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Abstract. In this paper, the nonzero sum multi-person noncooperative game is considered, and this game
can be viewed as a global optimization problem. For solving this problem, an improved differential evo-
lution algorithm is proposed. Our algorithm combines multi-strategy differential operators and crossover
operators with a random walk. First, the population is initialized by a set of good points. Second, the
single mutation mode is replaced by a multi-mode. Meanwhile, a random walk mechanism is introduced
in the crossover process of the differential evolution algorithm. The convergence of the improved algo-
rithm is then proved by using an infinite product method. Finally, the proposed algorithm is illustrated
via some numerical examples, and the experimental results show that the proposed new algorithm can
solve the multi-person game.
Keywords. Global optimization problem; Improved differential evolution algorithm; Multi-person non-
cooperative game; Nash equilibrium.

1. INTRODUCTION

It is well known that game theory plays an important role in mathematics, economics, and
operations research [1, 16, 17, 18, 21, 26]. Noncooperative game is the classic content of game
theory research for n-person noncooperative games. Nash [22, 23] proposed a very important
concept of equilibrium, called Nash equilibrium, which is a stable outcome in the sense that a
unilateral deviation from a Nash equilibrium point by one of the players does not increase the
payoff of that player. However, achieving equilibrium requires players to make predictions ac-
cording to certain steps in the game, and give a good mathematical description of the problem.
Therefore, solving the Nash equilibria can be reduced to a calculation problem. At present,
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using computational methods to seek the Nash equilibrium points of games have been inten-
sively studied, such as the Lemke-Howson algorithm [19], the global Newton algorithm [10],
the projection-like method [34], and other traditional numerical methods.

In recent years, many scholars focused on intelligent algorithms for solving games. Basing
on the rationality of imitating biological behaviors, such algorithms have the implicit rational
characteristics of games. It means that such algorithms can be considered to solve the Nash
equilibria. Pavlidis [25], Boryczka [3], Jia [15], Yang [30], and Li [20] used intelligent algo-
rithms to compute the Nash equilibria of corresponding games. But, most of them dealt with
zero sum two-person games or nonzero sum two-person games. In addition, some scholars used
numerical methods to solve multi-person games [2, 6, 7, 8, 13, 4]. Among them, in [2, 6, 7, 8],
the problem of finding the Nash equilibrium points as a nonconvex optimization problem by
generalizing Mills theorem, in [4, 13], the multi-person noncooperative game as a tensor com-
plementarity problem are solved by the smoothing type algorithm and the semi-smooth Newton
method, respectively. However, less attention has been paid to intelligent algorithms for solving
nonzero sum multi-person games. This paper is aim to fulfill this gap.

The paper is organized as follows: In Section 2, we formulate nonzero sum multi-person
game model and prove that it is equivalent to a global optimization problem. In Section 3,
we propose an improved differential evolution algorithm (IDE) to compute the Nash equilibria
of the nonzero sum multi-person games. First, the population is initialized with a good point
set to make the initial distribution is global. Second, a mutation operator with multi-mode is
introduced into the differential evolution (DE) algorithm, which makes the algorithm have the
characteristics of multi-population and multi-mode coordinated evolution. Finally, a random
walk mechanism is integrated into the crossover operator to enhance the diversity of the popu-
lation. The convergence of the IDE is proved theoretically in Section 4. Section 5 is devoted to
computational experiments. Section 6 ends this paper.

2. NONZERO SUM MULTI-PERSON GAME

Consider a multi-person game [31] Γ = {(N,Si,Ui,Xi, fi), i = 1, . . . ,n,n≥ 2}, where
(1) N = {1, . . . ,n : n≥ 2} is the set of players and n is the number of players;
(2) Si = {si1, . . . ,simi}, ∀i ∈ N is the pure strategy set of player i, mi represents the number of

feasible strategies of player i, S=∏
n
i=1 Si, and each pure strategy profile meets (s1m1,s2m2, . . . ,si j,

. . . ,snmn) ∈ S,si j ∈ Si;
(3) Ui : S→ R, ∀i ∈ N represents the payoff function of player i;
(4) Xi = {xi = (xi1, . . . ,xik, . . . ,ximi) : xik ≥ 0, k = 1, . . . ,mi, ∑

mi
k=1 xik = 1}, ∀i ∈ N is the set of

mixed strategies. X = ∏
n
i=1 Xi, and each mixed strategy profile meets (x1,x2, . . . ,xn) ∈ X ;

(5) fi : X → R, ∀i ∈ N represents the expected payoff function of player i,

fi(x1, . . . ,xn) =
m1

∑
k1=1

. . .
mn

∑
kn=1

Ui(s1k1, . . . ,snkn)
n

∏
i=1

xiki,

where fi(x1, . . . ,xn) represents the expected payoff value of player i when he chooses a mixed
strategy xi = (xi1, . . . ,ximi) ∈ Xi. Ui(siki, . . . ,snkn) represents player i obtaining the payoff value
when each player chooses pure strategy siki ∈ Si, i = 1, . . . ,n.
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Denote by

fi(x q siki), fi(x1, . . . ,xi−1,siki,xi+1, . . . ,xn),
m1

∑
k1=1

. . .
mi−1

∑
ki−1=1

mi+1

∑
ki+1=1

. . .
mn

∑
kn=1

Ui(s1k1, . . . ,snkn)x1k1 · · ·xi−1ki−1xi+1ki+1 · · ·xnkn,

where siki(1 ≤ ki ≤ mi) is a pure strategy of player i, (x q siki) represents siki of player i instead
of xi, and the other players do not change their own mixed strategy with x.

If x∗ = (x∗1, . . . ,x
∗
n) ∈ X such that fi(x∗i ,x

∗
i∧) = max

ui∈Xi
fi(ui,x∗i∧), ∀i ∈ N, then x∗ is a Nash equi-

librium point of multi-person noncooperative game, where i∧ = N\{i}, ∀i ∈ N.

Conclusion 2.1. A mixed strategy x∗ ∈ X is the Nash equilibrium point of a game Γ if and only
if every pure strategy siki(1≤ ki ≤ mi) of each player satisfies fi(x∗)≥ fi(x∗ q siki).

Theorem 2.2. [20] A mixed strategy x∗ ∈ X is the Nash equilibrium point of a game Γ if and
only if x∗ is an optimal solution to the following optimization problem, and the optimal value is
0: 

min f (x) =
n

∑
i=1

max
1≤ki≤mi

{ fi(x q siki)− fi(x),0}

mi

∑
ki=1

xiki = 1

0≤ xiki ≤ 1

i = 1, · · · ,n;ki = 1, · · · ,mi

(2.1)

Compared with [2, 8] and [4, 13], this transformation is simpler and easier to implement than
the nonconvex optimization problem and the tensor complementarity problem, which does not
need to calculate the parameters and construct a tensor complementarity problem.

3. THE IMPROVED DIFFERENTIAL EVOLUTION (IDE) ALGORITHM

In this section, we outline a novel DE algorithm, IDE algorithm, and explain the steps of the
algorithm in details.

3.1. Good Point Set. The good point set was originally proposed by Loo-Keng Hua et al. [14],
and defined as follows:

(1) Let Gs be a unit cube in s-dimensional Euclidean space. Let x ∈ Gs, that is,

x = (x1,x2, . . . ,xs) ∈ Gs,0≤ x j ≤ 1, j = 1, . . . ,s.

(2) Assume that Gs has a set of points Pn(i) with n points.

Pn(i) = {({x(n)1 (i)}, · · · ,{x(n)j (i)}· · · ,{x(n)s (i)}), i = 1, · · · ,n},0≤ x(n)j (i)≤ 1, j = 1,2, · · · ,s,

where {·} represents the decimal part of the value.
(3) For any given point r = (r1,r2, · · · ,rs) ∈ Gs, let Nn(r) = Nn(r1,r2, · · · ,rs) represents the

number of points in Pn(i) that meet the inequality 0 ≤ x(n)j (i)≤ r j, j = 1,2, · · · ,s. The ϕ(n) =
supr∈Gs

|(Nn(r)/n)−|r||, where |r|= r1r2 · · · · · rs, is called a deviation of the point set Pn(i). If
∀n, ϕ(n) = O(1), then Pn(i) is said to be uniformly distributed on Gs and the deviation is ϕ(n).
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(4) Let r ∈ Gs, and Pn(i) = {({r1 ∗ i},{r2 ∗ i}, · · · ,{rs ∗ i}), i = 1, · · · ,n}, the deviation ϕ(n)
meets ϕ(n) = C(r,ε) · n−1+ε , where C(r,ε) is a constant related only to r, ε(ε is an arbitrarily
small positive number). Then Pn(i) is called the good point set, and r is called the good point.

In this paper, take

rk = {2cos
2πk

p
,1≤ k ≤ s},

where p is the smallest prime satisfying p≥ 2 · s+3.
In the following, we generate two distribution figures of 300 populations with the good point

set method and the random point method, respectively.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 1. Two dimensional
initial population generated by
good point set.
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FIGURE 2. Two dimensional
initial population generated by
random method.

As can be seen from the above figures, the initial population distribution generated by the
good point set method is more uniform and global than the random method, with no overlapping
points, and has better diversity.

3.2. Differential Evolution (DE) Algorithm. The DE algorithm is a new simple and robust
evolutionary algorithm, which was first introduced by Storm and Price [28]. Let the population
size and space dimension be N and D, respectively, and each individual in the population be
X = (xi1, . . . ,xi j, . . . ,xiD). In the study of the DE, individuals can be generally produced by the
following formula:

xi j = rand[0,1] · (x j,max− x j,min)+ x j,min i = 1, . . . ,N; j = 1, . . . ,D,

where rand[0,1] represents random values in the range [0,1], and x j,max and x j,min respectively
are the upper and lower bounds of variable x j. The basic operations of DE include mutation,
crossover, and selection operation.

(1) Mutation
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The mutation operation is mainly executed to distinguish DE from other evolutionary algo-
rithms. The mutation individual V = (vi1, . . . ,viD) is generated by the following equation:

vt+1
i = xt

r1 +F · (xt
r2− xt

r3) i = 1, . . . ,N, (3.1)

where xr1, xr2 and xr3 are three different individuals randomly selected from the parent popula-
tion X , and r1 6= r2 6= r3 6= i ∈ [1,N]. F is a mutation factor to control the size of difference of
two individuals, which is generally between [0,2], t is the current generation.

(2) Crossover
The purpose of the crossover operation is to improve the diversity of the population through

random recombination of the dimensional components of the mutation vector V and the target
vector X . The algorithm generates the crossover vector U = (ui1, . . . ,uiD) through the following
formula:

ut+1
i j =

{
vt+1

i j , i f (rand( j)≤CR)or( j = rnbr(i)),

xt+1
i j , otherwise,

(3.2)

where rand( j) ∈ [0,1] is a random value, CR ∈ [0,1] is crossover operator, and rnbr(i) ∈
{1, . . . ,D} is a randomly selected integer, which ensures that new individual at least one com-
ponent value is inherited from the mutation vector.

(3) Selection
In the problem with boundary constraints, it is necessary to ensure that the parameter values

of the new individuals are in the feasible region. If the individuals are outside the bounds,
the boundary treatment is performed first, which the new individuals beyond the bounds are
replaced by the parameter vectors randomly generated in the feasible region. Then the offspring
X t+1

i is generated by selecting the new individual and target vector individual according to the
following formula:

X t+1
i j =

{
U t+1

i , i f ( f (U t+1
i )< f (X t

i )),

X t
i , otherwise,

(3.3)

where f (·) is the fitness function. The pseudo code of the standard DE algorithm is shown in
Algorithm 1.

According to the operation principle of the DE, it can be seen that DE has the characteristics
of free exploration, learning, and inheritance. The free exploration is due to the vectors Xr1, Xr2,
and Xr3 are randomly selected from X in the mutation operation. The learning and inheritance
are because the components of U come from the mutation vector V or at least one dimension
generated by vector V according to a certain probability in the crossover operation. Although
the DE algorithm has many excellent features, with the increase of the complexity of solving
problems, the DE algorithm also has some disadvantages, such as slow convergence, low ac-
curacy and weak stability. Therefore, in order to solve the multi-person game better, the DE
algorithm is improved.

3.3. Improved Differential Evolution (IDE) Algorithm and its Implementation. The above
method is the most basic DE operation. In practical applications, the DE algorithm has multiple
evolution modes, which are generally expressed in the form of DE/x/y/z [24], where x indicates
that the currently variant vector is “random” or “best”; y is the number of difference vectors
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Algorithm 1 DE

Input: Parameters N, D, T , F , CR, ε

Output: The best vector (Solution) · · · ∆

1: t← 0 (Initialization)
2: for i = 0 to N do
3: for j = 0 to D do
4: xt

i, j = rand[0,1] · (xU
i, j− xL

i, j)+ xL
i, j

5: end for
6: end for
7: while | f (∆)| ≥ ε or t ≤ T do
8: for i = 1 to N do
9: (Mutation)

10: for j = 1 to D do
11: vt

i, j = Mutation (xt
i, j) (formula

(3.1))
12: end for

13: (Crossover)
14: for j = 1 to D do
15: ut

i, j = Crossover (vt
i, j,x

t
i, j) (for-

mula (3.2))
16: end for
17: (Selection)
18: if f (ut

i, j)< f (xt
i, j) then

19: xt
i, j← ut

i, j
20: else
21: ∆← xt

i, j
22: end if
23: end for
24: t = t +1
25: end while
26: return the best vector ∆

used; z represents the crossover scheme, mainly including binomial and exponential. The above
DE operation adopts the DE/rand/1/bin, the other modes can be expressed as:

DE/best/1/bin : vt+1
i = xt

best +F · (xt
r2− xt

r3) i = 1, . . . ,N, (3.4)

DE/rand− to−best/1/bin : vt+1
i = xt

i, j +F · (xt
best− xt

i, j)+F · (xt
r1− xt

r2) i = 1, . . . ,N, (3.5)

where xt
best represents the best individual in the current generation, that is, the optimal position

searched by this individual so far [29, 33].
In the basic DE, there are three types of evolution strategies DE/rand/1/bin, DE/best/1/bin,

and DE/rand−to−best/1/bin. The IDE integrates these three evolution strategies, that is, one
of them is selected during each iteration. Therefore, the IDE with multiple evolution strategies
not only has all the characteristics of DE, but also has the characteristics of multi-group and
multi-strategy coordination evolution [11]. Moreover, in order to make the DE algorithm have
better global search capability and convergence speed, an adaptive mutation operator is adopted:

F = F0 ·2λ ,

λ = e1−T/(T+1−t).

In order to further enhance the population diversity of the DE algorithm and improve the
ability of the algorithm to jump out of local optimum [32], the random walk mechanism is
integrated into the crossover operation, and its expression is:

ut+1
i j =


vt+1

i j , (rand( j)≤CR)or( j = rnbr(i)),

rand(L j,U j), rand(0,1)≤ RW,

xt+1
i j , otherwise,

(3.6)
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where RW = 0.1− 0.099 · t/T , and L j,U j, j = 1, · · · ,D are the lower and upper bounds of the
jth dimension parameter and rand(L j,U j) is a random number subject to uniform distribution
between L j and U j.

The pseudo code of the IDE algorithm is shown in Algorithm 2, and the specific steps are
described in detail as follows:
Step 1. Set the parameters of the IDE, such as N, D, CR, F0, xmin, xmax, T , ε .
Step 2. Randomly generate N initial populations P(0) by using a good point set, and satisfy

∑
mi
ki=1 xiki = 1,xiki ≥ 0,xiki ∈ Xi, i = 1, . . . ,N;ki = 1, . . . ,mi.

Step 3. Calculate the fitness function value f (x) of each individual in population P(t) and de-
termine the xt

pbest .
Step 4. The next generation population P1(t) is generated by selecting mutation of formulas

(3.1), (3.4), and (3.5) in turn .
Step 5. The population P2(t) is generated by the crossover of formula (3.6).
Step 6. According to formula (3.3), selecting of population P(t) and P2(t) is to generate off-

spring population P(t + 1) and the fitness function value of population P(t + 1) is cal-
culated.

Step 7. Determine whether to end according to the accuracy and the maximum number of iter-
ations, and output the optimal value, otherwise, turn to step 3.

Algorithm 2 IDE

Input: Parameters N, D, CR, F0, xmin, xmax, T ,
ε

Output: The best vector (Solution) · · · ∆

1: t← 1 (Initialization with good point set)
2: for i = 0 to N do
3: for j = 0 to D do
4: xt

i, j = rand(0,1) · (x j,max − x j,min) +
x j,min

5: end for
6: end for
7: while | f (∆)| ≥ ε or t ≤ T do
8: for i = 1 to N do
9: (Multi-mode Mutation)

10: for j = 1 to D do
11: vt

i, j = Mutation(xt
i, j) (formulas

(3.1), (3.4), (3.5))
12: (mod1 vt

i, j,or mod2 vt
i, j,or mod3 vt

i, j)
13: end for
14: (Crossover with random walk)
15: Let RW = 0.1−0.099 · t/T

16: for j = 1 to D do
17: if rand( j) ≤ CR)or( j = rnbr(i)

then
18: ut

i, j← vt
i, j

19: else {rand(0,1)≤ RW}
20: rand(L j,U j) (formula (3.6))
21: else
22: ut

i, j← xt
i, j

23: end if
24: end for
25: (Selection)
26: if f (ut

i, j)< f (xt
i, j) then

27: xt
i, j← ut

i, j
28: else { f (xt

i, j)< f (∆)}
29: ∆← xt

i, j
30: end if
31: end for
32: t = t +1
33: end while
34: return the best vector ∆

Comparing the implementation process of the two algorithms, we can see that only one mu-
tation model of the IDE algorithm is executed in each iteration, and the crossover operation is
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one more judgment than the DE algorithm in each iteration. These improved operations do not
add additional calculations, so the time complexity of the IDE is the same as the DE algorithm,
which provides a guarantee for the performance of the IDE algorithm proposed in this paper.
In the next section, we strictly prove another important performance of the algorithm, global
convergence.

4. CONVERGENCE ANALYSIS OF THE IDE ALGORITHM

Here, we list some classic results on the convergence of the basic DE. In [9], Ghosh et al.
proved the local convergence of the basic DE on a class of special function based on the Lya-
punov’s stability. In [11], He et al. established a random functional model of the DE and used
the random contraction mapping theorem to prove that the basic DE gradually converges to the
random fixed point. In [27], the absorption state of the Markov chain was used to prove that the
basic DE cannot ensure global convergence in probability. However, there are few studies on
the convergence of improved differential evolution algorithm. In this section, we use the infinite
products to prove the global convergence of the IDE algorithm proposed in this paper.

Property 4.1. (The property of the infinite product) [5] If the series ∑
+∞

i=1 `(i) (0 < `(i)< 1) is
discrete, then ∏

+∞

i=1(1− `(i)) = 0.

Definition 4.2. Let {X(t), t = 0,1, · · ·} be a population sequence generated by using IDE to
solve the optimization problem (2.1). Then IDE converges to the global optimum if and only if

lim
t→∞

p{X(t)∩S∗
δ
6= /0}= 1,

where δ is a small positive real number, S∗
δ
= {x| | f (x)− f (x∗)|< δ} is the expanded optimal

solution set, and x∗ is an optimum solution to optimization problem (2.1).

Theorem 4.3. [12] Let {X(t), t = 0,1, · · ·} be a population sequence of DE with a greedy se-
lection operator. In the tkth target population X(tk), it corresponds to the trial individual U(tk),
and there is at least one individual u ∈U(tk), which meets that

p{u ∈ S∗
δ
} ≥ `(tk)> 0, (4.1)

and the series ∑
+∞

i=1 `(tk) diverges. Then, DE is global convergent in probability, where {tk,k =
1,2, · · ·} denotes any subsequence of natural number set, p{u ∈ S∗

δ
} denotes the probability

that u belongs to the optimal solution set S∗
δ

, and `(tk) is a small positive value depending on tk.

The following shows that the IDE algorithm proposed in this paper is globally convergent.

Conclusion 4.4. The IDE algorithm converges globally in probability.

Proof. From Theorem 4.3, it needs to prove that the IDE algorithm satisfies the following two
characteristics.

(1) The IDE algorithm can remain the optimal solution of the current population enter into
the next generation.

The IDE algorithm uses the parent-child competition selection operation of the DE, so the
optimal solution in the population is greedily remain to the next generation.

(2) The probability of trial individuals in each generation entering into the global optimal
solution set S∗

δ
is large enough.
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The IDE’s reproduce operators include the mutation operator of multiple evolution strategies
and crossover operator with random walk operator. During each iteration, the IDE selects one
of the mutation models. Moreover, in the crossover operation with the random walk, the prob-
ability of trial vector u entering the S∗

δ
is equal to the sum of the three parts: the probability of

v entering S∗
δ

, the probability of individual generated by random walk operator entering S∗
δ

, and
the probability of x entering S∗

δ
. Therefore, under the crossover operation with the random walk,

the probability of trial vector u entering S∗
δ

is greater than the probability of v plus x entering
S∗

δ
, that is, the probability of basic DE trial vector u entering into S∗

δ
. So the probability

p{uIDE ∈ S∗
δ
} ≥ p{uDE ∈ S∗

δ
}= (1−RW D) ·

µ(S∗
δ
)

µ(ψ)
> 0,

where µ(·) represents the measure of a set, and ψ is solution space. Let 0 < `(t) = (1−RW D) ·
µ(S∗

δ
)

µ(ψ) < 1. Obviously, the general term of the series is not limited to 0. Then, the infinite series
∑

∞
i=1 `(t) diverges. So, according to Theorem 4.3, we can conclude the desired conclusion

immediately. �

5. EXPERIMENTAL DESIGN AND RESULTS

In this section, the proposed IDE algorithm is applied to multi-person noncooperative games.
For the three-person noncooperation game, only the DE/rand/1/bin mutation operator can be
used to solve. The other two examples are performed by using the multi-strategy mutation
operator. The parameters of the algorithm are set as: N = 30, T = 150, CR = 0.2, ε = 10−5, etc.
Eventually, in all the cases, the Nash equilibrium points are found successfully. These examples
are as follows:

Example 5.1. [8] Assume that the pure strategy sets of player 1, 2, and 3 respectively are A =
(a1,a2), B = (b1,b2), and C = (c1,c2), and mixed strategies are x1 = (x11,x12), x2 = (x21,x22),
and x3 = (x31,x32). Their strategy profiles and corresponding payoffs are shown in Table 1:

TABLE 1. The three-player game Γ1(A,B,C, f1, f2, f3).
Strategy profiles Payoff vector Strategy profiles Payoff vector

(a1,b1,c1) (5,2,2) (a2,b1,c1) (0,3,-2)

(a1,b1,c2) (3,4,0) (a2,b1,c2) (8,5,6)

(a1,b2,c1) (6,-1,-4) (a2,b2,c1) (2,4,8)

(a1,b2,c2) (7,0,-1) (a2,b2,c2) (1,9,9)

According to Table 1, problem (2.1) can be written as:

min f (x) = max(h11− f1,h12− f1,0)+max(h21− f2,h22− f2,0)

+max(h31− f3,h32− f3,0). (5.1){
x11 + x12 = 1,x21 + x22 = 1,x31 + x32 = 1,

0≤ x11,x12,x21,x22,x31,x32 ≤ 1,
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where

f1 = 5x11x21x31 +(3x11 +8x12)x21x32 +(6x11 +2x12)x22x31 +(7x11+ x12)x22x32,

h11 = f1(x q s11) = 5x21x31 +3x21x32 +6x22x31 +7x22x32,

h12 = f1(x q s12) = 8x21x32 +2x22x31 + x22x32,

f2 = (2x21− x22)x11x31 +4x21x11x32 +(3x21 +4x22)x12x31 +(5x21 +9x22)x12x32,

h21 = f1(x q s21) = 2x11x31 +4x11x32 +3x12x31 +5x12x32,

h22 = f1(x q s22) =−x11x31 +4x12x31 +9x12x32,

f3 = 2x31x11x21 +(−4x31− x32)x11x22 +(−2x31 +6x32)x12x21 +(8x31 +9x32)x12x22,

h31 = f1(x q s31) = 2x11x21−4x11x22−2x12x21 +8x12x22,

h32 = f1(x q s32) =−x11x22 +6x12x21 +9x12x22.

The Nash equilibrium points of this problem are:
(1). x∗1 = (1,0), x∗2 = (1,0), x∗3 = (1,0), f (x∗) = 0.
(2). x∗1 = (0.5,0.5), x∗2 = (0.5455,0.4545), x∗3 = (0,1), f (x∗) = 0.
(3). x∗1 = (0.8,0.2), x∗2 = (1,0), x∗3 = (0.5,0.5), f (x∗) = 0.

Example 5.2. [2] Assume that the strategy sets of player 1, 2, 3,and4 respectively are A =
(a1,a2), B=(b1,b2), C =(c1,c2), and D=(d1,d2), and mixed strategies are {xiki| i= 1, · · · ,4;ki =
1,2}. Their strategy profiles and corresponding payoffs are shown in Table 2:

TABLE 2. The four-player game Γ2(A,B,C,D, f1, f2, f3, f4).
Strategy profiles Payoff vector Strategy profiles Payoff vector

(a1,b1,c1,d1) (2,0,1,1) (a2,b1,c1,d1) (-1,3,1,1)

(a1,b1,c1,d2) (-1,2,1,1) (a2,b1,c1,d2) (0,2,2,2)

(a1,b1,c2,d1) (-1,1,2,2) (a2,b1,c2,d1) (1,2,3,1)

(a1,b1,c2,d2) (-4,3,1,1) (a2,b1,c2,d2) (-3,-4,1,1)

(a1,b2,c1,d1) (3,-1,3,3) (a2,b2,c1,d1) (-2,-1,0,0)

(a1,b2,c1,d2) (0,1,2,2) (a2,b2,c1,d2) (0,3,2,2)

(a1,b2,c2,d1) (2,1,-3,-3) (a2,b2,c2,d1) (4,-1,0,0)

(a1,b2,c2,d2) (2,0,-1,-1) (a2,b2,c2,d2) (0,3,40,40)

According to the data in Table 2 and the solution steps of Example 5.1. By many iterations,
solutions to this problem are not unique and satisfied:

f (x∗) = 0, x∗1 = (0,1), x∗2 = (1,0), x∗3 = (0,1), x∗4 = (t,1− t), ∀t ∈ [0.5,1].

Then, there is a special single point pure strategy Nash equilibrium:

f (x∗) = 0, x∗1 = (0,1), x∗2 = (1,0), x∗3 = (0,1), x∗4 = (1,0).

Example 5.3. Assume that the strategy sets of player 1,2,3,4, and 5, respectively, are A =
(a1,a2), B = (b1,b2), C = (c1,c2), D = (d1,d2), and E = (e1,e2), and mixed strategies are
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{xiki| i = 1, · · · ,5;ki = 1,2}. Their strategy profiles and corresponding payoffs are shown in
Table 3:

TABLE 3. The five-player game Γ3(A,B,C,D,E, f1, f2, f3, f4, f5).
Strategy profiles Payoff vector Strategy profiles Payoff vector
(a1,b1,c1,d1,e1) (1,0,0,0,1) (a2,b1,c1,d1,e1) (3,0,1,1,1)
(a1,b1,c1,d1,e2) (-2,1,0,0,2) (a2,b1,c1,d1,e2) (-1,2,1,2,2)
(a1,b1,c1,d2,e1) (-2,0,1,1,1) (a2,b1,c1,d2,e1) (-1,1,2,2,1)
(a1,b1,c1,d2,e2) (-5,2,0,0,2) (a2,b1,c1,d2,e2) (-3,3,1,2,2)
(a1,b1,c2,d1,e1) (2,-2,2,2,1) (a2,b1,c2,d1,e1) (3,0,4,3,1)
(a1,b1,c2,d1,e2) (-1,0,1,1,3) (a2,b1,c2,d1,e2) (0,1,3,4,3)
(a1,b1,c2,d2,e1) (1,0,-4,-4,1) (a2,b1,c2,d2,e1) (2,2,-3,-3,1)
(a1,b1,c2,d2,e2) (1,-1,-2,-2,0) (a2,b1,c2,d2,e2) (2,0,0,-2,0)
(a1,b2,c1,d1,e1) (-2,2,0,0,1) (a2,b2,c1,d1,e1) (0,3,1,1,1)
(a1,b2,c1,d1,e2) (-1,1,1,1,1) (a2,b2,c1,d1,e2) (0,3,3,2,1)
(a1,b2,c1,d2,e1) (0,1,2,0,2) (a2,b2,c1,d2,e1) (1,2,4,2,2)
(a1,b2,c1,d2,e2) (-4,-5,0,0,1) (a2,b2,c1,d2,e2) (-3,-3,2,1,1)
(a1,b2,c2,d1,e1) (-3,-2,-1,-1,1) (a2,b2,c2,d1,e1) (-2,-1,1,0,1)
(a1,b2,c2,d1,e2) (-1,2,1,1,2) (a2,b2,c2,d1,e2) (0,4,2,3,2)
(a1,b2,c2,d2,e1) (3,-2,-1,-1,2) (a2,b2,c2,d2,e1) (4,-1,1,1,2)
(a1,b2,c2,d2,e2) (-1,2,3,3,1) (a2,b2,c2,d2,e2) (1,4,4,4,1)

According to the data in Table 3 and the solution steps of Example 5.1. Solutions to this
problem are also not unique. It consists of two sets and a pure strategy Nash equilibrium such
as:
(1). f (x∗) = 0, x∗1 = (0,1), x∗2 = (0,1), x∗3 = (1,0), x∗4 = (1,0), x∗5 = (u,1−u), ∀u ∈ [0,0.5].
(2). f (x∗) = 0, x∗1 = (0,1), x∗2 = (1,0), x∗3 = (1,0), x∗4 = (v,1− v), x∗5 = (0,1), ∀v ∈ [0,0.3].
(3). f (x∗) = 0, x∗1 = (0,1), x∗2 = (0,1), x∗3 = (1,0), x∗4 = (0,1), x∗5 = (1,0).

For solutions (1) and (2), when u = 0 and v = 0, there are two pure strategy Nash equilibria,
namely:

x∗1 = (0,1),x∗2 = (0,1),x∗3 = (1,0),x∗4 = (1,0),x∗5 = (0,1),

x∗1 = (0,1),x∗2 = (1,0),x∗3 = (1,0),x∗4 = (0,1),x∗5 = (0,1).

By calculating the above examples, it is found that the simpler equivalent model adopted
in this paper can also solve the multi-person game well. This equivalent form is that finding
the Nash equilibria is equivalent to solving the optimal solutions of a constrained optimization
problem. So, it can be easily implemented by using the IDE algorithm proposed in this paper.
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6. CONCLUSIONS

In this paper, we study the nonzero sum multi-person game and propose a new intelligent al-
gorithm to solve the game, which fills the gap in the intelligent algorithm for solving the multi-
person game. Because there are many players and complex strategy choices in the multi-person
game, it is necessary to find a more suitable mathematical model to describe the game. First, a
theorem shows that finding the Nash equilibria is equivalent to solving a constrained optimiza-
tion problem. Comparing this equivalent transformation with the already existing references, it
is found that the equivalent form applied in this paper is simpler and easier to calculate. Second,
in order to solve this optimization problem better, the IDE algorithm is proposed. Under the
condition that the computational complexity of the algorithm is unchanged, the multi-strategy
mutation model is carried out on the differential operator of the algorithm, and the random
walk mechanism is introduced into the crossover operator to improve the performance of the
algorithm. Then the global convergence of the IDE algorithm is proved by the infinite product,
which provides theoretical support for solving the following global optimization problems. Fi-
nally, numerical experiments verify the effectiveness of the IDE in solving multi-person games.
In real life, people not only consider one objective when making decisions, but often consider
multiple objectives. So, it is of interest to study the issue of multi-player game under the multi-
objective, and develop other algorithms and compare them with the IDE algorithm in the future.
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