times W_h \subset \mathbf{V} \times W$ be defined by the following finite element pair $P_0^2 - P_1[4]$:

$$V_h = \{ v_h = (v_{1h}, v_{2h}) \in V | v_{1h}, v_{2h} \in P_0(T), \ \forall \ T \in \mathscr{T}_h \},$$

and

$$W_h = \{ w_h \in C^0(\Omega) \cap W | w_h \in P_1(T), \ \forall \ T \in \mathscr{T}_h \},\$$

where $P_m(T)$ indicates the space of polynomials of degree no more than m on T. Moreover, let

$$V_h := \{ v_h \in L^2(\Omega) : \forall T \in \mathscr{T}_h, v_h |_T = \text{constant} \},$$

and $U_h^{ad} = V_h \cap U^{ad}$.

Before the P_0^2 - P_1 mixed finite element scheme is given, we introduce three projection operators. First, we define the standard elliptic projection [7] $P_h: W \to W_h$, which satisfies, for any $\phi \in W$,

$$(\nabla(\phi - P_h\phi), \nabla w_h) = 0, \quad \forall \ w_h \in W_h, \tag{2.12}$$

$$\|\phi - P_h \phi\|_s \le Ch^{2-s} \|\phi\|_2, \ s = 0, 1, \ \forall \ \phi \in H^2(\Omega). \tag{2.13}$$

Second, we define the standard L^2 projection [1] $\Pi_h: \mathbf{V} \to \mathbf{V}_h$, which satisfies: for any $\mathbf{q} \in \mathbf{V}$

$$(\boldsymbol{q} - \Pi_h \boldsymbol{q}, \boldsymbol{v}_h) = 0, \quad \forall \ \boldsymbol{v}_h \in \boldsymbol{V}_h, \tag{2.14}$$

$$\|\Pi_h \boldsymbol{q}\| \le C\|\boldsymbol{q}\|,\tag{2.15}$$

$$\|\boldsymbol{q} - \Pi_h \boldsymbol{q}\| \le Ch \|\boldsymbol{q}\|_1, \ \forall \, \boldsymbol{q} \in (H^1(\Omega))^2.$$
 (2.16)

Last, for any $\psi \in L^2(\Omega)$ and $T \in \mathcal{T}_h$, we define the element average operator $\pi_h : L^2(\Omega) \to V_h$ by

$$\pi_h \psi|_T = \int_T \psi \mathrm{d}x/|T|,$$

where |T| is the area of the element T.

The following approximation property holds

$$\|\psi - \pi_h \psi\|_{-s,2} \le Ch^{1+s} |\psi|_{1,2}, \ s = 0, 1, \ \forall \ \psi \in H^1(\Omega). \tag{2.17}$$

Then, the mixed finite element discretization of (2.3)-(2.5) is as follows: find $(\boldsymbol{p}_h, y_h, u_h) \in \boldsymbol{V}_h \times W_h \times U_h^{ad}$ such that

$$\min_{u_h \in U_h^{ad}} \left\{ \frac{1}{2} \| \boldsymbol{p}_h - \boldsymbol{p}_d \|^2 + \frac{1}{2} \| y_h - y_d \|^2 + \frac{\boldsymbol{v}}{2} \| u_h \|^2 \right\}, \\
(\boldsymbol{\alpha} \boldsymbol{p}_h, \boldsymbol{v}_h) + (\nabla y_h, \boldsymbol{v}_h) + (\boldsymbol{\beta} y_h, \boldsymbol{v}_h) = 0, \ \forall \ \boldsymbol{v}_h \in \boldsymbol{V}_h, \\
- (\boldsymbol{p}_h, \nabla w_h) + (c y_h, w_h) = (u_h, w_h), \ \forall \ w_h \in W_h.$$

The above optimal control problem has a unique solution (\mathbf{p}_h, y_h, u_h) and there is a co-state $(\mathbf{q}_h, z_h) \in \mathbf{V}_h \times W_h$ such that $(\mathbf{p}_h, y_h, \mathbf{q}_h, z_h, u_h)$ satisfies the following optimality conditions:

$$(\alpha \mathbf{p}_h, \mathbf{v}_h) + (\nabla y_h, \mathbf{v}_h) + (\boldsymbol{\beta} y_h, \mathbf{v}_h) = 0, \ \forall \ \mathbf{v}_h \in \mathbf{V}_h,$$
(2.18)

$$-(\mathbf{p}_{h}, \nabla w_{h}) + (cy_{h}, w_{h}) = (u_{h}, w_{h}), \ \forall \ w_{h} \in W_{h},$$
(2.19)

$$(\alpha \boldsymbol{q}_h, \boldsymbol{v}_h) + (\nabla z_h, \boldsymbol{v}_h) = -(\boldsymbol{p}_h - \boldsymbol{p}_d, \boldsymbol{v}_h), \ \forall \ \boldsymbol{v}_h \in \boldsymbol{V}_h,$$
(2.20)

$$-(\boldsymbol{q}_h, \nabla w_h) - (\boldsymbol{\beta} \cdot \boldsymbol{q}_h, w_h) + (cz_h, w_h) = (y_h - y_d, w_h), \ \forall \ w_h \in W_h,$$
 (2.21)

$$(\nu u_h + z_h, \tilde{u}_h - u_h) \ge 0, \ \forall \ \tilde{u}_h \in U_h^{ad}. \tag{2.22}$$

Similar to (2.11), control inequality (2.22) can be expressed as

$$u_h = \max\{0, -\pi_h z_h\}/\nu.$$

Subtracting (2.18)-(2.21) from (2.6)-(2.9), we easily obtain the following error equations

$$(\boldsymbol{\alpha}(\boldsymbol{p}-\boldsymbol{p}_h),\boldsymbol{\nu}_h) + (\nabla(y-y_h),\boldsymbol{\nu}_h) + (\boldsymbol{\beta}(y-y_h),\boldsymbol{\nu}_h) = 0, \ \forall \ \boldsymbol{\nu}_h \in \boldsymbol{V}_h,$$
(2.23)

$$-(\mathbf{p} - \mathbf{p}_h, \nabla w_h) + (c(y - y_h), w_h) = (u - u_h, w_h), \ \forall \ w_h \in W_h,$$
 (2.24)

$$(\alpha(\boldsymbol{q}-\boldsymbol{q}_h),\boldsymbol{v}_h) + (\nabla(z-z_h),\boldsymbol{v}_h) = -(\boldsymbol{p}-\boldsymbol{p}_h,\boldsymbol{v}_h), \ \forall \ \boldsymbol{v}_h \in \boldsymbol{V}_h, \tag{2.25}$$

$$-(\mathbf{q} - \mathbf{q}_h, \nabla w_h) - (\mathbf{\beta} \cdot (\mathbf{q} - \mathbf{q}_h), w_h) + (c(z - z_h), w_h) = (y - y_h, w_h), \ \forall \ w_h \in W_h.$$
 (2.26)

From [14], we have the following two lemmas.

Lemma 2.2. Let $(\mathbf{p}, y, \mathbf{q}, z, u)$ be the solution to (2.6)-(2.10) and $(\mathbf{p}_h, y_h, \mathbf{q}_h, z_h, u_h)$ be the solution to (2.18)-(2.22), respectively. Then,

$$||y - y_h|| + ||z - z_h|| \le Ch^2, (2.27)$$

$$||u - u_h|| + ||\nabla(y - y_h)|| + ||\boldsymbol{p} - \boldsymbol{p}_h|| + ||\nabla(z - z_h)|| + ||\boldsymbol{q} - \boldsymbol{q}_h|| \le Ch.$$
 (2.28)

Lemma 2.3. Let u be the solution to (2.6)-(2.10) and $\hat{u}_h = \max\{0, -z_h\}/\nu$. Then,

$$||u - \hat{u}_h|| \le Ch^2$$
.

Now, we derive the following H^{-1} -error estimates.

Lemma 2.4. Let \mathbf{q} and \mathbf{q}_h be the solutions to (2.6)-(2.10) and (2.18)-(2.22), respectively. Then

$$\|\boldsymbol{q} - \boldsymbol{q}_h\|_{-1} \leq Ch^2$$
.

Proof. For $\psi \in (H^1(\Omega))^2$, let $\varphi \in H^2(\Omega) \cap H^1_0(\Omega)$ be the solution of the Dirichlet problem

$$-\operatorname{div}(a\nabla\varphi) = \operatorname{div}\psi, \ x \in \Omega,$$

$$\varphi = 0, \ x \in \partial\Omega.$$

Then,

$$\|\boldsymbol{\varphi}\|_2 \le C \|\operatorname{div}\boldsymbol{\psi}\| \le C \|\boldsymbol{\psi}\|_1. \tag{2.29}$$

Furthermore, $\psi = -a\nabla \varphi + \boldsymbol{\theta}$, where div $\boldsymbol{\theta} = 0$ and $\|\boldsymbol{\theta}\|_1 \le C\|\psi\|_1$. Now,

$$(\alpha(\mathbf{q} - \mathbf{q}_h), \mathbf{\psi}) = -(\alpha(\mathbf{q} - \mathbf{q}_h), a\nabla\varphi) + (\alpha(\mathbf{q} - \mathbf{q}_h), \boldsymbol{\theta}). \tag{2.30}$$

By (2.23)-(2.25), (2.27)-(2.28), (2.29), and Green's formula, we conclude that

$$-(\alpha(\boldsymbol{q}-\boldsymbol{q}_{h}),a\nabla\varphi) = (\alpha(\boldsymbol{q}-\boldsymbol{q}_{h}),\Pi_{h}(a\nabla\varphi)-a\nabla\varphi) + (\boldsymbol{p}-\boldsymbol{p}_{h},\Pi_{h}(a\nabla\varphi)-a\nabla\varphi) + (\nabla(z-z_{h}),\Pi_{h}(a\nabla\varphi)-a\nabla\varphi) + (\boldsymbol{p}-\boldsymbol{p}_{h},\Pi_{h}(a\nabla\varphi)-a\nabla\varphi) + (\nabla(z-z_{h}),a\nabla\varphi) + (\boldsymbol{p}-\boldsymbol{p}_{h},a\nabla\varphi) = (\alpha(\boldsymbol{q}-\boldsymbol{q}_{h}),\Pi_{h}(a\nabla\varphi)-a\nabla\varphi) + (\boldsymbol{p}-\boldsymbol{p}_{h},\Pi_{h}(a\nabla\varphi)-a\nabla\varphi) + (\nabla(z-z_{h}),\Pi_{h}(a\nabla\varphi)-a\nabla\varphi) + (\boldsymbol{p}-\boldsymbol{p}_{h},\Pi_{h}(a\nabla\varphi)-a\nabla\varphi) - (z-z_{h},\operatorname{div}(a\nabla\varphi)) + (\alpha(\boldsymbol{p}-\boldsymbol{p}_{h}),\nabla\varphi-\Pi_{h}(\nabla\varphi)) - (\nabla(y-y_{h}),\Pi_{h}(\nabla\varphi)) - (\boldsymbol{\beta}(y-y_{h}),\Pi_{h}(\nabla\varphi)) = (\alpha(\boldsymbol{q}-\boldsymbol{q}_{h}),\Pi_{h}(a\nabla\varphi)-a\nabla\varphi) + (\nabla(z-z_{h}),\Pi_{h}(a\nabla\varphi)-a\nabla\varphi) + (\nabla(z-z_{h}),\Pi_{h}(a\nabla\varphi)-a\nabla\varphi) + (\boldsymbol{p}-\boldsymbol{p}_{h},\Pi_{h}(a\nabla\varphi)-a\nabla\varphi) - (z-z_{h},\operatorname{div}(a\nabla\varphi)) + (\alpha(\boldsymbol{p}-\boldsymbol{p}_{h}),\nabla\varphi-\Pi_{h}(\nabla\varphi)) + (\nabla(y-y_{h}),\nabla\varphi-\Pi_{h}(\nabla\varphi)) + (y-y_{h},\operatorname{div}(\nabla\varphi)) + (\boldsymbol{\beta}(y-y_{h}),\nabla\varphi-\Pi_{h}(\nabla\varphi)) - (\boldsymbol{\beta}(y-y_{h}),\nabla\varphi) \leq Ch(\|\boldsymbol{p}-\boldsymbol{p}_{h}\|+\|\boldsymbol{q}-\boldsymbol{q}_{h}\|+\|\nabla(y-y_{h})\|+\|\nabla(z-z_{h})\|)\|\varphi\|_{2} \leq Ch^{2}\|\boldsymbol{\psi}\|_{1}.$$
(2.31)

Using $\operatorname{div} \boldsymbol{\theta} = 0$ and the same estimate as (2.31), we find that

$$(\alpha(\boldsymbol{q}-\boldsymbol{q}_{h}),\boldsymbol{\theta}) = (\alpha(\boldsymbol{q}-\boldsymbol{q}_{h}),\boldsymbol{\theta}-\Pi_{h}\boldsymbol{\theta}) + (\nabla(z-z_{h}),\boldsymbol{\theta}-\Pi_{h}\boldsymbol{\theta})$$

$$+(\boldsymbol{p}-\boldsymbol{p}_{h},\boldsymbol{\theta}-\Pi_{h}\boldsymbol{\theta}) + (\alpha(\boldsymbol{p}-\boldsymbol{p}_{h}),\Pi_{h}(a\boldsymbol{\theta})-a\boldsymbol{\theta})$$

$$+(\nabla(y-y_{h}),a\boldsymbol{\theta}-\Pi_{h}(a\boldsymbol{\theta})) + (y-y_{h},\operatorname{div}(a\boldsymbol{\theta}))$$

$$+(\boldsymbol{\beta}(y-y_{h}),a\boldsymbol{\theta}-\Pi_{h}(a\boldsymbol{\theta})) - (\boldsymbol{\beta}(y-y_{h}),a\boldsymbol{\theta})$$

$$\leq Ch(\|\boldsymbol{p}-\boldsymbol{p}_{h}\| + \|\boldsymbol{q}-\boldsymbol{q}_{h}\| + \|\nabla(y-y_{h})\| + \|\nabla(z-z_{h})\|)\|\boldsymbol{\theta}\|_{1}$$

$$+C\|y-y_{h}\| \cdot \|\boldsymbol{\theta}\|_{1}$$

$$< Ch^{2}\|\boldsymbol{\psi}\|_{1}.$$

$$(2.32)$$

By use of (2.30)-(2.32), we have $\|\boldsymbol{q} - \boldsymbol{q}_h\|_{-1} \le Ch^2$. Thus we complete the proof.

3. Two-Grid Algorithm and Convergence Analysis

In this section, we present our two-grid algorithm based on two triangulations \mathcal{T}_H and \mathcal{T}_h , then analyze the convergence of the algorithm.

Two-grid algorithm:

1. Find $(\mathbf{p}_H, y_H, \mathbf{q}_H, z_H, u_H) \in (\mathbf{V}_H \times W_H)^2 \times U_H^{ad}$ such that $(\mathbf{p}_H, y_H, \mathbf{q}_H, z_H, u_H)$ satisfies the following optimality conditions:

$$(\boldsymbol{\alpha}\boldsymbol{p}_{H},\boldsymbol{\nu}_{H}) + (\nabla y_{H},\boldsymbol{\nu}_{H}) + (\boldsymbol{\beta}y_{H},\boldsymbol{\nu}_{H}) = 0, \ \forall \ \boldsymbol{\nu}_{H} \in \boldsymbol{V}_{H},$$
(3.1)

$$-(\mathbf{p}_{H}, \nabla w_{H}) + (cy_{H}, w_{H}) = (u_{H}, w_{H}), \ \forall \ w_{H} \in W_{H},$$
(3.2)

$$(\alpha \mathbf{q}_H, \mathbf{v}_H) + (\nabla z_H, \mathbf{v}_H) = -(\mathbf{p}_H - \mathbf{p}_d, \mathbf{v}_H), \ \forall \ \mathbf{v}_H \in \mathbf{V}_H, \tag{3.3}$$

$$-(\mathbf{q}_{H}, \nabla w_{H}) - (\mathbf{\beta} \cdot \mathbf{q}_{H}, w_{H}) + (cz_{H}, w_{H}) = (y_{H} - y_{d}, w_{H}), \ \forall \ w_{H} \in W_{H},$$
(3.4)

$$(vu_H + z_H, \tilde{u}_H - u_H) \ge 0, \ \forall \ \tilde{u}_H \in U_H^{ad}. \tag{3.5}$$

2. Find $(\boldsymbol{p}_h^*, y_h^*, \boldsymbol{q}_h^*, z_h^*, u_h^*) \in (\boldsymbol{V}_h \times W_h)^2 \times U_h^{ad}$ such that

$$(\boldsymbol{\alpha}\boldsymbol{p}_h^*,\boldsymbol{\nu}_h) + (\nabla y_h^*,\boldsymbol{\nu}_h) = -(\boldsymbol{\beta}y_H,\boldsymbol{\nu}_h), \ \forall \ \boldsymbol{\nu}_h \in \boldsymbol{V}_h, \tag{3.6}$$

$$-(\mathbf{p}_{h}^{*}, \nabla w_{h}) + (cy_{h}^{*}, w_{h}) = (\hat{u}_{H}, w_{h}), \ \forall \ w_{h} \in W_{h}, \tag{3.7}$$

$$(\alpha \boldsymbol{q}_h^*, \boldsymbol{v}_h) + (\nabla z_h^*, \boldsymbol{v}_h) = -(\boldsymbol{p}_h^* - \boldsymbol{p}_d, \boldsymbol{v}_h), \ \forall \ \boldsymbol{v}_h \in \boldsymbol{V}_h,$$
(3.8)

$$-(\mathbf{q}_{h}^{*}, \nabla w_{h}) + (cz_{h}^{*}, w_{h}) = (\mathbf{\beta} \cdot \mathbf{q}_{H}, w_{h}) + (y_{h}^{*} - y_{d}, w_{h}), \ \forall \ w_{h} \in W_{h},$$
(3.9)

$$(\nu u_h^* + z_h^*, \tilde{u}_h - u_h^*) \ge 0, \ \forall \ \tilde{u}_h \in U_h^{ad}. \tag{3.10}$$

Theorem 3.1. Let $(\boldsymbol{p}, y, \boldsymbol{q}, z, u)$ be the solution to (2.6)-(2.10) and $(\boldsymbol{p}_h^*, y_h^*, \boldsymbol{q}_h^*, z_h^*, u_h^*)$ be the solution to (3.1)-(3.10) respectively. Then

$$||u-u_h^*|| + ||\nabla(y-y_h^*)|| + ||\boldsymbol{p}-\boldsymbol{p}_h^*|| + ||\nabla(z-z_h^*)|| + ||\boldsymbol{q}-\boldsymbol{q}_h^*|| \le C(h+H^2).$$

Proof. For sake of simplicity, we now denote

$$\tau = y - y_h^*, \quad e = z - z_h^*.$$

From equations (2.6)-(2.9) and (3.6)-(3.9), we can easily obtain

$$(\boldsymbol{\alpha}(\boldsymbol{p}-\boldsymbol{p}_h^*),\boldsymbol{v}_h) + (\nabla \tau,\boldsymbol{v}_h) = -(\boldsymbol{\beta}(y-y_H),\boldsymbol{v}_h), \ \forall \ \boldsymbol{v}_h \in \boldsymbol{V}_h,$$
(3.11)

$$-(\mathbf{p} - \mathbf{p}_{h}^{*}, \nabla w_{h}) + (c\tau, w_{h}) = (u - \hat{u}_{H}, w_{h}), \ \forall \ w_{h} \in W_{h},$$
(3.12)

$$(\alpha(\boldsymbol{q} - \boldsymbol{q}_h^*), \boldsymbol{v}_h) + (\nabla e, \boldsymbol{v}_h) = -(\boldsymbol{p} - \boldsymbol{p}_h^*, \boldsymbol{v}_h), \ \forall \ \boldsymbol{v}_h \in \boldsymbol{V}_h,$$
(3.13)

$$-(\mathbf{q} - \mathbf{q}_{h}^{*}, \nabla w_{h}) + (ce, w_{h}) = (\mathbf{\beta} \cdot (\mathbf{q} - \mathbf{q}_{H}), w_{h}) + (\tau, w_{h}), \ \forall \ w_{h} \in W_{h}.$$
(3.14)

By $\nabla W_h \subset V_h$ and (2.14), we rewrite (3.11)-(3.14) as

$$(\alpha(\Pi_{h}\boldsymbol{p}-\boldsymbol{p}_{h}^{*}),\boldsymbol{v}_{h}) + (\nabla(P_{h}\boldsymbol{y}-\boldsymbol{y}_{h}^{*}),\boldsymbol{v}_{h}) = -(\boldsymbol{\beta}(\boldsymbol{y}-\boldsymbol{y}_{H}),\boldsymbol{v}_{h}) - (\alpha(\boldsymbol{p}-\Pi_{h}\boldsymbol{p}),\boldsymbol{v}_{h}) - (\nabla(\boldsymbol{y}-P_{h}\boldsymbol{y}),\boldsymbol{v}_{h}), \ \forall \ \boldsymbol{v}_{h} \in \boldsymbol{V}_{h},$$
(3.15)

$$-(\Pi_h \mathbf{p} - \mathbf{p}_h^*, \nabla w_h) + (c(P_h y - y_h^*), w_h) = (u - \hat{u}_H, w_h) - (c(y - P_h y), w_h), \ \forall \ w_h \in W_h, \ (3.16)$$

$$(\alpha(\Pi_h \boldsymbol{q} - \boldsymbol{q}_h^*), \boldsymbol{v}_h) + (\nabla(P_h z - z_h^*), \boldsymbol{v}_h) = -(\alpha(\boldsymbol{q} - \Pi_h \boldsymbol{q}), \boldsymbol{v}_h)$$

$$-(\nabla(z-P_hz), \mathbf{v}_h) - (\mathbf{p} - \mathbf{p}_h^*, \mathbf{v}_h), \ \forall \ \mathbf{v}_h \in \mathbf{V}_h, \tag{3.17}$$

$$-(\Pi_{h}\boldsymbol{q} - \boldsymbol{q}_{h}^{*}, \nabla w_{h}) + (c(P_{h}y - y_{h}^{*}), w_{h}) = (\boldsymbol{\beta} \cdot (\boldsymbol{q} - \boldsymbol{q}_{H}), w_{h}) + (\tau, w_{h})$$
$$-(c(y - P_{h}y), w_{h}), \ \forall \ w_{h} \in W_{h}.$$
(3.18)

Next, we divide the proof into the following three parts:

Part I. Let ϕ be the solution to (2.1) with $\psi = \tau$. It follows from (2.1), (2.13), (2.16), (3.11)-(3.12), Green's formula, and Cauchy inequality that

$$\|\boldsymbol{\tau}\|^{2} = (\boldsymbol{\tau}, -\operatorname{div}(a\nabla\phi)) + (\boldsymbol{\tau}, c\phi)$$

$$= (\nabla \boldsymbol{\tau}, a\nabla\phi) + (c\boldsymbol{\tau}, \phi)$$

$$= (\nabla \boldsymbol{\tau}, a\nabla\phi - \Pi_{h}(a\nabla\phi)) - (\alpha(\boldsymbol{p} - \boldsymbol{p}_{h}^{*}), \Pi_{h}(a\nabla\phi))$$

$$+ (c\boldsymbol{\tau}, \phi) - (\boldsymbol{\beta}(y - y_{H}), \Pi_{h}(a\nabla\phi))$$

$$= (\nabla \boldsymbol{\tau} + \alpha(\boldsymbol{p} - \boldsymbol{p}_{h}^{*}) + \boldsymbol{\beta}(y - y_{H}), a\nabla\phi - \Pi_{h}(a\nabla\phi))$$

$$- (\boldsymbol{p} - \boldsymbol{p}_{h}^{*}, \nabla\phi) + (c\boldsymbol{\tau}, \phi) - (\boldsymbol{\beta}(y - y_{H}), a\nabla\phi)$$

$$= (\nabla \boldsymbol{\tau} + \alpha(\boldsymbol{p} - \boldsymbol{p}_{h}^{*}) + \boldsymbol{\beta}(y - y_{H}), a\nabla\phi - \Pi_{h}(a\nabla\phi))$$

$$+ (\boldsymbol{p} - \boldsymbol{p}_{h}^{*}, \nabla(P_{h}\phi - \phi)) + (c\boldsymbol{\tau}, \phi - P_{h}\phi) - (\boldsymbol{\beta}(y - y_{H}), a\nabla\phi)$$

$$+ (u - \hat{u}_{H}, P_{h}\phi - \phi) + (u - \hat{u}_{H}, \phi)$$

$$\leq Ch(\|\nabla \boldsymbol{\tau}\| + \|\boldsymbol{p} - \boldsymbol{p}_{h}^{*}\|)\|\phi\|_{2} + C(\|u - \hat{u}_{H}\| + \|y - y_{H}\|)\|\phi\|_{2}. \tag{3.19}$$

Choosing $\mathbf{v}_h = \Pi_h \mathbf{p} - \mathbf{p}_h^*$ in (3.15) and $w_h = P_h y - y_h^*$ in (3.16), respectively, and adding the two equations, one has

$$\|\alpha^{\frac{1}{2}}(\Pi_{h}\mathbf{p} - \mathbf{p}_{h}^{*})\|^{2} = -(\alpha(\mathbf{p} - \Pi_{h}\mathbf{p}) + \nabla(y - P_{h}y) + \boldsymbol{\beta}(y - y_{H}), \Pi_{h}\mathbf{p} - \mathbf{p}_{h}^{*}) - (c\tau, P_{h}y - y_{h}^{*}) + (u - \hat{u}_{H}, P_{h}y - y_{h}^{*}).$$
(3.20)

Using Cauchy inequality, (3.20), (2.13), (2.16), and the assumption on a, we find that

$$\|\Pi_h \mathbf{p} - \mathbf{p}_h^*\| \le Ch(\|\mathbf{y}\|_2 + \|\mathbf{p}\|_1) + C\|\tau\| + C(\|\mathbf{u} - \hat{\mathbf{u}}_H\| + \|\mathbf{y} - \mathbf{y}_H\|). \tag{3.21}$$

Letting $\mathbf{v}_h = \nabla (P_h y - y_h^*)$ in (3.15), we easily obtain

$$\|\nabla (P_h y - y_h^*)\| \le Ch(\|y\|_2 + \|\boldsymbol{p}\|_1) + C(\|\Pi_h \boldsymbol{p} - \boldsymbol{p}_h^*\| + \|y - y_H\|). \tag{3.22}$$

Substituting (3.21)-(3.22) into (3.19) and using (2.2), (2.13), and (2.16), for sufficiently small h, we have

$$\|\tau\| \le Ch(\|y\|_2 + \|\boldsymbol{p}\|_1) + C(\|u - \hat{u}_H\| + \|y - y_H\|). \tag{3.23}$$

Thus it follows from (3.21)-(3.23), (2.13), (2.16), and the triangle inequality that

$$\|\nabla(y - y_h^*)\| + \|\boldsymbol{p} - \boldsymbol{p}_h^*)\| \le Ch(\|y\|_2 + \|\boldsymbol{p}\|_1) + C(\|u - \hat{u}_H\| + \|y - y_H\|). \tag{3.24}$$

Part II. Let ϕ be the solution to (2.1) with $\psi = e$. Similar to (3.19), we can conclude that

$$||e||^{2} = (e, -\operatorname{div}(a\nabla\phi)) + (e, c\phi)$$

$$= (\nabla e, a\nabla\phi) + (ce, \phi)$$

$$= (\nabla e, a\nabla\phi - \Pi_{h}(a\nabla\phi)) - (\alpha(\mathbf{q} - \mathbf{q}_{h}^{*}), \Pi_{h}(a\nabla\phi))$$

$$+ (ce, \phi) - (\mathbf{p} - \mathbf{p}_{h}^{*}, \Pi_{h}(a\nabla\phi))$$

$$= (\nabla e + \alpha(\mathbf{q} - \mathbf{q}_{h}^{*}) + \mathbf{p} - \mathbf{p}_{h}^{*}, a\nabla\phi - \Pi_{h}(a\nabla\phi))$$

$$- (\mathbf{q} - \mathbf{q}_{h}^{*}, \nabla\phi) + (ce, \phi) - (\mathbf{p} - \mathbf{p}_{h}^{*}, a\nabla\phi)$$

$$= (\nabla e + \alpha(\mathbf{q} - \mathbf{q}_{h}^{*}) + \mathbf{p} - \mathbf{p}_{h}^{*}, a\nabla\phi - \Pi_{h}(a\nabla\phi))$$

$$+ (\mathbf{q} - \mathbf{q}_{h}^{*}, \nabla(P_{h}\phi - \phi)) + (ce, \phi - P_{h}\phi) - (\mathbf{p} - \mathbf{p}_{h}^{*}, a\nabla\phi)$$

$$+ (\tau + \boldsymbol{\beta} \cdot (\mathbf{q} - \mathbf{q}_{H}), P_{h}\phi - \phi) + (\tau + \boldsymbol{\beta} \cdot (\mathbf{q} - \mathbf{q}_{H}), \phi)$$

$$\leq Ch(||\nabla e|| + ||e|| + ||\mathbf{p} - \mathbf{p}_{h}^{*}|| + ||\mathbf{q} - \mathbf{q}_{h}^{*}|| + ||\mathbf{q} - \mathbf{q}_{H}^{*}||) ||\phi||_{2}$$

$$+ C(||\mathbf{q} - \mathbf{q}_{H}||_{-1} + ||\tau||) ||\phi||_{1}, \qquad (3.25)$$

where we also used the Cauchy inequality and the estimate

$$(\beta \cdot (q - q_H), \phi) = (q - q_H, \beta \phi) \le C \|q - q_H\|_{-1} \|\phi\|_1.$$
 (3.26)

For sufficiently small h, by (3.25), (2.2), and Poincare's inequality, we derive

$$||e|| \le Ch(||\nabla e|| + ||\boldsymbol{p} - \boldsymbol{p}_h^*|| + ||\boldsymbol{q} - \boldsymbol{q}_h^*|| + ||\boldsymbol{q} - \boldsymbol{q}_H||) + C||\boldsymbol{q} - \boldsymbol{q}_H||_{-1} + C||\tau||.$$
 (3.27)

Choosing $v_h = \Pi_h q - q_h^*$ in (3.17) and $w_h = P_h z - z_h^*$ in (3.18), respectively and adding the two equations, one has

$$\|\boldsymbol{\alpha}^{\frac{1}{2}}(\boldsymbol{\Pi}_{h}\boldsymbol{q} - \boldsymbol{q}_{h}^{*})\|^{2} = -(\boldsymbol{\alpha}(\boldsymbol{q} - \boldsymbol{\Pi}_{h}\boldsymbol{q}) + \nabla(\boldsymbol{z} - \boldsymbol{P}_{h}\boldsymbol{z}) + \boldsymbol{p} - \boldsymbol{p}_{h}^{*}, \boldsymbol{\Pi}_{h}\boldsymbol{q} - \boldsymbol{q}_{h}^{*}) + (\boldsymbol{\tau} - c\boldsymbol{e}, \boldsymbol{P}_{h}\boldsymbol{z} - \boldsymbol{z}_{h}^{*}) + (\boldsymbol{\beta} \cdot (\boldsymbol{q} - \boldsymbol{q}_{H}), \boldsymbol{P}_{h}\boldsymbol{z} - \boldsymbol{z}_{h}^{*}),$$
(3.28)

where

$$(\boldsymbol{\beta} \cdot (\boldsymbol{q} - \boldsymbol{q}_{H}), P_{h}z - z_{h}^{*}) = (\boldsymbol{q} - \boldsymbol{q}_{H}, \boldsymbol{\beta}(P_{h}z - z_{h}^{*}))$$

$$\leq C \|\boldsymbol{q} - \boldsymbol{q}_{H}\|_{-1} \|P_{h}z - z_{h}^{*}\|_{1}$$

$$\leq C \|\boldsymbol{q} - \boldsymbol{q}_{H}\|_{-1} \|\nabla(P_{h}z - z_{h}^{*})\|. \tag{3.29}$$

The Poincare's inequality is used in the last step of (3.29). By virtue of (3.28)-(3.29), (2.16), Cauchy inequality, Poincare's inequality, and the assumption on a, we have

$$\|\Pi_{h}\boldsymbol{q} - \boldsymbol{q}_{h}^{*}\| \leq C(\|\boldsymbol{p} - \boldsymbol{p}_{h}^{*}\| + \|\boldsymbol{e}\|) + C(\varepsilon)(\|\boldsymbol{q} - \boldsymbol{q}_{H}\|_{-1} + \|\boldsymbol{\tau}\|) + Ch(\|\boldsymbol{z}\|_{2} + \|\boldsymbol{q}\|_{1}) + \varepsilon\|\nabla(P_{h}\boldsymbol{z} - \boldsymbol{z}_{h}^{*})\|,$$
(3.30)

where ε is an arbitrary small positive constant. Choosing $\mathbf{v}_h = \nabla(P_h z - z_h^*)$ in (3.17), we find that

$$\|\nabla (P_h z - z_h^*)\| \le Ch(\|z\|_2 + \|\boldsymbol{q}\|_1) + C(\|\Pi_h \boldsymbol{q} - \boldsymbol{q}_h^*\| + \|\boldsymbol{p} - \boldsymbol{p}_h^*\|). \tag{3.31}$$

For sufficiently small ε , by using Poincare's inequality, (3.30)-(3.31), (3.27), (2.13), (2.16), and the triangle inequality, we have

$$\|\nabla(z - z_h^*)\| + \|\mathbf{q} - \mathbf{q}_h^*\| \le Ch(\|z\|_2 + \|\mathbf{q}\|_1) + Ch\|\mathbf{q} - \mathbf{q}_H\| + C(\|\mathbf{q} - \mathbf{q}_H\|_{-1} + \|\mathbf{p} - \mathbf{p}_h^*\| + \|\tau\|).$$
(3.32)

Part III. From (3.10), we know that

$$u_h^* = \max\{0, -\pi_h z_h^*\}/\nu. \tag{3.33}$$

Thus it follows from (2.11), (2.17) and (3.33) that

$$||u - u_h^*|| = ||\max\{0, -z\}/v - \max\{0, -\pi_h z_h^*\}/v||$$

$$\leq C||z - \pi_h z_h^*||$$

$$\leq C||z - \pi_h z|| + C||\pi_h(z - z_h^*)||$$

$$\leq Ch||z||_1 + C||z - z_h^*||.$$
(3.34)

Combining (3.24), (3.32), (3.34), and Lemmas 2.2-2.4 with Poincare's inequality, we complete the proof of theorem.

Acknowledgements

The author was supported by the National Natural Science Foundation of China (11601014) and the Science and Technology Research Project of Jilin Provincial Department of Education (JJKH20210028KJ).

REFERENCES

- [1] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.
- [2] Y. Chen, W. Liu, Error estimates and superconvergence of mixed finite element for quadratic optimal control, Int. J. Numer. Anal. Model. 3 (2006) 311-321.
- [3] Y. Chen, Superconvergence of mixed finite element methods for optimal control problems, Math. Comput. 77 (2008) 1269-1291.
- [4] S. Chen, H. Chen, New mixed element schemes for a second-order elliptic problem, Math. Numer. Sin. 32 (2010) 213-218.
- [5] Y. Chen, Y. Dai, Superconvergence for optimal control problems governed by semi-linear elliptic equations, J. Sci. Comput. 39 (2009) 206-221.
- [6] Y. Chen, F. Huang, N. Yi, W. Liu, A Legendre-Galerkin spectral method for optimal control problems governed by stokes equations, SIAM J. Numer. Anal. 49 (2011) 1625-1648.
- [7] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
- [8] J. Douglas, J.E. Roberts, Global estimates for mixed finite element methods for second order elliptic equations, Math. Comput. 44 (1985) 39-52.
- [9] N. Ejlali, S.M. Hosseini, A pseudospectral method for fractional optimal control problems, J. Optim. Theory. Appl. 174 (2017) 83-107.
- [10] H. Fu, H. Rui, A priori error estimates for least-squares mixed finite element approximation of elliptic optimal control problems, J. Comput. Math. 33 (2015) 113-127.
- [11] L. Ge, L. Wang, Y. Chang, A sparse grid stochastic collocation upwind finite volume element method for the constrained optimal control problem governed by random convection diffusion equations, J. Sci. Comput. 77 (2018) 524-551.
- [12] H. Guo, H. Fu, J. Zhang, A splitting positive definite mixed finite element method for elliptic optimal control problem, Appl. Math. Comput. 219 (2013) 11178-11190.
- [13] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston-London-Melbourne, 1985.
- [14] T. Hou, H. Leng, T. Luan, Two-grid methods for P_0^2 - P_1 mixed finite element approximation of general elliptic optimal control problems with low regularity, Numer. Meth. Partial Differential Equ. 36 (2020) 1184-1202.
- [15] T. Hou, H. Leng, Superconvergence analysis and two-grid algorithms of pseudostress-velocity MFEM for optimal control problems governed by Stokes equations, Appl. Numer. Math. 138 (2019) 78-93.
- [16] T. Hou, A priori and a posteriori error estimates of H^1 -Galerkin mixed finite element methods for elliptic optimal control problems, Comput. Math. Appl. 70 (2015) 2542-2554.

- [17] T. Hou, C. Liu, Y. Yang, Error estimates and superconvergence of a mixed finite element method for elliptic optimal control problems, Comput. Math. Appl. 74 (2017) 714-726.
- [18] S. Kumar, R. Ruiz-Baier, R. Sandilya, Error bounds for discontinuous finite volume discretisations of Brinkman optimal control problems, J. Sci. Comput. 78 (2019) 64-93.
- [19] J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.
- [20] H. Liu, S. Wang, A two-grid discretization scheme for optimal control problems of elliptic equations, Numer. Algor. 74 (2017) 699-716.
- [21] C. Meyer, A. Rösch, Superconvergence properties of optimal control problems, SIAM J. Control Optim. 43 (2004) 970-985.
- [22] A. Rösch, B. Vexler, Optimal control of the Stokes equations: A priori error analysis for finite element discretization with postprocessing, SIAM J. Numer. Anal. 44 (2006) 1903-1920.
- [23] J. Xu, A novel two-grid method for semilinear equations, SIAM J. Sci. Comput. 15 (1994) 231-237.
- [24] J. Xu, Two-grid discretization techniques for linear and non-linear PDEs, SIAM J. Numer. Anal. 33 (1996) 1759-1777.