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THE SECOND-ORDER CAUCHY PROBLEM IN A SCALE OF BANACH SPACES
WITH VECTOR-VALUED MEASURES OF NONCOMPACTNESS AND AN

APPLICATION TO KIRCHHOFF EQUATIONS

VAN HIEN PHAM

Faculty of Applied Sciences, Ho Chi Minh City University of Technology and Education, Vietnam

Abstract. In the paper, by using Darbo-Sadovskii fixed point theorem for condensing operators on Fréchet spaces
with respect to vector-valued measure of noncompactness, we prove the existence results for the second-order
Cauchy problem u′′(t) = f (t,u(t)), t ∈ (0,T ), u(0) = u0, u′(0) = u1, in a scale of Banach spaces. The result is
applied to the Kirchhoff equations in Gevrey class.
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1. INTRODUCTION

The technique of measure of noncompactness (MNC, for short) has a very important role in
functional analysis. Based on the MNC, Darbo’s fixed point theorem demonstrates the existence
of fixed points for a condensing map and become a significant extension of the Schauder fixed
point theorem. Recently, some of generalized Darbo’s fixed point theorems have been estab-
lished based on the concept of generalized MNC (see [6]) and applied to the existence results
for solving various types of nonlinear differential equations, nonlinear functional integral equa-
tions as well as their infinite systems (see, e.g., [2, 9, 12, 13]). This paper focuses on fixed point
theorems for condensing operators on Fréchet spaces with respect to vector-valued MNC. Up to
our knowledge, this concept was only introduced in [5], where the authors proved the existence
results for the Cauchy problem with delay in a scale of Banach spaces (Xs, |.|s), s ∈ [a,b]

du
dt

= f (t,u(t),u(h(t))), t ∈ (0,T ), u(0) = u0,

where h(t) < t1/p for some p ∈ (0,1). The important point to note here is that the Cauchy
problem with the right-hand side operator acting in a scale of Banach spaces is known as the
abstract version of the Cauchy-Kovalevskaya theorem (see [14, 15]) and has a wide range of real
applications in the study of PDE problems, including the Navier–Stokes equations for viscous
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incompressible flows, the integrable Camassa–Holm type equations, and the birth–and–death
stochastic dynamics in the continuum; see, e.g., [3, 4, 7, 11]. The main difficulties in carrying
out the differential equations in a scale of Banach spaces are that the operator f does not act
from each space Xs into itself, but from Xs into larger spaces Xr ⊃ Xs, r < s. These difficulties
demonstrate the advantages of using a vector–valued MNC instead of a real–valued MNC when
we define the value of MNC as a function of parameter of the scale. One knows that the
condensation of the operator F with respect to the measure of noncompactness Φ means that

Φ(Ω)≤Φ(F(Ω)) implies compactness of Ω. (1.1)

So the relation between two functions Φ(Ω),Φ(F(Ω)) in (1.1) gives more information than in
the case when Φ takes values in [0,∞).

In this paper, we investigate the following Cauchy problem in a scale of Banach spaces

d2u
dt2 = f (t,u(t)), t ∈ (0,T ), u(0) = u0, u′(0) = u1, (1.2)

where f is a continuous operator from [0,T )×Xs′ into Xs, s < s′and

| f (t,u)|s ≤
L|u|s′

(s′− s)2 , ∀(t,u) ∈ [0,T )×Xs′;

αs
(

f (t,Ω)
)
≤ Lαs′(Ω)

(s′− s)2 , ∀t ∈ [0,T ) and bounded subsets Ω⊂ Xs′.

The abstract results will be applied to generalized Kirchhoff equation

D2
t u(t,x) = f

(
t,x,

∫
P
|∇xu|2dx

)
∆xu(t,x), (t,x) ∈ΩT = [0,T ]×Ω,

u(0,x) = u0(x),ut(0,x) = u1(x), x ∈Ω, (1.3)

where P,Ω are open subsets in Rn and P⊂Ω is bounded. (1.3) was considered in [8] and gen-
eralized in [10] where the approaches relied on the sequence of successive approximations and
Schauder’s fixed point theorem. However, our proof involves considering (1.3) so far for ab-
stract Cauchy problem and the concept of Darbo–Sadovskii fixed point theorem for condensing
operators on Fréchet spaces with respect to vector–valued MNC. In Section 2, we represent the
existence of fixed points for a condensing map with respect to a vector-valued MNC in locally
convex spaces which was established in [5]. The proof of the existence results of (1.2) is given
in Section 3. Section 4 is devoted to applying the abstract results to the generalized Kirchhoff
equation.

2. PRELIMINARIES

2.1. The fixed point of a condensing map.

Definition 2.1. [1] Let E be a locally convex space, and let M be a family of subsets of E such
that conv(Ω) ∈M whenever Ω ∈M . Let (Q,≤) be an ordered Banach space, and let K be a
cone, contained in the positive cone. An operator Φ : M → K is called a MNC if

Φ(conv(Ω)) = Φ(Ω), for all Ω ∈M .

The MNC Φ is said to be regular if it satisfies the following condition

Φ(Ω) = 0Q if and only if Ω is relatively compact.
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Definition 2.2. [5] Let Φ be a MNC defined on a family M of subsets of the locally convex
space E. An operator F : D ⊂ E → E is said to be condensing with respect to Φ (or Φ−
condensing) if

(i) for every Ω⊂ D such that Ω ∈M , F(Ω) ∈M ;
(ii) moreover, for every Ω⊂ D such that Ω ∈M , if Φ(Ω)≤Φ(F(Ω)), then Ω is compact.

Theorem 2.3. [5] Let E be a Fréchet space. Let C ⊂ E be a nonempty, convex, and closed set.
Let F : C→C be a continuous operator, and let Φ be a MNC defined on a family M of subsets
of E. Moreover, assume that

(1) If Ω∈M ,{u}∈M and Ω1⊂Ω then Ω1 ∈M ,Ω∪{u}∈M and one has Φ(Ω∪{u})=
Φ(Ω) .

(2) The operator F is Φ− condensing and F(C) ∈M .

Then F has at least one fixed point in C.

Proof. Let us choose a point u ∈ conv(F(C)) and denote by Σ the class of all closed and convex
subsets Ω of C such that Ω ∈M ,u ∈Ω and F(Ω)⊂Ω. Set

B =
⋂

Ω∈Σ

Ω, K = conv(F(B)∪{u}) .

Obviously, conv(F(C)) ∈ Σ by condition 2 and Definition 2.2, and B ∈M by condition 1.
Furthermore, from F(Ω)⊂Ω, ∀Ω∈ Σ, it follows that F(B)⊂ B. Hence K ∈M by condition 1.
We now claim B = K. Indeed, since u ∈ B and F(B)⊂ B, it follows that K ⊂ B, which implies
F(K)⊂ F(B)⊂ K. Hence, K ∈ Σ, and then B⊂ K. It follows from condition 1 that

Φ(B) = Φ(K) = Φ(F(B)∪{u}) = Φ(F(B)) .

Since F is Φ−condensing, it follows that B is compact. Thus we conclude from the Schauder–
Tychonoff theorem that there is a fixed point for the operator F : C→C. �

2.2. The MNC in a scale of Banach spaces. We list below some of the properties of the
Kuratowski measure of noncompactness, which can be found in [1, 1.1.4; 1.1.6; 4.1.6].

Proposition 2.4. Let E be a Banach space, and let α be the Kuratowski measure of noncom-
pactness in E, which is defined by, for each bounded subset Ω⊂ E,

α(Ω) = inf{d > 0 : Ω is covered by a finite family of

subsets with diameter less than d}.

Then

(1) α is regular;
(2) α(Ω1∪Ω2) = max{α(Ω1),α(Ω2)}; α(λΩ) = |λ |α(Ω);
(3) If dimE = ∞ and B is a ball with radius R, then α(B) = 2R;
(4) If A ⊂ C([0,T ],E) is a equicontinuous set such that the set A(t) = {u(t) : u ∈ A} is

bounded for all t ∈ [0,T ], then the function t 7→ α(A(t)) is continuous and one has

α

({∫ t

0
u(τ)dτ : u ∈ A

})
≤
∫ t

0
α(A(τ))dτ.
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Let (Xs, |.|s),s ∈ [a,b] be a scale of Banach spaces, that is,

Xs′ ⊂ Xs, |u|s ≤ |u|s′, for s < s′. (2.1)

The requirement on (1.2) is that u0,u1 ∈ Xb. In what follows, Bs(u0,r) stands for the closed ball
centered at u0 with radius r in Xs and αs denotes the Kuratowski measure of noncompactness
on Xs. We conclude from (2.1) that

αs(Ω)≤ αs′(Ω) for a bounded subset Ω⊂ Xs′ and s < s′. (2.2)

We now set up the MNC in {Xs} which is used to solve (1.2) for t ∈ [0,T ]. Fix λ > max{(b−
a)/T,(b−a)}, which will be determined later. We define the set

∆ =

{
(t,s) : s ∈ [a,b), t ∈

[
0,

b− s
λ

)}
,

and the Fréchet space

E =
{

u ∈C([0,Tλ ),Xa) : u|[0,t] ∈C([0, t],Xs), ∀(t,s) ∈ ∆
}
, Tλ =

b−a
λ

,

whose topology is induced by the following countable separating family of seminorms

pn(u) = sup
t∈[0,tn]

|u(t)|sn,

where the sequence {(tn,sn)}n is dense in ∆. Here and subsequently, for simplicity of notation,
we use the same letter u for the restriction of u ∈ E to [0, t].

Let β be a positive constant and denote by Q the space of functions g : ∆→ R such that

(Q1) The function t 7→ g(t,s) is continuous on
[

0, b−s
λ

)
for every s ∈ [a,b);

(Q2) ‖g‖= sup
(t,s)∈∆

(b− s−λ t)β |g(t,s)|< ∞.

It is clear that (Q,‖.‖) is a Banach space. We will consider the partial order in Q, which is
defined by the cone of nonnegative functions, that is, g1 ≤ g2 if g1(t,s) ≤ g2(t,s), ∀(t,s) ∈ ∆.
We also define in Q the cone K of nonnegative functions g ∈ Q such that

(K) The function s 7→ g(t,s) is nondecreasing on [a,b−λ t) for every t ∈ [0,Tλ ).

Further, let us denote by M the family of subsets Ω⊂ E satisfying:

(M1) There exists R > 0 such that sup
(t,s)∈∆

(b− s−λ t)β |u(t)|s ≤ R, ∀u ∈Ω;

(M2) Ω is equicontinuous in C([0, t],Xs) for all (t,s) ∈ ∆.

Now, we introduce an operator Φ : M → K defined by

Φ(Ω)(t,s) = αs
(
Ω(t)

)
, (t,s) ∈ ∆, Ω ∈M .

Lemma 2.5. [5] The operator Φ is a regular MNC and satisfies the condition 1 in Theorem
(2.3).
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3. THE RESULTS

We consider the following assumption for the functions involved in (1.2):

(H) There exists a positive number L such that, for a ≤ s < s′ ≤ b, function f is continuous
from [0,T )×Xs′ into Xs and

| f (t,u)|s ≤
L|u|s′

(s′− s)2 , ∀(t,u) ∈ [0,T )×Xs′;

αs
(

f (t,Ω)
)
≤ Lαs′(Ω)

(s′− s)2 , ∀t ∈ [0,T ) and bounded subsets Ω⊂ Xs′.

Lemma 3.1. Assume that conditions (H) are satisfied. Consider the operator

Fu(t) = u(t)+
∫ t

0
dτ

∫
τ

0
f (r,u(r))dr,

where u(t) = u0 + tu1 and the convex set C, defined as follows

C =

{
u ∈ E : sup

(t,s)∈∆

(b− s−λ t)β |u(t)|s ≤ R

}
.

Then we can choose λ and R sufficiently large such that

(1) The operator F acts continuously from C to C.
(2) If Ω⊂C, then F(Ω) ∈M . In particular, F(C) ∈M .

Proof. First, we prove claim 1.
To verify that Fu ∈ E if u ∈C, we fix (t,s) ∈ ∆ and choose s′ ∈ (s,b−λ t). Then (t,s′) ∈ ∆

and u ∈C([0, t],Xs′). Therefore, function r 7→ f (r,u(r)) belongs to C([0, t],Xs), so does Fu. Let
un,u ∈ C and un → u as n→ ∞. To demonstrate F(un)→ F(u) as n→ ∞, we need to prove
pm(F(un)−F(u))→ 0 for each m ∈ N+. Choosing k ∈ N+ such that tm < tk,sm < sk, one has

0≤ sup
r∈[0,tm]

|un(r)−u(r)|sm ≤ sup
r∈[0,tk]

|un(r)−u(r)|sk → 0 as n→ ∞.

Therefore, the set A = {un(r),u(r) : τ ∈ [0, tm],n ∈ N+} is compact in Xsk . As a consequence,
function f is uniformly continuous from [0, tm]×A into Xsm . Given ε > 0, let δ > 0 be chosen
such that (t,u),(t,v) ∈ [0, tm]×A, |u− v|sk < δ , which implies | f (t,u)− f (t,v)|sm < ε. Then,
for n so large, supr∈[0,tm] |un(r)−u(r)|sk < δ , we obtain

pm(F(un)−F(u)) = sup
t∈[0,tm]

|Fun(t)−Fu(t)|sm

≤
∫ tm

0
dτ

∫
τ

0
| f (r,un(r))− f (r,u(r))|smdr

≤ ε
(tm)2

2
.

Thus pm(F(un)−F(u))→ 0 as n→ ∞ for each m ∈ N+, or equivalently, F(un)→ F(u) as
n→ ∞. We next claim that F(C) ⊂ C. Set M = supt∈[0,T ] |u0 + tu1|b. If u ∈ C and (t,s) ∈ ∆,
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then we have by the assumption (H) that

|Fu(t)|s ≤ |u(t)|b +
∫ t

0
dτ

∫
τ

0

L|u(r)|s(r)
(s(r)− s)2 dr

M+L
∫ t

0
dτ

∫
τ

0

(b− s(r)−λ r)−β R
(s(r)− s)2 dr,

when s < s(r) < b−λ r. By setting s(r) = (b+ s−λ r)/2, one has s(r)− s = b− s(r)−λ r =
b−s−λ r

2 , which yields that

|Fu(t)|s ≤M+L
∫ t

0
dτ

∫
τ

0

R2β+2

(b− s−λ r)β+2 dr

≤M+LR2β+2
∫ t

0

(b− s−λτ)−1−β

λ (β +1)
dτ

≤M+
LR2β+2

λ 2β (β +1)(b− s−λ t)β
.

We thus obtain

(b− s−λ t)β |Fu(t)|s ≤Mbβ +
LR2β+2

λ 2β (β +1)
. (3.1)

We can choose λ sufficiently large such that L2β+2 < λ 2β (β +1) and R sufficiently large such
that the right–hand side of (3.1) is less than R.

We proceed to prove claim 2. The definition of the set C and F(C)⊂C follows that if Ω⊂C,
then F(Ω) satisfies condition (M1). Let u ∈Ω and (t,s) ∈ ∆. Then, for t1, t2 ∈ [0, t], t1 < t2, the
assumption (H) demonstrates that

|Fu(t1)−Fu(t2)|s ≤ |u(t1)−u(t2)|b +
∫ t2

t1
dτ

∫
τ

0

L|u(r)|s(r)
(s(r)− s)2 dr.

Letting s(τ) = (b+ s−λτ)/2, we deduce that

|Fu(t1)−Fu(t2)|s ≤ |u1|b|t1− t2|+
∫ t2

t1
dτ

∫
τ

0

LR2β+2

(b− s−λ r)β+2 dr

≤ |u1|b|t1− t2|+
LR2β+2

λ (β +1)

∫ t2

t1
(b− s−λτ)−1−β dτ

≤ |u1|b|t1− t2|+LR2β+2(b− s−λ t)−1−β |t1− t2|.
We conclude that set F(Ω) is equicontinuous in C([0, t],Xs). The condition (M2) is satisfied
and we have F(Ω)⊂C. This completes the proof. �

Lemma 3.2. Let B be an operator which is defined on K by

B(g)(t,s) =
∫ t

0
dτ

∫
τ

0

Lg(r,S(r))dr
(S(r)− s)2 , (t,s) ∈ ∆, g ∈ K,

where S(r) = (b+ s−λ r)/2. Then B is an increasing operator from K into K and satisfies

‖Bn(g)‖ ≤ ‖g‖

(
L2β+2

λ 2β (β +1)

)n

, n ∈ N+. (3.2)
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Proof. For each g ∈ K and a fixed s ∈ [a,b), we prove that function B(g) is well defined and
continuous with respect to the variable t on

[
0, b−s

λ

)
by showing that the function P(r) :=

g(r,S(r))(S(r)− s)−2 is Lebesgue measurable and bounded in each interval [0, t ′] with t ′ <
(b− s)/λ . Fix t ′′ ∈ [0,(b− s)/λ ). Setting φ(ρ) = g(t ′′,ρ), one has g(t ′′,S(r)) = (φ ◦S)(r).
Since φ is nondecreasing, φ−1(−∞,α) is an interval. From this and the continuity of S, the set

{r ∈ [0, t ′] : φ ◦S(r)< α}= S−1(
φ
−1(−∞,α)

)
(3.3)

is Lebesgue measurable, so is the function r 7→ g(t ′′,S(r)). We conclude that (t ′′,r) 7→ g(t ′′,S(r))
is a Carathéodory function. Therefore, the function r 7→ g(r,S(r)) is measurable, so is the func-
tion P(r). The boundedness of P(r) on [0, t ′] with t ′ < (b− s)/λ follows from S(r)− s =
b−S(r)−λ r = (b− s−λ r)/2 and

P(r)≤ ‖g‖
[b−S(r)−λ r]β

(S(r)− s)−2

≤ ‖g‖2β+2

(b− s−λ r)β+2 ≤
‖g‖2β+2

(b− s−λ t ′)β+2 , ∀r ∈ [0, t ′].

Thus, B(g)(t,s) is well defined and continuous in t ∈ [0,(b−s)/λ ). Moreover, B(g)(t,s) is non-
decreasing in the variable s, which is due to the fact that the functions s 7→ (b+ s−λ r)/2,s 7→
(b− s−λ r)−2 and ρ 7→ g(t ′′,ρ) are nondecreasing.

To prove (3.2), we will prove by induction that

Bn(g)(t,s)≤ ‖g‖

(
L2β+2

λ 2β (β +1)

)n
1

(b− s−λ t)β
, (t,s) ∈ ∆. (3.4)

Indeed, from the definition of B and space Q, we have

B(g)(t,s)≤
∫ t

0
dτ

∫
τ

0

L‖g‖(b−S(r)−λ r)−β

(S(r)− s)2 dr

≤ L‖g‖2β+2
∫ t

0
dτ

∫
τ

0

dr
(b− s−λ r)β+2

≤ ‖g‖ L2β+2

λ 2β (β +1)
1

(b− s−λ t)β
.

That is (3.4) for n = 1. Assume that (3.4) holds for degree n. Then,

Bn+1(g)(t,s) =
∫ t

0
dτ

∫
τ

0

LBng(r,S(r))dr
(S(r)− s)2

≤ L‖g‖

(
L2β+2

λ 2β (β +1)

)n ∫ t

0
dτ

∫
τ

0

(b−S(r)−λ r)−β

(S(r)− s)2 dr

≤ L‖g‖2β+2

(
L2β+2

λ 2β (β +1)

)n ∫ t

0
dτ

∫
τ

0

dr
(b− s−λ r)β+2

≤ ‖g‖

(
L2β+2

λ 2β (β +1)

)n+1
1

(b− s−λ t)β
,
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which demonstrates that (3.4) holds with n+ 1 in place of n. This establishes (3.2), and the
proof is complete. �

Theorem 3.3. Assume that assumption (H) hold. Then there exists a number λ > 0 such that
problem (1.2) has a solution u satisfying u(t) ∈ Xs for all t ∈ [0,(b− s)/λ ), s ∈ [a,b).

Proof. Let λ be chosen sufficiently large such that L2β+2 < λ 2β (β +1) and λ > (b−a)T−1.
We prove that the operator F which is defined in Lemma (3.1) is condensing with respect to
the MNC Φ. In view of Lemma (3.1)-(3.2) and Theorem (2.3), F has a fixed point in the
space E. This fixed point is indeed a solution to (1.2) with desired properties. Assume that
Φ(Ω)≤Φ(F(Ω)) for some Ω ∈M . From Proposition (2.4) and hypothesis (H), we obtain

Φ(Ω)(t,s)≤Φ(F(Ω))(t,s) = αs

({∫ t

0
dτ

∫
τ

0
f (r,u(r))dr : u ∈Ω

})
≤
∫ t

0
αs

({∫
τ

0
f (r,u(r))dr : u ∈Ω

})
dτ

≤
∫ t

0
dτ

∫
τ

0
αs ({ f (r,u(r)) : u ∈Ω})dr

≤
∫ t

0
dτ

∫
τ

0

Lαs′(Ω(r))
(s′− s)2 dr,

where s′ ∈ (s,b− λ r). By setting s′ = (b+ s− λ r)/2 and g = Φ(Ω), we see that g(t,s) ≤
B(g)(t,s) for all (t,s) ∈ ∆. Since g is increasing, we have g(t,s)≤ Bn(g)(t,s) for all (t,s) ∈ ∆.

Therefore ‖g‖ ≤ ‖Bng‖ and g = 0Q by (3.2) and L2β+2 < λ 2β (β +1). We conclude from the
regularity of Φ that Ω is compact, and the proof is complete. �

4. KIRCHHOFF EQUATIONS IN GEVREY CLASS

For s > 0, let Es be the space of all function u ∈C∞(Ω) such that (see [10])

|u|s := ∑
α∈Nn

‖Dαu‖s|α|

α!
< ∞,

where Ω⊂Rn is an open subset, ‖v‖= sup{|v(x)| : x ∈Ω}, and α = (α1,α2, ...,αn)∈Nn,α! =
α1!α2!...αn!, |α| = α1 + ...+αn. Then (Es, |.|s)s>0 forms a scale of Banach space with the
properties (2.1). It is well known that the class Gevrey G (Ω) consist all real functions u ∈
C∞(Ω) satisfying

∃K > 0,c > 0 : ‖Dαu‖ ≤ K
α!
c|α|

, ∀α ∈ Nn.

Moreover, if u ∈ G (Ω), then, for s < c,

|u|s = ∑
α∈Nn

‖Dαu‖c|α|

α!

( s
c

)|α|
≤ K

∞

∑
i=0

(i+1)
( s

c

)i
< ∞.

We thus obtain G (Ω) =
⋃

s>0 Es.

Lemma 4.1. (see [10, lemma 1]) The scale (Xs, |.|s),s ∈ [a,b] has the following properties:

(i) If u,v ∈ Xs, then uv ∈ Xs and one has |uv|s ≤ |u|s|v|s.
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(ii) There exists a constant M > 0, depending only on a,b, such that, for a≤ s < s′ ≤ b,

|∆u|s ≤
M|u|s′
(s′− s)2 , u ∈ Xs′,

where ∆ is the Laplacian.

Following [8, 10], we consider the Cauchy problem

D2
t u(t,x) = f

(
t,x,

∫
P
|∇xu|2dx

)
∆xu(t,x), (t,x) ∈ΩT = [0,T ]×Ω,

u(0,x) = u0(x),ut(0,x) = u1(x), x ∈Ω, (4.1)

where P,Ω are open subsets in Rn and P ⊂ Ω is bounded. The problem has form (1.2) if we
additionally assume that u0,u1 ∈ Xb with b > 0 is fixed.

The assumptions for function f : ΩT ×R+→ R are that:
(A1) f (t, .,u)∈C∞(Ω) for all (t,u)∈ [0,T ]×R+ and for all α ∈Nn the operator u 7→Dα

x f (., .,u)
belongs to C

(
R+,C(ΩT )

)
.

(A2) There are c > 0,K > 0 such that

|Dα
x f (t,x,u)| ≤ K

α!
c|α|

,

for all (t,x,u) ∈ΩT ×R+ and α ∈ Nn.

Lemma 4.2. Let assumptions (A1) and (A2) be hold, and let C⊂ Xs be a bounded subset. Then
the subset

F(C) :=
{

f
(

t,x,
∫

P
|∇xu|2dx

)
: u ∈C

}
is compact in Xs for all t ∈ [0,T ] and 0 < s < c.

Proof. Setting |u|s ≤ r for all u ∈C, we have(
∂u
∂xi

)2

≤
(
|u|s
s

)2

≤ r2

s2 .

Therefore, the subset {
∫

P |∇xu|2dx : u ∈C} is compact in R as it is bounded. Consequently, for
any sequence {un}n ⊂C, there exists a subsequence {vk}k ⊂ {un}n such that

lim
k→∞

∫
P
|∇xvk|2dx =

∫
P
|∇xv|2dx, v ∈ Xs.

We next prove that∣∣∣∣ f (t,x,
∫

P
|∇xvk|2dx

)
− f

(
t,x,

∫
P
|∇xv|2dx

)∣∣∣∣
s
→ 0

as k→ ∞ and the proof will be complete. Given ε > 0, since the series ∑i(s/c)i is convergent,
we choose n0 large so that

∑
|α|>n0

∥∥∥∥Dα f
(

t,x,
∫

P
|∇xvk|2dx

)
−Dα f

(
t,x,

∫
P
|∇xv|2dx

)∥∥∥∥ s|α|

α!

≤ 2K ∑
|α|>n0

s|α|α!
α!c|α|

≤ 2K ∑
|α|>n0

( s
c

)|α|
<

ε

2
, ∀k.
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By (A1), the operators u 7→ Dα f (., .,u) are uniformly continuous on closed interval in R. We
thus obtain with any sufficiently large index m that

∑
|α|≤n0

∥∥∥∥Dα f
(

t,x,
∫

P
|∇xvm|2dx

)
−Dα f

(
t,x,

∫
P
|∇xv|2dx

)∥∥∥∥ s|α|

α!
<

ε

2
.

Hence ∣∣∣∣ f (t,x,
∫

P
|∇xvk|2dx

)
− f

(
t,x,

∫
P
|∇xv|2dx

)∣∣∣∣
s
≤

∑
α∈Nn

∥∥∥∥Dα f
(

t,x,
∫

P
|∇xvm|2dx

)
−Dα f

(
t,x,

∫
P
|∇xv|2dx

)∥∥∥∥ s|α|

α!
< ε.

�

Theorem 4.3. Assume that (A1) and (A2) are satisfied and u0,u1 ∈ Xb, where b < c. Then there
exists a number λ such that problem (4.1) has a solution u(t)∈Xs for all t ∈ [0,(b−s)/λ ),s< b.

Proof. We prove that the function

g(t,u(t))(x) = f
(

t,x,
∫

P
|∇xu|2dx

)
∆xu(t,x)

satisfies assumption (H). In view of Theorem (3.3), problem (4.1) (in form (1.2)) has at least a
solution with desired properties. In what follows, let s < s′ ≤ b. By (A2) and lemma (4.1), we
have

|g(t,u)|s ≤
∣∣∣∣ f (t,x,

∫
P
|∇xu|2dx

)∣∣∣∣
s
|∆xu|s ≤ K

M|u|s′
(s′− s)2 .

Let C be bounded subset in Xs′ . We denote by Bs(u,r) the ball centered at u with radius r. Let
γ > αs′(C) and set C ⊂

⋃n
i=1 Bs′(ui,γ). For each ui, i = 1,2, ...,n, the subset

Fi(C) :=
{

f
(

t,x,
∫

P
|∇xu|2dx

)
∆xui : u ∈C

}
is compact in Xs by lemma (4.2). It follows that, for any ε > 0, there exists a finite covering
with radius ε of Fi(C). Set Fi(C)⊂

⋃m
j=1 Bs(vi

j,ε). We now fix u ∈C and choose ui,vi
j such that

|u−ui|s′ ≤ γ,

∣∣∣∣ f (t,x,
∫

P
|∇xu|2dx

)
∆xui− vi

j

∣∣∣∣
s
≤ ε.

The result is

|g(t,u)− vi
j|s ≤

∣∣∣∣ f (t,x,
∫

P
|∇xu|2dx

)
(∆xu−∆xui)

∣∣∣∣
s

+

∣∣∣∣ f (t,x,
∫

P
|∇xu|2dx

)
∆xui− vi

j

∣∣∣∣
s

≤ K
M|u−ui|s′
(s′− s)2 + ε

≤ K
Mγ

(s′− s)2 + ε.
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we conclude from the arbitrariness of γ > αs′(C) and ε > 0 that

αs(g(t,C))≤ Lαs′(C)

(s′− s)2 .

The proof is completed. �
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