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Abstract. This paper investigates the linear convergence of a projection algorithm for solving the split equality
mixed equilibrium problem (SEMEP). We introduce the notion of bounded linear regularity property for the SE-
MEP and construct several sufficient conditions to prove its linear convergence. Furthermore, the result of the
linear convergence of the SEMEP is applied to split equality equilibrium problems, split equality convex mini-
mization problems, split equality mixed variational inequality problems, and split equality variational inequality
problems. Finally, numerical results are provided to verify the effectiveness of our proposed algorithm.
Keywords. Bounded linearly regularity property; Intensity-modulated radiation therapy; Linear convergence;
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1. INTRODUCTION

Let H1, H2, and H3 be three real Hilbert spaces with inner product 〈·, ·〉 and norm ‖ · ‖. Let C
and Q be nonempty, closed, and convex subsets of H1 and H2, respectively. domA and F(A) are
borrowed to denote the domain and the fixed point set of the mapping A, respectively.

In 2013, Moudafi [8] first proposed the following split equality problem (SEP for short),
which can be represented as

finding x ∈C, y ∈ Q such that Ax = By,

where A : H1→ H3 and B : H2→ H3 are two bounded linear operators.
This kind of problem has attracted the attention of numerous authors because it has wide

real applications, such as intensity-modulated radiation therapy [1]. In order to solve the split
equality problem, various algorithms were introduced; see, e.g., [13, 17, 19]). One of the
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most significant algorithms is the alternating CQ-algorithm (ACQA), which was proposed by
Moudafi [8]. The iterative form of the ACQA is as below:{

xk+1 = PC(xk− γkA∗(Axk−Byk)),
yk+1 = PQ(yk + γkB∗(Axk+1−Byk)),

where {γk} is a nondecreasing sequence, PC and PQ are metric projections on C and Q from H1
and H2, A∗ and B∗ represent dual mappings of A and B, respectively. Moudafi proved that this
algorithm converges weakly to a solution of the SEP.

In order to obtain strong convergence results, Shi et al. [13] introduced a modification of
Moudafi’s ACQA algorithm:{

xk+1 = PC{(1−µk)[xk− γA∗(Axk−Byk)]}, n≥ 0,
yk+1 = PQ{(1−µk)[yk + γB∗(Axk−Byk)]}, n≥ 0,

where {µk} is a positive sequence in (0,1). They proved that the algorithm converges strongly
to a solution of the SEP.

In 2018, Shi et al. [14] proposed a varying step-size gradient-projection algorithm to solve
SEP and obtained linear convergence results. For the results on linear convergence, we refer to
[15, 16, 20] and the references therein.

Let F : C×C→ R be a nonlinear bifunction. The equilibrium problem (EP for short) is to
find x∗ ∈C such that

F(x∗,y)≥ 0, ∀y ∈C. (1.1)

The set of solutions of (1.1) is denoted by EP(F). Let T : C→C be a mapping and set F(x,y) =
〈T x,y− x〉, for all x,y ∈ C. One has x∗ ∈ EP(F) if and only if x∗ ∈ C is a solution of the
variational inequality 〈T x,y− x〉 ≥ 0 for all y ∈ C. The equilibrium problem was extensively
investigated numerically in Hilbert spaces and Banach spaces; see, e.g., [4, 5, 11, 12, 18] and
the references therein.

Recall that the mixed equilibrium problem (MEP for short) is to

find x∗ ∈C such that F(x∗,y)+φ(y)−φ(x∗)≥ 0, ∀y ∈C,

where φ : C → R∪ {+∞} is a function. We use MEP(F, φ) to denote the set of solutions
of the MEP. The MEP includes several important problems arising in physics, engineering,
transportation, economics, structural analysis, and network.

In [7], Moudafi introduced the following split equilibrium problems (SE for short). Let F :
C×C→ R and J : Q×Q→ R be nonlinear bifunctions, and let A : H1→H2 be a bounded linear
operator. The SE is to find x∗ ∈C such that

F(x∗,x)≥ 0,∀x ∈C,

and
y∗ = Ax∗ ∈ Q solves J(y∗,y)≥ 0, ∀y ∈ Q.

Remark 1.1. (1) If φ = 0, then the MEP reduces to the EP.
(2) If F = 0, then the MEP reduces to the following convex minimization problem (CMP for

short): find x∗ ∈C such that
φ(y)≥ φ(x∗), ∀y ∈C. (1.2)

The set of solutions of (1.2) is denoted by CMP(φ).
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In 2015, Ma et al. [9] introduced the following split equality mixed equilibrium problems
(SEMEP for short).

Definition 1.2. [9] Let C and Q be nonempty, closed, and convex subsets of H1 and H2, re-
spectively. Let F : C×C→ R and J : Q×Q→ R be nonlinear bifunctions. Let A : H1→ H3
and B : H2 → H3 be two bounded linear operators, and let φ : C → R∪ {+∞} and ϕ : Q→
R∪{+∞} be proper lower semi-continuous and convex functions such that C∩domφ 6= /0 and
Q∩domϕ 6= /0. Then the split equality mixed equilibrium problem (SEMEP for short) is to find
x∗ ∈C and y∗ ∈ Q such that

F(x∗,x)+φ(x)−φ(x∗)≥ 0,∀x ∈C,

J(y∗,y)+ϕ(y)−ϕ(y∗)≥ 0,∀y ∈ Q,

Ax∗ = By∗.

(1.3)

The set of solutions of (1.3) is denoted by SEMEP(F,J,φ ,ϕ).

Remark 1.3. (1) In (1.3), if φ = 0 and ϕ = 0, then the split equality mixed equilibrium problem
reduces to the split equality equilibrium problem.

(2) If F = 0 and J = 0, then the split equality mixed equilibrium problem reduces to the
following split equality convex minimization problem: find x∗ ∈C and y∗ ∈ Q, such that

φ(x)≥ φ(x∗),∀x ∈C,

ϕ(y)≥ ϕ(y∗),∀y ∈ Q,

Ax∗ = By∗.

(1.4)

The set of solutions of (1.4) is denoted by SECMP(φ ,ϕ).
(3) If F = 0, J = 0, B = I, and y∗ = Ax∗, then the split equality mixed equilibrium problem

reduces to the following split convex minimization problem: find x∗ ∈C and y∗ ∈ Q such that
φ(x)≥ φ(x∗),∀x ∈C,

y∗ = Ax∗ ∈ Q, ϕ(y)≥ ϕ(y∗),∀y ∈ Q,

Ax∗ = By∗.

(1.5)

The set of solutions of (1.5) is denoted by SCMP(φ ,ϕ).

According to the definition of the MEP, the SEMEP can be formulated as

finding x∗ ∈ D, y∗ ∈ E such that Ax∗ = By∗,

where D = MEP(F,φ) and E = MEP(J,ϕ).
Let S = D×E ⊆ H1×H2 := H and G = [A,−B] : H → H3, then original problem (1.3) can

now be reformulated as

finding z∗ = (x∗,y∗) such that Gz∗ = 0.

The strong and weak convergence algorithms of the split equality mixed equilibrium problem
have been analyzed by Ma in [9], but the convergence rate of this problem has not been studied.
Therefore, we, in this paper, introduce the notion of bounded linear regularity property for the
SEMEP and provide some sufficient conditions to guarantee this regularity property, and the
linear convergence of the proposed algorithm is finally proved.
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The rest of this paper is organized as follows. In Section 2, we recall some definitions and
lemmas that are useful for the convergence analysis in the sequel, and introduce the notion of
bounded linear regularity property of the SEMEP. Some conditions that guarantee this property
are provided. In Section 3, under the assumption of the bounded linear regularity, we research
the linear convergence of the proposed algorithm. In Section 4, in terms of applications, the
results are applied to the split equality equilibrium problem, the split equality convex mini-
mization problem, the split equality mixed variational inequality problem, and the split equality
variational inequality problem. In Section 5, the lat section, the effectiveness of the algorithm
is verified by numerical experiments.

2. PRELIMINARIES

In this section, we introduce some notations and results that can be used in the sequel for a
better understanding of this paper.

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively. Recall that an operator T on H is nonexpansive if, for each x and y in H, ‖T x−
Ty‖ ≤ ‖x− y‖. Recall that an operator T on H is firmly nonexpansive if, for each x and y in H,
〈x− y,T x−Ty〉 ≥ ‖T x−Ty‖2.

The definition of the linear convergence is as follows.

Definition 2.1. A sequence {xn} in H is said to converge linearly to its limit x∗ (with rate
σ ∈ [0,1)) if there exists ω > 0 and a positive integer N such that

‖xn− x∗‖ ≤ ωσ
n for all n≥ N.

Let I denote the identity operator on H. For a set S ⊆ H, we denote the closure, interior,
relative interior, and conical hull of S by clS, intS, riS, and coneS, respectively. For x ∈ H,
we use B and B̄ to denote the unit open ball and unit closed ball with centre at the origin,
respectively. For a point x and a set S ⊆ H, the classical metric projection of x onto S and the
distance of x from S, denoted by PS(x) and dS(x), respectively, and defined by

PS(x) := argmin{‖x− y‖ : y ∈ S} and dS(x) := inf{‖x− y‖ : y ∈ S}.

The following proposition is useful for our convergence analysis.

Proposition 2.2. [2] Let C ⊆ H be a convex, closed, and nonempty set. For any x,y ∈ H and
z ∈C, the following assertions hold:
(1) 〈x−PCx,z−PCx〉 ≤ 0;
(2) ‖PCx−PCy‖ ≤ ‖x− y‖;
(3) ‖PCx−PCy‖2 ≤ 〈PCx−PCy,x− y〉;
(4) ‖PCx− z‖2 ≤ ‖x− z‖2−‖PCx− x‖2;
(5) 〈(I−PC)x− (I−PC)y,x− y〉 ≥ ‖(I−PC)x− (I−PC)y‖2.

Let an operator G : H → H3 be bounded and linear. We utilize kerG = {x ∈ H : Gx = 0}
to denote the kernel of G. The orthogonal complement of kerG is represented by (kerG)⊥ =
{y ∈ H : 〈x,y〉 = 0 for all x ∈ kerG}. It is known that kerG and (kerG)⊥ are closed subspaces
of H. In this paper, we denote the set of solutions of the SEMEP by Γ, which is defined by
Γ := S∩ kerG = {z ∈ S,Gz = 0}. We assume that the SEMEP is consistent. Γ is a closed,
convex, and nonempty set.
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For solving the split equality mixed equilibrium problem, let us give the following assump-
tions for the bifunction F , φ , and the set C. We use the following conditions of bifunctions (F
and J) in the sequel.
(A1) F(x,x) = 0, ∀x ∈C;
(A2) F(x,y)+F(y,x)≤ 0, ∀x,y ∈C;
(A3) ∀x,y,z ∈C, limt→0 F(tz+(1− t)x,y)≤ F(x,y);
(A4) ∀x ∈C, y 7→ F(x,y) is a lower semicontinuous convex function.

From conditions (A1)-(A4), we have the following lemma.

Lemma 2.3. [10] Let C be a nonempty, closed, and convex subset of H. Let F be a bifunction
from C×C to R, and let φ : C→ R∪{+∞} be a proper, lower semi-continuous, and convex
function such that C∩ domϕ 6= /0. For r > 0 and x ∈ H, define a mapping T F

r : H1 → C as
follows:

T F
r (x) = {z ∈C : F(z,y)+φ(y)−φ(z)+

1
r
〈y− z,z− x〉 ≥ 0,∀y ∈C},

for all x ∈ H. Then, the following conclusions hold:
(1) for each x ∈ H, T F

r (x) 6= /0;
(2) T F

r is single-valued;
(3) for any x,y ∈ H1, ‖T F

r (x)−T F
r (y)‖2 ≤ 〈T F

r (x)−T F
r (y),x− y〉, that is, T F

r is firmly nonex-
pansive. (4) MEP(F,φ) = F(T F

r );
(5) MEP(F,φ) is convex and closed.

In order to obtain the linear convergence property of projection-based algorithms for solving
convex feasibility problems, Zhao et al. [20] introduced the following linear regularity for a
family of closed convex subsets of a real Hilbert space.

Definition 2.4. [20] Let {Ei}i∈I be a family of closed convex subsets of a real Hilbert space H
and E = ∩i∈IEi 6= /0. The family {Ei}i∈I is said to be bounded linearly regular if, for each r > 0,
there exists a constant γr > 0 such that dE(w)≤ γr sup{dEi(w) : i ∈ I} for all w ∈ rB.

Next, we introduce the concept of bounded linear regularity property of the SEMEP.

Definition 2.5. The SEMEP is said to satisfy the bounded linear regularity property if, for each
r > 0, there exists γr > 0 such that γrdΓ(x)≤ ‖Gx‖ for all x ∈ S∩ rB̄.

In order to obtain the sufficient condition of bounded linear regularity of the SEMEP, we also
need the following Lemma.

Lemma 2.6. [3] Let H be a real Hilbert space and let G be a bounded linear operator. Then G
is injective and has closed range iff G is bounded below, i.e., there exists a positive constant γ

such that ‖Gz‖ ≥ γ‖z‖ for all z ∈ H.

By Lemma 2.6, the sufficient condition of bounded linear regularity of the SEMEP is given
below.

Lemma 2.7. Let {S,kerG} be bounded linearly regular and G has closed range. Then the
SEMEP satisfies the bounded linear regularity property.
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Proof. Since {S,kerG} has a bounded linearly regular intersection, one finds that, for any t > 0,
there exists γt > 0 such that

dΓ(x) = dS∩kerG(x)≤ γt max{dS(x),dkerG(x)}, ∀x ∈ tB̄,

that is,
dΓ(x)≤ γtdkerG(x),∀x ∈ S∩ tB̄. (2.1)

Since G is restricted to (kerG)⊥, which is injective and its range is closed, by Lemma 2.6, we
know that there exists µ > 0 such that ‖Gx1‖ ≥ µ‖x1‖, for all x1 ∈ (kerG)⊥. Hence,

dkerG(x)≤
1
µ
‖Gx‖, for all x ∈ H. (2.2)

Combining (2.1) and (2.2), we have dΓ(x)≤ γt
µ
‖Gx‖, ∀ x ∈ S∩ tB̄. Then, the proof is complete.

�

For completing the linear convergence analysis of the proposed algorithm, the following
definition is also an essential tool.

Definition 2.8. [2] Let C be a nonempty subset of H, and let {xk} be a sequence in H. {xk} is
called Fejér monotone with respect to C if ‖xk+1− z‖ ≤ ‖xk− z‖ for all z ∈C. Clearly, a Fejér
monotone sequence {xk} is bounded and limk→∞ ‖xk− z‖ exists.

The following lemma provides sufficient conditions for bounded linear regularity property
for two closed convex subsets of H.

Lemma 2.9. [20] Let E and F be closed convex subsets of H. Then {E,F} is bounded linearly
regular provided that at least one of the following conditions holds:
(a) riE ∩F 6= /0 and F is a polyhedron.
(b) riE ∩ riF 6= /0 and E is finite dimensional.
(c) riE ∩ riF 6= /0 and E is finite codimensional.

Note that kerG is a subspace of H and rikerG = kerG. Furthermore, it is well known that if
kerG is finite dimensional or finite codimensional, then the range of G is closed. By the Lemma
2.9, we have the following corollary which establishes sufficient conditions for bounded linear
regularity property for the SEMEP.

Lemma 2.10. [14] The SEMEP satisfies the bounded linear regularity property if one of the
following conditions holds:
(1) C and Q are polyhedrons, and G has closed range.
(2) riS∩ kerG 6= /0, kerG is finite dimensional.
(3) riS∩ kerG 6= /0, kerG is finite codimensional.
(4) riS∩ kerG 6= /0, G has closed range and S =C×Q is finite dimensional.
(5) riS∩ kerG 6= /0, G has closed range and S =C×Q is finite codimensional.

3. MAIN RESULTS

In this section, the simultaneous iterative algorithm of the SEMEP is proposed and we prove
its linear convergence.
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Theorem 3.1. Let H1, H2 and H3 be three real Hilbert spaces. Let C and Q be nonempty, convex,
and closed subsets of H1 and H2, respectively. Assume that F : C×C→R and J : Q×Q→R are
bifunctions, and let φ : C→R∪{+∞} and ϕ : Q→R∪{+∞} be proper, lower semi-continuous,
and convex functions such that C∩ domφ 6= /0 and Q∩ domϕ 6= /0. Let D = MEP(F, φ) and
E = MEP(J, ϕ), let A : H1→H3 and B : H2→H3 be bounded linear operators. Let A∗ and B∗

be the adjoint operators of A and B. The iteration scheme {zn} is defined as follows: For each
initial point z0 = (x0,y0) ∈ S,{

U(wn,w)+ψ(w)−ψ(wn)+
1
rn
〈w−wn,wn− zn〉 ≥ 0,∀w ∈V ;

zn+1 = αnzn +(1−αn)PS(wn−ρnG∗Gwn),

or component-wise
F(un,u)+φ(u)−φ(un)+

1
rn
〈u−un,un− xn〉 ≥ 0, ∀u ∈C;

J(vn,v)+ϕ(v)−ϕ(vn)+
1
rn
〈v− vn,vn− yn〉 ≥ 0, ∀v ∈ Q;

xn+1 = αnxn +(1−αn)PD(un−ρnA∗(Aun−Bvn));
yn+1 = αnyn +(1−αn)PE(vn +ρnB∗(Aun−Bvn)),

(3.1)

where S = D×E, V =C×Q, U = F× J, ψ = φ ×ϕ , G = [A,−B], zn+1 = (xn+1,yn+1), wn =
(un,vn), w=(u,v), αn ∈ [0,1), rn > 0, ρn > 0, limn→∞ ρn = 0, and ∑

∞
n=1 ρn =∞. Assume that the

SEMEP satisfies the bounded linear regularity property. Then the sequence {zn} generated by
the iteration (3.1) with n∈ [L,∞) and integer L> 0 converges to a solution z∗ of the SEMEP such
that ‖zn− z∗‖ ≤ δσn, for δ ≥ 1 and 0 < σ < 1, provided that one of the following conditions
holds:
(a) 0 < liminfn→∞ ρn ≤ limsupn→∞ ρn <

2
‖G‖2 ,

(b) ρn =


0, zn ∈ Γ,

γn‖Gzn‖2

‖G∗Gzn‖2 , zn /∈ Γ,
, and 0 < liminfn→∞ γn ≤ limsupn→∞ γn < 2. Consequently, {zn}

converges to z̄ linearly in the case that (a) or (b) is assumed.

Proof. Without loss of generality, one assumes that zn /∈ Γ, ∀n ≥ 0. Otherwise, iteration (3.1)
terminates in finite number of iteration, and then the conclusions follow immediately.

For the first assertion, we first prove that sequence {zn} is Fejér monotone with respect to Γ .
Let z∗ ∈ Γ. By the definition of Γ, i.e., z∗ ∈ S and Gz∗ = 0, we have

‖zn+1− z∗‖2 = α
2
n‖zn− z∗‖2 +2αn(1−αn)〈zn− z∗,PS(wn−ρnG∗Gwn)− z∗〉

+(1−αn)
2‖PS(wn−ρnG∗Gwn)− z∗‖2

≤ α
2
n‖zn− z∗‖2 +αn(1−αn)(‖zn− z∗‖2 +‖PS(wn−ρnG∗Gwn)− z∗‖2)

+(1−αn)
2‖PS(wn−ρnG∗Gwn)− z∗‖2

= αn‖zn− z∗‖2 +(1−αn)‖PS(wn−ρnG∗Gwn)− z∗‖2. (3.2)
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We obtain the following formulas by using Proposition 2.2, the definition of the adjoint operator,
and Gz∗ = 0,

‖PS(wn−ρnG∗Gwn)− z∗‖2 ≤ ‖wn−ρnG∗Gwn− z∗‖2

= ‖wn− z∗‖2 +ρ
2
n‖G∗Gwn‖2−2ρn〈wn− z∗,G∗Gwn〉

= ‖wn− z∗‖2 +ρ
2
n‖G∗Gwn‖2−2ρn〈Gwn−Gz∗,Gwn〉

= ‖wn− z∗‖2 +ρ
2
n‖G∗Gwn‖2−2ρn‖Gwn‖2. (3.3)

Let TU
rn

= T F
rn
×T J

rn
: H1×H2→V , i.e.,

TU
rn
(a) = {c ∈V : U(c,b)+ψ(b)−ψ(c)+

1
rn
〈b− c,c−a〉 ≥ 0,∀b ∈V}.

According to iteration (3.1), we have

TU
rn
(zn) = {wn ∈V : U(wn,w)+ψ(w)−ψ(wn)+

1
rn
〈w−wn,wn− zn〉 ≥ 0,∀w ∈V},

which yields that wn =TU
rn
(zn). Since zn ∈ S=D×E =MEP(F, φ)×MEP(J, ϕ)=MEP(U, ψ)

for all n ≥ 0 (see (5) in Lemma 2.3. By (4) in Lemma 2.3, zn ∈ F(TU
rn
) (i.e., TU

rn
(zn) = zn). It

follows that
wn = TU

rn
(zn) = zn. (3.4)

Substituting inequality (3.3) and (3.4) into (3.2), we obtain

‖zn+1− z∗‖2 ≤ ‖zn− z∗‖2− (1−αn)ρn(2−ρn
‖G∗Gzn‖2

‖Gzn‖2 )‖Gzn‖2. (3.5)

Note that ‖G
∗Gzn‖2

‖Gzn‖2 ≤ ‖G‖2 holds. According to the assumptions of (a) and (b), it follows from

(3.5) that ‖zn+1− z∗‖2 ≤ ‖zn− z∗‖2. That is, {zn} is Fejér monotone with respect to Γ. Hence,
{zn} is bounded and limn→∞ ‖zn− z∗‖ exists.

Then, we prove that {zn} converges linearly to a solution of SEMEP (1.3). Since SEMEP
(1.3) satisfies the bounded linear regularity property and zn ∈ S for all n≥ 0, there exists β > 0
such that βdΓ(zn)≤ ‖Gzn‖. By inequality (3.5), it follows that

‖zn+1− z∗‖2 ≤ ‖zn− z∗‖2− (1−αn)ρn(2−ρn
‖G∗Gzn‖2

‖Gzn‖2 )β 2d2
Γ(zn).

Taking z∗ = {z ∈ Γ|min‖zn− z‖}, one has

d2
Γ(zn+1)≤ ‖zn+1− z∗‖2 ≤ d2

Γ(zn)− (1−αn)ρn(2−ρn
‖G∗Gzn‖2

‖Gzn‖2 )β 2d2
Γ(zn). (3.6)

Note that if (a) or (b) holds, then liminfn→∞(2−ρn
‖G∗Gzn‖2

‖Gzn‖2 ) > 0, Hence, there exists integer
M > 0 such that

ω := inf
n≥M

(1−αn)β
2(2−ρn

‖G∗Gzn‖2

‖Gzn‖2 )> 0,

Then inequality (3.6) reduces to

d2
Γ(zn+1)≤ d2

Γ(zn)−ρnωd2
Γ(zn) = (1−ρnω)d2

Γ(zn), ∀n≥M.
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This implies that
d2

Γ(zn+1)≤ d2
Γ(zM)Πn

i=M(1−ρiω), ∀n≥M. (3.7)
Note that {zn} is Fejér monotone with respect to Γ, i.e., for all z∈Γ and for all m> k, ‖zm−z‖≤
‖zk− z‖. It follows that

‖zm− zk‖ ≤ ‖zm−PΓ(zk)‖+‖zk−PΓ(zk)‖ ≤ 2‖zk−PΓ(zk)‖= 2dΓ(zk). (3.8)

By (3.7) and (3.8), we have

‖zm− zk+1‖ ≤ 2dΓ(zk+1)≤ 2dΓ(zM)Πk
i=M

√
1−ρiω, ∀m > k ≥M.

Let p := e−
ω

2 ∈ (0,1). Since ln(1− t)≤−t,∀t ∈ [0,1), then

Π
k
i=M

√
1−ρiω = exp

{
1
2

Σ
k
i=Mln(1−ρiω)

}
≤ exp

{
−ω

2
Σ

k
i=Mρi

}
= pΣk

i=Mρi. (3.9)

Therefore,‖zm− zk+1‖ ≤ 2dΓ(zM)pΣk
i=Mρi for all m > k≥M. Since limn→∞ ρn = 0 and Σ∞

i=1ρn =
∞, it follows that {zn} is a Cauchy sequence and converges to z̄, which satisfies ‖zk+1− z̄‖ ≤
2dΓ(zM)pΣk

i=Mρi , k≥M. Take ẑ∈ Γ such that limn→∞ dΓ(zn+1) = limn→∞ ‖zn+1− ẑ‖. From (3.7),
we have

0≤ ‖z̄− ẑ‖= lim
n→∞
‖zn+1− ẑ‖= lim

n→∞
dΓ(zn+1)≤ lim

n→∞
dΓ(zM)Πn

i=M

√
1−ρiω = 0, ∀n≥M,

so z̄ = ẑ ∈ Γ. Let

λ = 2max
{

dΓ(zM)p−Σ
M−1
i=1 ρi, max

{
‖zi− z∗‖p−Σi

j=1ρ j−ρM , i = 1,2, · · · ,M.
}}

.

It follows from inequations (3.7) and (3.9) that ‖zn− z̄‖ ≤ λ pΣn
i=1ρi for all n≥M. Moreover, if

(a) or (b) is assumed, then liminfn→∞ ρn > 0. Let ρ := liminfn→∞ ρn. Then there exists integer
L > 0 such that ρn > ρ for all n≥ L. Taking N = max{L,M}, it follows that

‖zn− z̄‖ ≤ λ pΣL
i=1ρi p(n−L)ρ = λ pΣL

i=1(ρi−ρ)pnρ = δσ
n, ∀n≥ N,

where δ = λ pΣL
i=1(ρi−ρ) and σ = pρ ∈ (0,1). Hence, {zn} converges to z̄ linearly. The proof is

complete. �

4. APPLICATIONS

In this section, we turn our attention to provide some applications relying on the result of the
linear convergence of the split equality mixed equilibrium problem, such as the split equality
equilibrium problem, split equality convex minimization problem, split equality mixed varia-
tional inequality problem, and split equality variational inequality problem.

4.1. Split equality equilibrium problem.

Definition 4.1. Let F : C×C→ R and J : Q×Q→ R be nonlinear bifunctions. Let A : H1→H3
and B : H2→ H3 be two bounded linear operators. Then the split equality equilibrium problem
(SEEP for short) is to find x∗ ∈C, y∗ ∈ Q such that

F(x∗,x)≥ 0, ∀x ∈C,

J(y∗,y)≥ 0, ∀y ∈ Q,

Ax∗ = By∗.

(4.1)

The set of solution of (4.1) is denoted by SEEP(F,J).
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According to the definition of EP (1.1), the SEEP can be formulated as:

finding x∗ ∈ EP(F) and y∗ ∈ EP(J) such that Ax∗ = By∗. (4.2)

Let S = EP(F)×EP(J) ⊆ H1×H2 := H and G = [A,−B] : H → H3. Then (4.2) can now be
reformulated as:

finding z∗ = (x∗,y∗) ∈ S such that Gz∗ = 0.

By Remark1.3, the following result can be directly deduced from Theorem 3.1.

Corollary 4.2. Let H1, H2 and H3 be three real Hilbert spaces. Let C and Q be nonempty,
convex and closed sets in H1 and H2, respectively. Let F : C×C→ R and J : Q×Q→ R be two
bifunctions. Let A : H1→ H3 and B : H2→ H3 be two bounded linear operators. Let A∗ and B∗

be the self-adjoint operators of A and B. Let Γ be the set of solutions of the SEEP (4.1). For an
initial point z0 = (x0,y0) ∈ S, define{

U(wn,w)+ 1
rn
〈w−wn,wn− zn〉 ≥ 0, ∀w ∈V ;

zn+1 = αnzn +(1−αn)PS(wn−ρnG∗Gwn),

where S = EP(F)×EP(J), U = F × J, G = [A,−B], zn+1 = (xn+1,yn+1), wn = (un,vn), w =
(u,v), αn ∈ [0,1), rn > 0, ρn > 0, limn→∞ ρn = 0, and ∑

∞
n=1 ρn = ∞. Assume that the SEEP (4.1)

satisfies the bounded linear regularity property. Then {zn} converges to a solution z∗ of SEEP
(4.1) provided that one of the following conditions holds:
(a) 0 < liminfn→∞ ρn ≤ limsupn→∞ ρn <

2
‖G‖2 ;

(b) ρn =


0, zn ∈ Γ,

γn‖Gzn‖2

‖G∗Gzn‖2 , zn /∈ Γ,
,and 0 < liminfn→∞ γn ≤ limsupn→∞ γn < 2. Consequently, {zn}

converges to z∗ linearly when (a) or (b) is assumed.

Proof. Let TU
rn

= T F
rn
×T J

rn
: H1×H2→V , i.e.,

TU
rn
(a) = {c ∈V : U(c,b)+

1
rn
〈b− c,c−a〉 ≥ 0, ∀b ∈V}.

Then mapping TU
rn

satisfies Lemma 2.3, and wn = zn. According to Theorem 3.1, the proof is
complete. �

4.2. Split equality convex minimization problem. According to the definition of CMP (1.2),
the SECMP (1.4) can be formulated as:

finding x∗ ∈CMP(φ) and y∗ ∈CMP(ϕ) such that Ax∗ = By∗. (4.3)

Let S = CMP(φ)×CMP(ϕ) ⊆ H1×H2 := H, G = [A,−B] : H → H3, then (4.3) can now be
reformulated as:

finding z∗ = (x∗,y∗) ∈ S such that Gz∗ = 0.

If F = 0 and J = 0, then the SEMEP (1.3) reduces to the SECMP (1.4). Therefore, Theorem
3.1 can be used to solve SECMP (1.4), and the following result can be directly deduced from
Theorem 3.1.
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Corollary 4.3. Let H1, H2 and H3 be three real Hilbert spaces. Let C and Q be nonempty, convex
and closed sets in H1 and H2, respectively. Let φ : C→ R∪{+∞} and ϕ : Q→ R∪{+∞} be
proper, lower semi-continuous, and convex functions such that C∩domφ 6= /0 and Q∩domϕ 6=
/0. Let A : H1 → H3 and B : H2 → H3 be two bounded linear operators and A∗, B∗ being the
self-adjoint operators of the operators A, B. Let Γ be the set of solutions of the SECMP (1.4).
For an initial point z0 = (x0,y0) ∈ S, define{

ψ(w)−ψ(wn)+
1
rn
〈w−wn,wn− zn〉 ≥ 0, ∀w ∈V ;

zn+1 = αnzn +(1−αn)PS(wn−ρnG∗Gwn),

where S = CMP(φ)×CMP(ϕ), V = C×Q, ψ = φ ×ϕ , zn+1 = (xn+1,yn+1), wn = (un,vn),
w=(u,v), αn ∈ [0,1), rn > 0, ρn > 0, limn→∞ ρn = 0, and ∑

∞
n=1 ρn =∞. Assume that the SECMP

(1.4) satisfies the bounded linear regularity property. Then the sequence {zn} converges to a
solution z∗ of SECMP (1.4) provided that one of the following conditions holds:
(a) 0 < liminfn→∞ ρn ≤ limsupn→∞ ρn <

2
‖G‖2 ;

(b) ρn =


0, zn ∈ Γ,

γn‖Gzn‖2

‖G∗Gzn‖2 , zn /∈ Γ,
, and 0 < liminfn→∞ γn ≤ limsupn→∞ γn < 2. Consequently, {zn}

converges to z∗ linearly when (a) or (b) is assumed.

Proof. Let Trn = Trn×Trn : H1×H2→V , i.e.,

Trn(a) = {c ∈V : ψ(b)−ψ(c)+
1
rn
〈b− c,c−a〉 ≥ 0, ∀b ∈V}.

Then the mapping Trn satisfies Lemma 2.3, and wn = zn. According to Theorem 3.1, the proof
is complete. �

4.3. Split equality mixed variational inequality problem. Mixed variational inequality prob-
lems (MVIP for short) which can be formulated as

finding x∗ ∈C such that 〈Kx∗,z− x∗〉+φ(z)−φ(x∗)≥ 0, ∀z ∈C, (4.4)

where φ : C→ R∪{+∞} is a function. We use MV IP(K,C,φ) to denote the set of solutions of
the MVIP (4.4).

If φ = 0, then the MVIP (4.4) reduces to the variational inequality problems (VIP for short),
which can be formulated as

finding x∗ ∈C, such that 〈Kx∗,z− x∗〉 ≥ 0, ∀z ∈C. (4.5)

We use V IP(K,C) to denote the set of solutions of the VIP (4.5).
Recently, some scholars introduced the split equality mixed variational inequality problems

(SEMVIP for short). The definition of SEMVIP can be expressed as finding x∗ ∈C and y∗ ∈ Q
such that 

〈K1x∗,x− x∗〉+φ(x)−φ(x∗)≥ 0, ∀x ∈C,

〈K2y∗,y− y∗〉+ϕ(y)−ϕ(y∗)≥ 0, ∀y ∈ Q,

Ax∗ = By∗.

(4.6)

According to the definition of MVIP, (4.6) can be formulated as:

finding x∗ ∈MV IP(K1,C,φ) and y∗ ∈MV IP(K2,Q,ϕ) such that Ax∗ = By∗. (4.7)
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Let S = MV IP(K1,C,φ)×MV IP(K2,Q,ϕ)⊆ H1×H2 := H, G = [A,−B] : H→ H3, then (4.7)
can now be reformulated as:

finding z∗ = (x∗,y∗) ∈ S such that Gz∗ = 0.

An operator K is κ-inverse strongly monotone (κ-ism) with κ > 0 if 〈Kx−Ky,x− y〉 ≥
κ‖Kx−Ky‖2 for all x,y ∈C. Let F(x,y) = 〈Kx,y−x〉 and K be κ-ism, where F is a bifunction.
Then the following result holds.

Corollary 4.4. Let H1, H2 and H3 be three real Hilbert spaces. Let C and Q be nonempty
convex, and closed sets in H1 and H2, respectively. Let K1 and K2 be two κ-ism mappings and
let φ : C→ R∪{+∞} and ϕ : Q→ R∪{+∞} be proper, lower semi-continuous, and convex
functions such that C∩domφ 6= /0 and Q∩domϕ 6= /0. Let A : H1→H3 and B : H2→H3 be two
bounded linear operators with A∗, B∗ being the self-adjoint operators of the operators A, B.
Let Γ be the set of solution of the SEMVIP (4.6). For an initial point z0 = (x0,y0) ∈ S, define{

〈Kwn,w−wn〉+ψ(w)−ψ(wn)+
1
rn
〈w−wn,wn− zn〉 ≥ 0,∀w ∈V ;

zn+1 = αnzn +(1−αn)PS(wn−ρnG∗Gwn),

where S = MV IP(K1,C,φ)×MV IP(K2,Q,ϕ), V = C×Q, K = K1×K2, G = [A,−B], ψ =
φ×ϕ , zn+1 = (xn+1,yn+1), wn = (un,vn), w = (u,v), αn ∈ [0,1), rn > 0, ρn > 0, limn→∞ ρn = 0,
and ∑

∞
n=1 ρn = ∞. Assume that the SEMVIP (4.6) satisfies the bounded linear regularity prop-

erty. Then {zn} converges to a solution z∗ of SEMVIP (4.6) provided that one of the following
conditions holds:
(a) 0 < liminfn→∞ ρn ≤ limsupn→∞ ρn <

2
‖G‖2 ;

(b) ρn =


0, zn ∈ Γ,

γn‖Gzn‖2

‖G∗Gzn‖2 , zn /∈ Γ,
, and 0 < liminfn→∞ γn ≤ limsupn→∞ γn < 2. Consequently, {zn}

converges to z∗ linearly in the case when (a) or (b) is assumed.

Proof. Let T K
rn

= T K1
rn ×T K2

rn : H1×H2→V , i.e.,

T K
rn
(a) = {c ∈V : 〈Kc,b− c〉+ψ(b)−ψ(c)+

1
rn
〈b− c,c−a〉 ≥ 0,∀b ∈V}.

Then the mapping T K
rn

satisfies the Lemma 2.3, and wn = zn. According to Theorem 3.1, the
proof is complete. �

4.4. Split equality variational inequality problem. If φ =ϕ = 0, i.e., ψ = 0, then the SEMVIP
(4.6) reduces to the following split equality variational inequality problem (SEVIP for short):

finding z∗ = (x∗,y∗) ∈ S, such that Gz∗ = 0, (4.8)

where S =V IP(K1,C)×V IP(K2,Q)⊆ H1×H2 := H and G = [A,−B] : H→ H3.
Then we have the following result.

Corollary 4.5. Let H1, H2 and H3 be three real Hilbert spaces. Let C and Q be nonempty,
convex, and closed sets in H1 and H2, respectively. Assume that K1 and K2 are two κ-ism
mappings and let φ : C→ R∪{+∞} and ϕ : Q→ R∪{+∞} be proper, lower semi-continuous,
and convex function such that C∩domφ 6= /0 and Q∩domϕ 6= /0. Let A : H1→H3 and B : H2→
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H3 be bounded linear operators with A∗, B∗ being the self-adjoint operators of the operators
A, B. Let Γ be the set of solutions of the SEVIP (4.8). For initial point z0 = (x0,y0) ∈ S, define{

〈Kwn,w−wn〉+ 1
rn
〈w−wn,wn− zn〉 ≥ 0,∀w ∈V ;

zn+1 = αnzn +(1−αn)PS(wn−ρnG∗Gwn),

where S =V IP(K1,C)×V IP(K2,Q), V =C×Q, K = K1×K2, G = [A,−B], ψ = φ×ϕ , zn+1 =
(xn+1,yn+1), wn = (un,vn), w= (u,v), αn ∈ [0,1), rn > 0, ρn > 0, limn→∞ ρn = 0, and ∑

∞
n=1 ρn =

∞. Assume that the SEVIP (4.8) satisfies the bounded linear regularity property. Then {zn}
converges to a solution z∗ of SEVIP (4.8) provided that one of the following conditions holds:
(a) 0 < liminfn→∞ ρn ≤ limsupn→∞ ρn <

2
‖G‖2 ;

(b) ρn =


0, zn ∈ Γ,

γn‖Gzn‖2

‖G∗Gzn‖2 , zn /∈ Γ,
, and 0 < liminfn→∞ γn ≤ limsupn→∞ γn < 2. Consequently, {zn}

converges to z∗ linearly in the case when (a) or (b) is assumed.

Proof. Let T K
rn

= T K1
rn ×T K2

rn : H1×H2→V , i.e.,

T K
rn
(a) = {c ∈V : 〈Kc,b− c〉+ 1

rn
〈b− c,c−a〉 ≥ 0,∀b ∈V}.

Then the mapping T K
rn

satisfies the Lemma 2.3, and wn = zn. According to Theorem 3.1, the
proof is complete. �

5. NUMERICAL EXAMPLES

In this section, we provide some numerical examples to demonstrate the numerical behavior
of our proposed algorithm, namely Algorithm 3.1, and compare it with the Algorithm (3.1) of
[9]. All codes were written in MATLAB2015B. The numerical results were carried out on a
personal Lenovo computer with Intel Core(TM) i5-7200 CPU @ 3.1GHz.

Let H1 = H2 = H3 = R3 and C = Q = {x ∈ R3 : ‖x‖ ≤ 1}. Define F(x,y) : C×C→ R3 by
F(x,y) = y−x and φ : C→R3 by φ(x) =−x. It is easy to see that T F

r (xn) =
1
rn
〈u−un,un−xn〉.

Also, let J(x,y) : Q×Q→ R3 by J(x,y) = x− y, and ϕ : Q→ R3 by ϕ(x) = x, for all x ∈ Q.
Therefore, T J

r (yn) =
1
rn
〈v−vn,vn−yn〉. Then the SEMEP satisfies the bounded linear regularity

property.
The two operators A : H1→ H3 and B : H2→ H3 are defined by

A =

1 0 0
0 1 0
0 0 1

and B =

1 1 1
1 1 1
1 1 1

 .

Take αn =
1
3 and z0 = (x0,y0) ∈ S. In consideration of Algorithm 3.1, we have

1
rn
〈u−un,un− xn〉 ≥ 0, ∀u ∈C;

1
rn
〈v− vn,vn− yn〉 ≥ 0, ∀v ∈ Q;

xn+1 = αnxn +(1−αn)PD(un−ρnA∗(Aun−Bvn));
yn+1 = αnyn +(1−αn)PE(vn +ρnB∗(Aun−Bvn)).

(5.1)
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TABLE 1. The iterations of xn and yn at αn = 1/3

number of iteration xn yn
1 (1,1,1) (0.9,0.9,0.9)
2 (0.718234,0.718234,0.718234) (0.6849,0.6849,0.6849)
3 (0.624311,0.624311,0.624311) (0.6132,0.6132,0.6132)
4 (0.593004,0.593004,0.593004) (0.5893,0.5893,0.5893)
5 (0.582568,0.582568,0.582568) (0.581334,0.581334,0.581334)
...

...
...

13 (0.577351,0.577351,0.577351) (0.577351,0.577351,0.577351)
14 (0.577351,0.577351,0.577351) (0.57735,0.57735,0.57735)
15 (0.57735,0.57735,0.57735) (0.57735,0.57735,0.57735)
16 (0.57735,0.57735,0.57735) (0.57735,0.57735,0.57735)
17 (0.57735,0.57735,0.57735) (0.57735,0.57735,0.57735)
...

...
...

In Algorithm 3.1, we take ρn = 1/n, αn = 1/3, 1/(1+ n), respectively. In addition, we set
T = (1−αn)PD and S = (1−αn)PE in [9]. Under other same conditions, we compared it with
Ma’s Algorithm (3.1) to verify the effectiveness of our proposed algorithm.

We choose initial value x = (1,1,1) and y = (0.9,0.9,0.9). Let error be 10−13. Then we
have the following numerical results (the x-coordinate denotes the number of iterations, and the
y-coordinate denotes the logarithm of the error).

TABLE 2. The iterations of xn and yn at αn = 1/(1+n)

number of iteration xn yn
1 (1,1,1) (0.9,0.9,0.9)
2 (0.788675,0.788675,0.788675) (0.738675,0.738675,0.738675)
3 (0.647792,0.647792,0.647792) (0.631125,0.631125,0.631125)
4 (0.594961,0.594961,0.594961) (0.590794,0.590794,0.590794)
5 (0.580872,0.580872,0.580872) (0.580039,0.580039,0.580039)
...

...
...

9 (0.577351,0.577351,0.577351) (0.577351,0.577351,0.577351)
10 (0.57735,0.57735,0.57735) (0.57735,0.57735,0.57735)
11 (0.57735,0.57735,0.57735) (0.57735,0.57735,0.57735)
12 (0.57735,0.57735,0.57735) (0.57735,0.57735,0.57735)
13 (0.57735,0.57735,0.57735) (0.57735,0.57735,0.57735)
14 (0.57735,0.57735,0.57735) (0.57735,0.57735,0.57735)
...

...
...

From the TABLE 1, TABLE 2, and FIGURE 1, it is easy to see that our iterative method
converges to the point x0 = (0.57735,0.57735,0.57735) and y0 = (0.57735,0.57735,0.57735).
Next, we compare our Algorithm (3.1) with the Ma’s algorithm in [9], the FIGURE 2 of con-
vergent rate is given as follows.
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FIGURE 1. x = (1,1,1) and y = (0.9,0.9,0.9), the process of iteration xn and yn

FIGURE 2. Comparison of algorithm (3.1) and Ma’s algorithm in [9]
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