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Abstract. The purpose of this paper is to introduce a generalized inertial extrapolation iterative method with regu-
larization for approximating a solution of monotone and Lipschitz variational inequality and fixed point problems.
In real Hilbert spaces, the strong convergence of the iterative method is obtained under certain conditions imposed
on regularization parameters. Some numerical experiments are provided to show the efficiency and applicability
of the proposed method.
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1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let C be a
nonempty, closed and convex subset of H, and let A : H → H be a nonlinear operator. The
classical Variational Inequality Problem (VIP), which was independently introduced by Stam-
pacchia [30] and Fichera [12, 13] for modeling problems arising from mechanics and for solv-
ing the Signorini problem, is formulated as finding x ∈C such that 〈Ax,y− x〉 ≥ 0, ∀y ∈C. It is
known that many problems in economics, mathematical sciences, and mathematical physics can
be formulated as the VIP. We denoted the solution set of the VIP by V I(A,C). In [7], Censor
et al. considreed the following Split Variational Inequality Problem (SVIP), which is to find
x∗ ∈C that solves 〈A1x∗,x− x∗〉 ≥ 0, ∀x ∈C such that y∗ = T x∗ ∈ Q solves 〈A2y∗,y− y∗〉 ≥ 0,
∀y ∈ Q, where C and Q are nonempty, closed, and convex subsets of real Hilbert spaces H1
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and H2, respectively, A1 : H1 → H1 and A2 : H2 → H2 are two operators, and T : H1 → H2 is
a bounded linear operator. When A1 = A2 = 0, the SVIP reduces to the Split Feasibility Prob-
lem (SFP). That is to find x∗ ∈ C such that y∗ = T x∗ ∈ Q. The SFP, which was introduced by
Censor and Elfving [6] in the framework of finite-dimensional Hilbert spaces, finds various ap-
plications in many real-life problems, such as image recovery, signal processing, control theory,
data compression, computer tomography and so on; see, e.g., [4, 8] and the references therein.
Therefore, a lot of researchers in this direction extensively studied this problem. For instance,
Ceng et al. [5] proposed the following iterative method for solving the SFP:

x0 = x ∈C,

yn = (1−βn)xn +βnPC(xn−λO fαn(xn)),

xn+1 = γnxn +(1− γn)SPC(yn−λO fαn(yn)),

where O fαn = αnI +T ∗(I−PQ)T, S : C→C is a nonexpansive mapping, and the sequences of
parameters {αn}, {βn}, and {γn} are in (0,1). The above iterative algorithm is a combination
of the regularization method and extragradient method due to Nadezhkina and Takahashi [26].
Under some mild assumptions, they established that the sequence generated by the iterative
method converges weakly to a common solution of the SFP and fixed point problem for non-
expansive mapping. In 2020, Chuasuk and Kaewcharoen [9] proposed the following iterative
scheme: 

x0 ∈ H1,

yn = PC(xn−λn(T ∗(I−SPQ))T +αnI)xn),

zn = PC(xn−λn(T ∗(I−SPQ))T +αnI)yn),

wn = (1−σn)zn +σnUzn,

sn = (1−βn)zn +βnUwn,

xn+1 = (1− γn)zn + γnUsn,

where S : Q→Q is a nonexpansive mapping, U :C→C is a pseudo-contractive and L-Lipschitzian
continuous mapping, and the sequences of parameters {σn},{βn}, and {γn} are in (0,1). Under
some mild assumptions, they established that the sequence generated by the iterative method
converges weakly to a common solution of the SFP and the fixed point problem of a nonex-
pansive mapping and a pseudo-contractive mapping. The above iterative scheme is the combi-
nation of an extragradient method with the regularization due to a generalized Ishikawa itera-
tive scheme. Regularization methods have been employed in a number of optimization prob-
lems. Let f : H1→ R be a continuous differentiable function. Then the minimization problem
minx∈C f (x) := 1

2‖T x−PQT x‖2 is ill-posed (see [35]). To address this problem, Xu [35] consid-
ered the following Tikhonov regularized problem: minx∈C fα(x) := 1

2‖T x−PQT x‖2 + 1
2α‖x‖,

where α > 0 is the regularization parameter.
The traditional Tikhonov regularization methods are usually used to solve ill-posed optimiza-

tion problems. One of the advantages of the regularization methods are their possible strong
convergence to the minimum-norm solutions of optimization problems; see, e.g., [5, 15, 20, 35]
and the references therein.
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In [18], Hieu and Quy introduced a regularization extragradient method, which is described
as follows: 

x0,y0 ∈C,

xn+1 = PC(xn−λn(Ayn +αnxn)),

yn+1 = PC(xn+1−λn+1(Ayn +αn+1xn+1)),

where A is monotone and Lipschitz continuous on C with L > 0, {λn} ⊂ [a,b] ⊂ (0,
√

2−1
L ),

and αn satisfies certain conditions. A strong convergence theorem was established. In addition,
Hieu, Quy, and Duong [19] introduced the following double projection method with regulariza-
tion. It reads 

x0 ∈C,

yn = PC(xn−λn(Axn +αnxn)),

xn+1 = PC(xn−λn(Ayn +αnxn)),

where A is monotone and Lipschitz continuous on C with L > 0, {λn} ⊂ [a,b]⊂ (0, 1
L), and αn

satisfies certain conditions. They obtained a strong convergence theorem of solutions in Hilbert
spaces. In 2008, Mainge [23] introduced and studied a variational inequality problem of the
form:

Find x∗ ∈V I(A,C) such that 〈Fx∗,x− x∗〉 ≥ 0, ∀ x ∈V I(A,C), (1.1)

where F : H → H is L-Lispschitz continuous and γ-strongly monotone. He proposed a hybrid
extragradient-viscosity method described and obtained a strong convergence theorem of solu-
tions in Hilbert spaces. In [17], Hieu, Dang, and Anh introduced a regularization-projection
methods for solving problem (1.1) as follows

u0 ∈ H,

vn = PC(un−λn(Aun +αnun)),

Tn = {z ∈ H : 〈un−λn(Aun +αnFun)− vn,z− vn〉 ≤ 0},
un+1 = PTn(un−λn(Avn +αnun)),

update λn+1 : if λn‖Aun−Avn‖ ≤ µ‖un− vn‖, then λn+1 = λn,

else λn+1 =
µ‖un−vn‖
‖Aun−Avn‖ ,

where λ0 ∈ (0,∞),µ ∈ (0,1), and {αn}⊂ (0,∞). It was established that {un} converges strongly
to the solution of problem (1.1). They further established that the main idea of the regularization
method for handling a monotone VIP is to add a strongly monotone operator depending on
the so-called regularization parameter to the monotone cost operator for obtaining a strongly
monotone VIP. The regularized problem has a unique solution continuously depending on the
regularization parameter. They associated the VIP with the following regularized variational
inequality problem (RVIP): Find x ∈C such that 〈Ax+αFx,y−x〉 ≥ 0, ∀y ∈C, where α > 0 is
a real parameter, and F : H→ H is L-Lispschitz continuous and γ-strongly monotone. Since A
is monotone and Lipschitz continuous, A+αF is strongly monotone and Lipschitz continuous.
Thus, the RVIP is uniquely solvable for each α > 0, and this unique solution is denoted by pα .
They further studied the relationship between the regularization solution pα of the RVIP and
the unique solution p∗ of problem (1.1). We shall give this in Section 2. For details about the
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RV IP, we refer to, e.g., [17, 18, 19]. An interesting generalization of (1.1) is defined as follows:

Find p∗ ∈V I(A,C)∩F(S) such that 〈F p∗,x− p∗〉 ≥ 0, ∀ x ∈V I(A,C), (1.2)

where S : H→ H,F : H→ H is L-Lispschitz continuous and γ-strongly monotone.
It is of interest construct a viscosity type iterative method with the regularization for problem

(1.2). On the other hand, the inertial extrapolation method has been proven to be an effective
way to accelerate the rate of convergence of iterative algorithms. The technique is based on
a discrete version of a second order dissipative dynamical system [2, 3]. The inertial type
algorithms use its two previous iterates to obtain its next iterate [1, 24, 25]. For details on inertia
extrapolation, we refer to [10, 11, 22, 27, 31] and the references therein. Another interesting
question is to further enhance the effectiveness of the inertial term. Motivated by the recent
interest in this direction of this research, our purpose is to introduce the following problem:

Find p∗ ∈ RV IP(A,C)∩F(S) such that 〈F p∗,x− p∗〉 ≥ 0, ∀ x ∈ RV IP(A,C), (1.3)

where S : H→H,F : H→H is L-Lispschitz continuous and γ-strongly monotone. In addition,
we introduce a new generalized inertial viscosity extrapolation method with the regularization
technique for solving problem (1.2) when the underlying operator A is monotone and Lipschitz
continuous, and F is L-Lispschitz continuous and γ-strongly monotone. Our method uses the
stepsizes that are generated at each iteration by some simple computations, which allows it to
be easily implemented without the prior knowledge of the operator norm or the coefficient of an
underlying operator. Furthermore, we prove that the proposed method converges strongly to a
solution of problem (1.2) in real Hilbert spaces. Moreover, numerical experiment are presented
to show the efficiency and implementation of our method in the framework of infinite and finite
dimensional Hilbert spaces. Our highlights are the regularization approach, the generalized
inertial introduced, and the new proof for the strong convergence. The rest of this paper is
organized as follows: In Section 2, we recall some useful definitions and results that are relevant
for our study. In Section 3, we present our proposed method and highlight some of its useful
features. In Section 4, we establish strong convergence of our method and. In Section 5 we
present some numerical experiments to show the efficiency and applicability of our method in
the framework of infinite dimensional Hilbert spaces. In Section 6, the last section, we give the
concluding remark.

2. PRELIMINARIES

In this section, we begin by recalling some known and useful results, which are needed in the
sequel.

Let H be a real Hilbert space. The set of the fixed points of a nonlinear mapping T : H →
H will be denoted by F(T ), that is, F(T ) = {x ∈ H : T x = x}. We denote strong and weak
convergence by ”→” and ”⇀”, respectively. For any x,y ∈ H and α ∈ [0,1], it is well-known
that 〈x,y〉= 1

2(‖x‖
2 +‖y‖2−‖x− y‖2), ‖x− y‖2 ≤ ‖x‖2 +2〈y,x− y〉, and ‖αx+(1−α)y‖2 =

α‖x‖2 +(1−α)‖y‖2−α(1−α)‖x− y‖2.
Let T : H→ H be a nonlinear mapping. T is said to be
(a) L-Lipschitz continuous if there exists L > 0 such that ‖T x− Ty‖ ≤ L‖x− y‖, for all

x,y ∈ H. If L = 1, then T is called a nonexpansive mapping;
(b) monotone if 〈T x−Ty,x− y〉 ≥ 0, ∀x,y ∈ H;
(c) γ-strongly monotone if there exists α > 0 such that 〈T x−Ty,x−y〉≥ γ‖x−y‖2, ∀x,y∈H.
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It is known that the fixed point set of nonexpansive mappings is closed and convex. For a
nonexpansive mapping T , it satisfies the following inequality 2〈(x−T x)−(y−Ty),Ty−T x〉 ≤
‖(T x−x)−(Ty−y)‖2, ∀x,y∈H. furthermore, for all x∈H and x∗ ∈F(T ), 2〈x−T x,x∗−T x〉≤
‖T x−x‖2, ∀x,y∈H. Let C be a nonempty, closed, and convex subset of H. For any u∈H, there
exists a unique point PCu ∈ C such that ‖u−PCu‖ ≤ ‖u− y‖, ∀y ∈ C. PC is called the metric
projection of H onto C. It is well-known that PC satisfies 〈x−y,PCx−PCy〉 ≥ ‖PCx−PCy‖2, for
all x,y∈H. Furthermore, PC is characterized by the property ‖x−y‖2≥‖x−PCx‖2+‖y−PCx‖2

and 〈x−PCx,y−PCx〉 ≤ 0, for all x ∈ H and y ∈C. In addition, PC is firmly nonexpansive, that
is, 〈x− y,PCx−PCy〉 ≥ ‖PCx−PCy‖2.

Recall from [16] that a mapping T : C→C is said to be demiclosed at 0 if, for any sequence
{xn} ⊂ C which converges weakly to x and limn→∞ ‖xn−T xn‖ = 0, T x = x. It is known that
nonexpansive mappings are demiclosed at 0.

Lemma 2.1. [28] Let {an} be a sequence of positive real numbers, {αn} be a sequence of real
numbers in (0,1) such that ∑

∞
n=1 αn = ∞, and let {dn} be a sequence of real numbers. Suppose

that an+1 ≤ (1−αn)an +αndn, n≥ 1. If limsupk→∞ dnk ≤ 0 for all subsequences {ank} of {an}
satisfying the condition liminfk→∞{ank+1−ank} ≥ 0, then, limn→∞ an = 0.

Lemma 2.2. [17] Let L and γ be the Lipschitz constant and the modulus of strong monotonicity
of a operator F. Then

(1) ‖pα‖ ≤ ‖p∗‖+ ‖F p∗‖
γ

.

(2) ‖pα − pβ‖ ≤
‖α−β‖

α
M for all α,β > 0, where M = 1

γ
[2L‖p∗‖+(1+ L

γ
)‖F p∗‖].

(3) lim
α→0
‖pα − p∗‖= 0.

3. THE ALGORITHM

In this section, we present our method and highlight some of its important features. We begin
with the following assumptions under which our strong convergence is obtained.

Assumption 3.1. Suppose that the following conditions hold:
Condition A.

(1) H is a Hilbert space, and C is a nonempty, closed, and convex subset of H.
(2) {Sn} is a sequence of nonexpansive mappings on H.
(3) A : H → H is monotone and L1- Lipschitz continuous operator, and F : H → H is γ-

strongly monotone and L2-Lipschitz continuous operator, where L1,L2 > 0, and γ > 0.
(4) S : H → H is a nonexpansive mapping, and f : H → H is a contraction mapping with

coefficient k ∈ (0,1).
(5) The solution set Γ= {p∗ ∈V I(A,C)∩F(S) such that 〈F p∗,x− p∗〉 ≥ 0, ∀ x∈V I(A,C)}

is nonempty.
(6) The solution set Ω = {p ∈ RV IP∩ F(S) such that 〈F p,x− p〉 ≥ 0, ∀ x ∈ RV IP} is

nonempty.

Condition B.

(1) βn ⊂ (0,1), lim
n→∞

βn = 0, and ∑
∞
n=0 βn = ∞.

(2) αn ∈ (0,1), lim
n→∞

αn = 0, and ∑
∞
n=0 αn = ∞.
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(3) {δn}⊂ (0,δ0)∈ (0,1),{γn},{ηn}⊂ (0,1) such that βn+δn+ηn = 1, λ0 > 0,µ ∈ (0,1),
and ∑

∞
n=1 ζn < ∞.

We present the algorithm.

Algorithm 3.2. Give x0,x1 ∈ H, L2 ∈ (0,2), and θn ∈ (0,1), and let the parameters λ0,µ and
sequences γn,βn,ηn, and δn satisfy the conditions above,

Step 1: Given the iterates xn−1 and xn for all n ∈ N, choose θn such that 0≤ θn ≤ θ̄n, where

θ̄n =

{
min

{
θ , εn
‖xn−xn−1‖

}
, if xn 6= xn−1

θ , otherwise,
(3.1)

where θ is a positive constant, and {εn} is a positive sequence such that εn = ◦(βn).
Step 2: Set wn = xn + θn(Snxn− Snxn−1), compute zn = PC(wn− λn(Awn + αnFwn)) and

un = γnwn+(1−γn)qn, where qn = PTn(wn−λn(Azn+αnFwn)),Tn = {w ∈H : 〈wn−λn(Awn+
αnFwn)− zn,w− zn〉 ≤ 0}, and

λn+1 =

{
min

{
µ(‖wn−zn‖2+‖qn−zn‖2)

2〈Awn−Azn,qn−zn〉 , λn +ζn

}
, if 〈Awn−Azn,qn− zn〉> 0,

λn +ζn, otherwise.

Step 3. Compute xn+1 = βn f (xn)+ηnxn +δnSun.

Remark 3.3. (1) C⊂ Tn for all n∈N. Indeed from the definition of zn and the characteristic
of the metric projection, we have that 〈wn−λn(Awn +αnFwn)− zn,w− zn〉 ≤ 0 for all
w ∈C. Thus, this together with the definition of Tn implies that C ⊂ Tn for all n ∈ N.

(2) Stepsize {λn} is self-adaptive and save computational time unlike the linesearch method
that requires loop computations at each iteration, and thus increases computational time.

(3) We do not use the traditional method in [14, 29, 32, 33, 34]. The techniques and ideas
employed in our strong convergence analysis are new.

(4) In Algorithm 3.2, it is easy to compute step 1 since the value of ‖xn− xn−1‖ is known
before choosing θn. It is also easy to see from (3.1) that limn→∞

θn
βn
‖xn− xn−1‖ = 0.

Since {εn} is a positive sequence such that εn = ◦(βn), which means that limn→∞
εn
βn

= 0.
Hence, θn‖xn−xn−1‖≤ εn for all n∈N, which together with limn→∞

εn
βn

= 0 implies that

lim
n→∞

θn
βn
‖xn− xn−1‖ ≤ limn→∞

εn
βn

= 0.

(5) The sequences of nonexpansive mapping {Sn} is helpful for the convergence rate; see
Section 5 for the comparison of our proposed iterative algorithm with the sequence {Sn}
and without the sequence {Sn}.

(6) The relationship between the regularization solution pα of the problem (1.3) and the
unique solution p∗ of the problem (1.2) is the same with Lemma 2.2.

4. CONVERGENCE ANALYSIS

The following two lemmas are essential for our convergence theorem.

Lemma 4.1. Let {λn} be the sequence generated by Algorithm (3.2). Then limn→∞ λn = λ and
λ ∈ [min{λ1,

µ

L1
},λ1 +ζ ].

Proof. From [21, Lemma 3.1], one can obtain the desired conclusion immediately. So, we omit
the proof here. �
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Lemma 4.2. Let {xn} be a sequence generated by Algorithm 3.2. Then, under Assumption 3.1,
{xn} is bounded.

Proof. Let p ∈Ω. Since lim
n→∞

θn
βn
‖xn− xn−1‖= 0, there exists N1 > 0 such that θn

αn
‖xn− xn−1‖ ≤

N1, for all n ∈ N. Note that ‖wn− p‖ ≤ ‖xn− p‖+ θn‖Snxn− Snxn−1‖ ≤ ‖xn− p‖+ βnN1.
Letting qn = PTn(wn−λn(Azn +αnFwn)), we have

‖qn− p‖2 ≤ ‖wn−λn(Azn +αnFwn)− p‖2−‖wn−λn(Azn +αnFwn)−qn‖2

= ‖(wn− p)−λn(Azn +αnFwn)‖2−‖(wn−qn)−λn(Azn +αnFwn)‖2

= ‖wn− p‖2−‖wn−qn‖2−2λn〈qn− p,Azn +αnFwn〉

= ‖wn− p‖2−‖wn−qn‖2 +2〈wn− zn,zn−qn〉+2λn〈Azn +αnFwn, p− zn〉
+2λn〈Azn−Awn,zn−qn〉+2〈wn−λn(Awn +αnFwn)− zn,qn− zn〉. (4.1)

Since qn ∈ Tn, we have from the definition of Tn that 〈wn−λn(Awn +αnFwn)− zn,qn− zn〉 ≤ 0
and 2〈wn− zn,zn−qn〉= ‖wn−qn‖2−‖wn− zn‖2−‖zn−qn‖2. It follows from (4.1) that

‖qn− p‖2 ≤ 2λn〈Azn−Awn,zn−qn〉+‖wn− p‖2−‖zn−qn‖2−‖wn− zn‖2

+2λn〈Azn +αnFwn, p− zn〉.
(4.2)

Now, using the monotonicity of A, we have that 〈Azn−Ap, p− zn〉 ≤ 0. Thus,

2λn〈Azn +αnFwn, p− zn〉 ≤ 2λn〈Ap+αnF p, p− zn〉+2λnαn〈Fwn−F p, p− zn〉.

Since p is a solution of RV IP and zn ∈C, we have that 〈Ap+αnF p,zn− p〉 ≥ 0, which implies
〈Ap+αnF p, p−zn〉 ≤ 0 and 2λn〈Azn+αnFwn, p−zn〉 ≤ 2λnαn〈Fwn−F p, p−zn〉, Thus, from
the γ-strongly monotonicity of F, we have that

2λn〈Azn +αnFwn, p− zn〉 ≤ 2λnαn〈Fwn−F p, p−wn〉+2λnαn〈Fwn−F p,wn− zn〉

≤ −2λnαnγ‖p−wn‖2 +2λnαn〈Fwn−F p,wn− zn〉.

Thus, (4.2) becomes

‖qn− p‖2 ≤ (1−2λnαn)‖wn− p‖2−‖zn−qn‖2−‖wn− zn‖2 +2λn〈Azn−Awn,zn−qn〉
+2λn〈Fwn−F p,wn− zn〉

≤ (1−2λnαn)‖wn− p‖2−
(

1− µλn

λn+1

)
‖zn−wn‖2−

(
1− µλn

λn+1

)
‖zn−qn‖2

+2λnαnL2‖wn− p‖‖wn− zn‖

≤ (1−λnαn(2−L2))‖wn− p‖2−
(

1− µλn

λn+1
−λnαnL2

)
‖zn−wn‖2

−
(

1− µλn

λn+1

)
‖zn−qn‖2.

In view of lim
n→∞

(1− µλn
λn+1

) = 1− µ > 0, there exists N ≥ 0 such that, for n ≥ N, 1− µλn
λn+1

> 0.
Thus, it follows that, for all n≥ N,

‖qn− p‖2 = ‖wn− p‖2⇒‖qn− p‖ ≤ ‖wn− p‖. (4.3)
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Thus, ‖un− p‖ ≤ γn‖wn− p‖+(1−γn)‖qn− p‖ ≤ γn‖wn− p‖+(1−γn)‖wn− p‖= ‖wn− p‖.
Hence,

‖xn+1− p‖ ≤ βn‖ f (xn)− f (p)‖+βn‖ f (p)− p‖+ηn‖xn− p‖+δn‖Sun− p‖
≤ βnk‖xn− p‖+αn‖ f (p)− p‖+ηn‖xn− p‖+δn‖un− p‖
≤ βnk‖xn− p‖+αn‖ f (p)− p‖+ηn‖xn− p‖+δn‖xn− p‖+δnβnN1

≤ (1−βn(1− k))‖xn− p‖+βn(1− k)
[

δnN1 +‖ f (p)− p‖
(1− k)

]
.

This implies ‖xn+1− p‖ ≤max{‖x0− p‖, δ0N1+‖ f (p)−p‖
(1−k) }. Thus, we have that {xn} is bounded.

�

Theorem 4.3. Let {xn} be the sequence generated by Algorithm 3.2. Then, under the Assump-
tion 3.1, {xn} converges strongly to p∗ ∈ Γ, where p∗ = PΓ ◦ f (p∗).

Proof. Let p ∈Ω. Observe that

‖wn− p‖2 = ‖xn− p‖2 +2θn〈xn− p,Snxn−Snxn−1〉+θ
2
n ‖Snxn−Snxn−1‖2

≤ ‖xn− p‖2 +2θn‖xn− p‖‖xn− xn−1‖+θ
2
n ‖xn− xn−1‖2

≤ ‖xn− p‖2 +θn‖xn− xn−1‖[2‖xn− p‖+βnN1]

≤ ‖xn− p‖2 +θn‖xn− xn−1‖N2, (4.4)

for some N2 > 0. Using (4.3), we have

‖un− p‖2 = γn‖wn− p‖2 +(1− γn)‖qn− p‖2− γn(1− γn)‖wn−qn‖2

≤ γn‖wn− p‖2 +(1− γn)‖wn− p‖2− γn(1− γn)‖wn−qn‖2

≤ ‖wn− p‖2. (4.5)

Furthermore, using (4.4) and (4.5), we have

‖xn+1− p‖2

≤ ‖ηn(xn− p)+δn(Sun− p)‖2 +2βn〈 f (xn)− p,xn+1− p〉

≤ η
2
n‖xn− p‖2 +δ

2
n ‖Sun− p‖2 +2δnηn‖xn− p‖‖Sun− p‖+2βn〈 f (xn)− p,xn+1− p〉

≤ ηn(δn +ηn)‖xn− p‖2 +δn(ηn +δn)‖un− p‖2 +2βn〈 f (xn)− f (p),xn+1− p〉
+2βn〈 f (p)− p,xn+1− p〉

≤ ηn(δn +ηn)‖xn− p‖2 +δn(ηn +δn)‖wn− p‖2− γn(1− γn)δn(ηn +δn)‖wn−qn‖2

+2βn〈 f (xn)− f (p),xn+1− p〉+2βn〈 f (p)− p,xn+1− p〉

≤ (δn +ηn)
2‖xn− p‖2 +δn(ηn +δn)θn‖xn− xn−1‖N2− γn(1− γn)δn(ηn +δn)‖wn−qn‖2

+βnk‖xn− p‖2 +βnk‖xn+1− p‖2 +2βn〈 f (p)− p,xn+1− p〉

≤ (1−2βn +βnk)‖xn− p‖2 +β
2
n ‖xn− p‖2 +δn(1−βn)θn‖xn− xn−1‖N2

− γn(1− γn)δn(1−βn)‖wn−qn‖2 +βnk‖xn+1− p‖2 +2βn〈 f (p)− p,xn+1− p〉,
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which implies that

‖xn+1− p‖2

≤
(

1− 2βn(1− k)
1−βnk

)
‖xn− p‖2 +

2βn(1− k)
1−βnk

[
δn(1−βn)θn

2βn(1− k)
‖xn− xn−1‖N2 +

βnN3

2(1− k)

− γn(1− γn)δn(1−βn)

2βn(1− k)
‖wn−qn‖2 +

1
1− k

〈 f (p)− p,xn+1− p〉
]

=

(
1− 2βn(1− k)

1−βnk

)
‖xn− p‖2 +

2βn(1− k)
1−βnk

Ψn, (4.6)

where N3 = supn∈N{‖xn− p‖2 : n≥ N} and

Ψn =
δn(1−αn)θn

2αn(1− k)
‖xn− xn−1‖N2 +

αnN3

2(1− k)
− γn(1− γn)δn(1−αn)

2αn(1−αnk)(1− k)
‖wn−qn‖2

+
1

1− k
〈 f (p)− p,xn+1− p〉.

According to Lemma 2.1, it is sufficient to show that limsupk→∞ Ψn ≤ 0 for every subsequence
{‖xnk− p‖} of {‖xn− p‖} satisfies the condition

liminf
k→∞

{‖xnk+1− p‖−‖xnk− p‖} ≥ 0. (4.7)

To show limsupk→∞ Ψn ≤ 0, we suppose that for every subsequence {‖xnk− p‖} of {‖xn− p‖}
such that (4.7) holds. Then, liminfk→∞{‖xnk+1− p‖2−‖xnk− p‖2} ≥ 0. From (4.6), we obtain

‖xn+1− p‖2

≤
(

1− 2βn(1− k)
1−βnk

)
‖xn− p‖2 +

2βn(1− k)
1−βnk

[
δn(1−βn)θn

2βn(1− k)
‖xn− xn−1‖N2 +

βnN3

2(1− k)

− γn(1− γn)δn(1−βn)

2αn(1−αnk)(1− k)
‖wn−qn‖2 +

1
((1− k)

〈 f (p)− p,xn+1− p〉
]

≤ ‖xn− p‖2 +
2βn(1− k)

1−βnk

[
δn(1−βn)θn

2βn(1− k)
‖xn− xn−1‖N2 +

βnN3

2(1− k)

− γn(1− γn)δn(1−βn)

2βn(1− k)
‖wn−qn‖2 +

1
((1− k)

〈 f (p)− p,xn+1− p〉
]
,

which implies that

limsup
k→∞

(
γnk(1− γnk)δnk(1−βnk)‖wnk−qnk‖

2
)

≤ limsup
k→∞

[
‖xnk− p‖2 +

1
1−βnkk

[
βnkδnk(1−βnk)

θnk

βnk

‖xnk− xnk−1‖N2

+β
2
nk

N3 +2βn〈 f (p)− p,xnk+1− p〉
]
−‖xnk+1− p‖2

]
≤− liminf

k→∞
[‖xnk+1− p‖2−‖xnk− p‖2]≤ 0,
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and hence limk→∞ ‖wnk−qnk‖= 0. From (4.4) and (4.5), we obtain

‖xn+1− p‖2

≤ ‖ηn(xn− p)+δn(Sun− p)‖2 +2βn〈 f (xn)− p,xn+1− p〉

≤ η
2
n‖xn− p‖2 +δ

2
n ‖Sun− p‖2 +2δnηn‖xn− p‖‖Sun− p‖+2βn〈 f (xn)− p,xn+1− p〉

≤ η
2
n‖xn− p‖2 +δ

2
n ‖un− p‖2 +δnηn(‖xn− p‖2 +‖un− p‖2)+2βn〈 f (xn)− f (p),xn+1− p〉

+2βn〈 f (p)− p,xn+1− p〉

≤ ηn‖xn− p‖2 +δnγn‖wn− p‖2 +(1− γn)‖qn− p‖2− γn(1− γn)‖wn−qn‖2

+2βn〈 f (xn)− f (p),xn+1− p〉+2βn〈 f (p)− p,xn+1− p〉

≤ ηn‖xn− p‖2 +δn‖wn− p‖2 +δn(1− γn)[(1−λnαn(2−L))‖wn− p‖2

− (1− µλn

λn+1
−λnαnL)‖zn−wn‖]− γn(1− γn)‖wn−qn‖2 +2βn〈 f (xn)− f (p),xn+1− p〉

+2βn〈 f (p)− p,xn+1− p〉

≤ ηn‖xn− p‖2 +δn[‖xn− p‖2 +θn‖xn− xn−1‖N2]−
(

1− µλn

λn+1
−λnαnL

)
(1− γn)‖zn−wn‖2]

− γn(1− γn)‖wn−qn‖2 +2βn〈 f (xn)− f (p),xn+1− p〉+2βn〈 f (p)− p,xn+1− p〉

≤ ‖xn− p‖2 +δnθn‖xn− xn−1‖N2−
(

1− µλn

λn+1
−δnλnαnL

)
(1− γn)‖zn−wn‖2

− γn(1− γn)‖wn−qn‖2 +2βn〈 f (xn)− f (p),xn+1− p〉+2βn〈 f (p)− p,xn+1− p〉,

which implies that

limsup
k→∞

((
1−

µλnk

λnk+1
−δnkλnkαnkL

)
(1− γnk)‖znk−wnk‖

2
)

≤ limsup
k→∞

[
‖xnk− p‖2 +δnkβnk

θnk

βnk

‖xnk− xnk−1‖N2− γnk(1− γnk)‖wnk−qnk‖
2

+2βnk〈 f (xnk)− f (p),xnk+1− p〉+2βnk〈 f (p)− p,xnk+1− p〉−‖xnk+1− p‖2
]

≤− liminf
k→∞

[‖xnk+1− p‖2−‖xnk− p‖2]≤ 0,

and hence limk→∞ ‖znk −wnk‖ = 0. Similarly, we can obtain limk→∞ ‖znk − qnk‖ = 0. Observe
that

‖xn+1− p‖2

≤ βn‖ f (xn)− p‖2 +ηn‖xn− p‖2 +δn‖un− p‖2−ηnδn‖xn−Sun‖2

≤ βn‖ f (xn)− p‖2 +ηn‖xn− p‖2 +δn‖wn− p‖2−ηnδn‖xn−Sun‖2

≤ βn‖ f (xn)− p‖2 +ηn‖xn− p‖2 +δn‖xn− p‖2 +δθn‖xn− xn−1‖N2−ηnδn‖xn−Sun‖2

≤ ‖xn− p‖2 +βn‖ f (xn)− p‖2 +δθn‖xn− xn−1‖N2−ηnδn‖xn−Sun‖2,
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which implies that

limsup
k→∞

(
ηnδn‖xnk−Sunk‖

2
)
≤ limsup

k→∞

[
‖xnk− p‖2 +δβnk

θnk

βnk

‖xnk− xnk−1‖N2

+βn‖ f (xn)− p‖2−‖xnk+1− p‖2
]

≤− liminf
k→∞

[‖xnk+1− p‖2−‖xnk− p‖2]≤ 0.

Using (4.6), we have that limk→∞ ‖xnk−Sunk‖= 0. It is easy to see that, as k→ ∞,

‖wnk− xnk‖= θnk ||xnk− xnk−1||= αnk ·
θnk

αnk

||xnk− xnk−1|| → 0.

In addition, we have that

‖unk−wnk‖ ≤ γnk‖wnk−wnk‖+(1− γnk)‖qnk−wnk‖→ 0 as k→ ∞,

‖unk− xnk‖ ≤ ‖unk−wnk‖+‖wnk− xnk‖→ 0 as k→ ∞, (4.8)

and
‖unk−Sunk‖ ≤ ‖unk−wnk‖+‖wnk− xnk‖+‖xnk−Sunk‖→ 0 as k→ ∞.

Thus,

‖xnk+1− xnk‖ ≤ βn‖ f (xnk)− xnk)‖+ηn‖xn− xnk‖+δnk‖Sunk− xnk‖→ 0 as k→ ∞.

Since {xnk} is bounded, then there exists a subsequence {xnk j
} of {xnk} such that {xnk j

} con-
verges weakly to x∗ ∈ H. In addition, using (4.8) and the boundedness of {unk}, there exists
a subsequence {unk j

} of {unk} such that {unk j
} converges weakly to x∗ ∈ H. Since S is demi-

closed, we have x∗ ∈ F(S). Furthermore,

limsup
k→∞

〈 f (p)− p,xnk− p〉= lim
j→∞
〈 f (p)− p,xnk j

− p〉= 〈 f (p)− p,x∗− p〉.

Since p is a unique solution of RV IP, we obtain that limsupk→∞〈 f (p)− p,xnk − p〉 = 〈 f (p)−
p,x∗− p〉 ≤ 0, which implies that limsupk→∞〈 f (p)− p,xnk+1− p〉 ≤ 0. Using our assumption,
we have that Ψn =

δn(1−βn)θn
2βn(1−k) ‖xn−xn−1‖N2+

βnN3
2(1−k)−

γn(1−γn)δn(1−βn)
2βn(1−βnk)(1−k) ‖wn−qn‖2+ 1

((1−k)〈 f (p)−
p,xn+1− p〉 ≤ 0. Thus, it follows from Lemma 2.1 that lim

n→∞
‖xn− p‖= 0. From Lemma 2.2 (iii),

we obtain that ‖p− p∗‖ → 0 as n→ ∞. Thus ‖xn− p∗‖ ≤ ‖xn− p‖+‖p− p∗‖ → 0 as n→ ∞.
Hence, {xn} converges strongly to p∗ ∈ Γ. �

5. NUMERICAL EXPERIMENT

In this section, we present some numerical experiments to show the efficiency and applica-
bility of our method in comparison with our Algorithm without {Sn} in the inertial term in the
framework of infinite and finite dimensional Hilbert spaces.

Example 5.1. Let H = L2([0,1]) be equipped with inner product 〈x,y〉=
∫ 1

0 x(t)y(t)dt, ∀x,y ∈
L2([0,1]) and ‖x‖2 :=

∫ 1
0 |x(t)|2dt ∀x,y,∈ L2([0,1]). Let F ;A; f : L2([0,1])→ L2([0,1]) be de-

fined by Ax(t) = max{0,x(t)}, t ∈ [0,1], Fx(t) = f x(t) = x(t)
2 . It is easy to see that A is 1-

Lipschitz continuous and monotone, F γ-strongly monotone, and f is a contraction on L2([0,1]).
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FIGURE 1. Example 5.1, Top Left: Case I; Top Right: Case II; Bottom left: case
III; Bottom right: Case IV.

Let Sn;S : L2([0,1])→ L2([0,1]) be defined by Sx(s) =
∫ 1

0 tnx(s)ds ∀t ∈ L2([0,1]) and Snx(t) =∫ 1
0 sinx(t). Let C be defined by C = {x ∈ L2 : 〈a,x〉= b} where a 6= 0 and b = 2. Thus, we have

PC(x̄) = max
{

0,
b−〈a, x̄〉
‖a‖2

}
a+ x̄.

We choose ζn = 0.25,µ = 0.5,θn = θ ,αn =
1

n+6 , βn =
1

5n+6 ,ηn =
2

3n+2 ,δn = 1−ηn−βn, and

εn =
1020

n2 for all n ∈ N. It is easy to verify that all the hypothesis of Theorem 4.3 are satisfied.
We implement our algorithm for different values of x0,x1 as follows

Case I: x0(t) = 2t2 + t +2, x1(t) = t +2;
Case II: x0(t) = 2t2, x1(t) =−5t +2;
Case III: x0(t) = t, x1(t) = log(t);
Case IV: x0(t) = 5t +1, x1(t) = 3t2.

Example 5.2. Let H =R2, and consider a nonlinear operator A :R2→R2 defined by A(x1,x2)=
(x1 + x2 + cos(x1),−x1 + x2 + cos(x2)). Let f (x) = x

2 ,F(x) = sinx ,and C be defined as C =
[−1,1]× [−1,1]. It is easy to see that A is 3-Lipschitz continuous and monotone, F γ-strongly

monotone, and f is a contraction on R2. Let Y be a 2× 2 matrix defined by
(

2 0
0 3

)
. We
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FIGURE 2. Example 5.2, Top Left: Case I; Top Right: Case II; Bottom left: case
III; Bottom right: Case IV

define the mapping S : R2 → R2 by Sx = ‖Y‖−1Y x, where x = (x1,x2)
T . It is easily see that

S is a nonexpansive mapping. We choose ζn = 1
(n+1)2 ,µ = 0.5,θn = θ = 1

3 ,αn = 1
50n+13 ,

βn =
1

5n+6 ,ηn =
2n

3n+2 ,δn = 1−ηn−βn,εn =
1
n2 , and γn =

1
2n+1 . For, Algorithm 3.2 and Dang

et al. [17], we choose λ1 = 0.75, the HEG of [23], and we choose λn =
1

4.5 . It is easy to verify
that all the hypothesis of Theorem 4.3 are satisfied. We implement our algorithm for different
values of x0,x1 as follows

Case I: x0 = (1,2)′, x1 = (1.2,0.5);
Case II: x0 = (1,0)′, x1 = (0,1)′;
Case III: x0 = (0.98,1.02)′, x1 = (1.50,2.36)′;
Case IV: x0 = (−2,−4)′, x1 = (1,0.5)′;

6. CONCLUSION

In this paper, we introduced a generalized inertial extrapolation iterative method with reg-
ularization for solving a fixed point problem and a variational inequality problem involving a
monotone and Lipschitz continuous operator in frame work of real Hilbert spaces. Our method
uses the stepsizes that are generated at each iteration by some simple computations. This make
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our method efficient without the prior knowledge of the operator norm or the coefficient of
an underlying operator. Furthermore, we proved that the proposed method converges strongly
to a solution of problem (1.2) in real Hilbert spaces. In addition, we present some numerical
experiments to show the efficiency and implementation of our method in the framework of in-
finite and finite dimensional Hilbert spaces. Our comparison shows that our method speeds up
the convergence for the case without {Sn}. Our highlights are the regularization approach, the
generalized inertial introduced, and the new proof for the strong convergence.
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