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SELF-ADAPTIVE ALGORITHMS FOR SOLVING CONVEX BILEVEL
OPTIMIZATION PROBLEMS

BOWEN ZHAO, PEICHAO DUAN∗

College of Science, Civil Aviation University of China, Tianjin 300300, China

Abstract. In this paper, we present a self-adaptive algorithm and an inertial version for solving convex bilevel
optimization problems. We establish the strong convergence of our proposed algorithms. The step-sizes in our
algorithms for the inner level optimization problem are selected without prior knowledge of operator norms. A nu-
merical experiment is included to illustrate the performances of our algorithms and some comparisons are present
with related algorithms.
Keywords. Convex bilevel optimization; Inertial acceleration; Moreau-Yosida approximate; Self-adaptive algo-
rithm; Split proximal algorithm.

1. INTRODUCTION

Bilevel optimization theory is more and more widely used in many disciplines, including
aircraft conflicts [2], railway transport hub planning [11], strategic pricing in competitive elec-
tricity markets [8] and so on. The research on bilevel optimization has both irreplaceable
significance and extensive prospect; see, e.g., [7, 16] and references therein. Convex bilevel
optimization is a kind of important bilevel optimization problem, and a number of authors in-
vestigated various methods for solving convex bilevel optimization problems, which can be
found in [5, 6, 20, 23].

Convex bilevel optimization problems consist of two convex optimization problems: the inner
and the outer levels. In [20], Sabach and Shtern investigated a type of convex bilevel optimiza-
tion problems. The outer level is given by the following constrained minimization problem

min
x∈Ω

ω(x), (1.1)

where ω is a strongly convex and differentiable function defined on Ω 6= /0 and Ω is the set of
minimizers of the unconstrained convex optimization problem

min
x∈H

g(x)+ f (x), (1.2)
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where g, f ∈ Γ0(H) and f is differentiable. The notation Γ0(H) denotes the space of functions
that are proper, convex, and lower semicontinuous in a real Hilbert space H with inner product
〈·, ·〉 and induced norm ‖ · ‖.

However, function f sometimes does not have differentiability. In this paper, we study the
following general form of inner problem

min
x∈H1

g(x)+ f (Ax), (1.3)

where g ∈ Γ0(H1), f ∈ Γ0(H2), and A : H1→ H2 is a bounded operator. It is worth noting that
neither f nor g may be differentiable. As far as we know, Moreau-Yosida approximate is a
useful tool that makes them obtain differentiability. For this reason, we transform (1.3) to the
following problem

min
x∈H1

g(x)+ fλ (Ax), (1.4)

where fλ (y) = minu∈H2{ f (u)+ 1
2λ
‖u− y‖2} stands for the Moreau-Yosida approximate of f

with parameter λ .
In recent years, numerous researchers have studied iterative methods for the inner level op-

timization problem. In their studies, various methods were proposed to obtain the solutions of
inner level optimization problem. The corresponding weak or strong convergence results were
discussed; see, e.g., [14, 19, 21] and the references therein. Especially, if A is an identity oper-
ator and f is differential, a number of researchers proposed the proximal gradient algorithm to
solve problem (1.2); see, e.g., [1, 4, 25] and the references therein.

Actually, the inner problem can be transformed into the zero point problem of two monotone
operators from first order optimality condition. In order to make the iterative algorithms easy to
implement, it is transformed into the fixed point form of the operator. Note that the optimality
condition of (1.4) is as follows:

0 ∈ ∂ (g(x∗)+ fλ (Ax∗)) = ∂g(x∗)+A∗(
I− proxλ f

λ
)Ax∗.

An equivalent fixed point formulation of (1.4) was deduced in [14]

x∗ = proxλ µg(I−µA∗(I− proxλ f )A)x
∗

for λ > 0 and µ > 0.
In 2017, Sabach and Shtern [20] proposed an iterative algorithm for solving convex bilevel

optimization problems (1.1) and (1.2). They established a first-order method based on the ex-
isting fixed-point algorithm. 

sn = proxµg(I−µ∇ f )xn,

zn = xn− γ∇ω(xn),

xn+1 = βnzn +(1−βn)sn,n≥ 1,

where µ ∈ (0, 2
L f
), γ ∈ (0, 2

Lω+ϖ
], and L f , Lω are the Lipschitz constants for the gradients of f ,

ω , respectively. The parameter sequence {βn} ⊂ (0,1) satisfies

lim
n→∞

βn = 0,
∞

∑
n=1

βn = ∞.
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In 2019, Shehu and Vuong [22] devised the following iterative scheme, which generates a
sequence via 

yn = xn +δn(xn− xn−1),

sn = proxλg(I−λ∇ f )yn,

zn = yn− γ∇ω(yn),

xn+1 = βnzn +(1−βn)sn,n≥ 1.
They gave convergence analysis of the inertial algorithm for convex bilevel optimization prob-
lems under appropriate conditions.

On the other hand, to avoid computing the norm of the operator involved since it is difficult to
calculate or estimate, some self-adaptive algorithms were introduced; see e.g. [3, 12, 17, 18, 24].
In 2014, Moudafi and Thakur [14] proposed a self-adaptive split proximal algorithm for solving
(1.3). The implementation of their algorithm does not need any prior information about the
operator norm. They proved that the sequence {xn} weakly converges to a solution of (1.3).
They computed {xn} via the rule

xn+1 = proxλ µng(I−µnA∗(I− proxλ f A)xn),

where the stepsize µn = τn
h(xn)+lµn(xn)

θ 2(xn)
with 0 < τn < 4.

Mainly based on the research work [14, 20, 22], we investigate the adaptive selection of the
step-size parameters and inertial acceleration of the algorithm for solving convex bilevel opti-
mization problems. Under suitable conditions, we prove that our algorithms converge strongly
to some solution of the inner problem, which is the unique solution of a variational inequality
problem (corresponding the outer level problem). In addition, a numerical example is per-
formed to illustrate performance and some comparisons with related algorithms are presented
to demonstrate the efficiency of our algorithms.

2. PRELIMINARIES

Throughout this paper, we denote by Fix(U) the set of fixed points of U and by I the identity
operator. xn → x (resp., xn ⇀ x ) indicates that {xn} is strongly (resp., weakly) convergent
to x. Given a sequence {xn}, we use ωw(xn) to denote the weak ω-limit set of {xn}, that is,
ωw(xn) := {x | ∃ {xn j} ⊂ {xn} such that xn j ⇀ x}. In this section, we collect some important
definitions and lemmas which will be used in the next section.

Definition 2.1. A mapping U : H→ H is said to be
(i) nonexpansive iff ‖Ux−Uy‖ ≤ ‖x− y‖ for all x,y ∈ H;

(ii) firmly nonexpansive iff 2U− I is nonexpansive, or equivalently,

〈x− y,Ux−Uy〉 ≥ ‖Ux−Uy‖2, ∀x,y ∈ H.

As we know, projection operators are firmly nonexpansive.

(iii) ρ-contractive iff there exists ρ ∈ [0,1) such that

‖Ux−Uy‖ ≤ ρ‖x− y‖, ∀x,y ∈ H.

(iv) L-Lipschizian iff there exists a constant L > 0 such that

‖Ux−Uy‖ ≤ L‖x− y‖, ∀x,y ∈ H.
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Lemma 2.2. Let C be a nonempty, convex, and closed subset of a real Hilbert space H. Given
x ∈ H and z ∈C, y = PCx if and only if 〈x− y,y− z〉 ≥ 0 for all z ∈C.

Lemma 2.3. Let H be a real Hilbert space. Then the following statements hold.
(i) ‖x+ y‖2 = ‖x‖2 +2〈x,y〉+‖y‖2, ∀x,y ∈ H.

(ii) ‖x+ y‖2 ≤ ‖x‖2 +2〈x+ y,y〉, ∀x,y ∈ H.
(iii) ‖αx+(1−α)y‖2 =α‖x‖2+(1−α)‖y‖2−α(1−α)‖x−y‖2 for all α ∈R and x,y∈H.

Definition 2.4. (see [13]) The proximal operator of g ∈ Γ0(H) is defined by

proxg(x) = argmin
u∈H
{g(u)+ 1

2
‖u− x‖2}, x ∈ H.

Lemma 2.5. The proximal identity

proxλg(x) = proxµg(
µ

λ
x+(1− µ

λ
)proxλgx) (2.1)

holds for g ∈ Γ0(H), λ > 0 and µ > 0.

Lemma 2.6. (Demiclosedness principle, see [9]) Let H be a real Hilbert space, and let T : H→
H be a nonexpansive mapping with Fix(T ) 6= /0. If {xn} is a sequence in H weakly converging
to x and if {(I−T )xn} converges strongly to y, then (I−T )x = y. In particulary, if y = 0, then
x ∈ Fix(T ).

Lemma 2.7. (see [10]) Assume that {bn} is a sequence of nonnegative real numbers such that

bn+1 ≤ (1−σn)bn +σnan, n≥ 1,

bn+1 ≤ bn−ηn +ϕn, n≥ 1,
where {σn} is a sequence in (0,1), {ηn} is a sequence of nonnegative real numbers and {an}
and {ϕn} are two sequences in R such that

(i) ∑
∞
n=0 σn = ∞,

(ii) limn→∞ ϕn = 0,
(iii) limk→∞ ηnk = 0 implies limsupk→∞ ank ≤ 0 for any subsequence {nk} ⊂ {n}.

Then limn→∞ bn = 0.

3. MAIN RESULTS

This section is dedicated to the self-adaptive selection of parameters, algorithmic acceleration
and convergence analysis for solving convex bilevel optimization problems (1.1) and (1.3). For
this purpose, we first list some assumption conditions in Assumption 3.1.

Assumption 3.1:
(a) g ∈ Γ0(H1), f ∈ Γ0(H2), and A : H1→ H2 is a bounded linear operator.
(b) Ω = {x∗|argmin g∩A−1(argmin f )} 6= /0.
(c) ω : H1→ H1 is strongly convex with parameter ϖ > 0 and continuously differentiable

such that its gradient is Lipschitz continuous with constant Lω .
The basic algorithm for solving inner level problem is the split proximal algorithm, the

method can also be seen as a fixed point algorithm where the iterated mapping is given by

Tµ := proxλ µg(I−µA∗(I− proxλ f )A). (3.1)

Put
Sγ := I− γ∇ω. (3.2)
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Supposing that Assumption 3.1 (c) holds, we obtain Sγ is a ρ-contraction mapping for all γ ∈
(0, 2

Lω+ϖ
] and ρ :=

√
1− 2γϖLω

Lω+ϖ
(This result was obtained in [20]).

In this section, we propose a self-adaptive proximal split algorithm and an inertial version for
approximating the unique fixed point of the following variational inequality problem:

〈(I−Sγ)x∗, x̃− x∗〉 ≥ 0, ∀x̃ ∈Ω. (3.3)

Set θ(x) =
√
‖∇h(x)‖2 +‖∇lµn(x)‖2 with h(x) = 1

2‖(I − proxλ f )Ax‖2 and lµn(x) =
1
2‖(I −

proxµnλg)x‖2.
First, we propose the following scheme for solving the bilevel optimization problem.

Algorithm 1
Step 0. Input β ≥ 3, λ > 0, and γ ∈ (0, 2

Lω+ϖ
]. Give ε > 0, δ > 0, and an initial point x1 ∈ H1.

Set n := 1.
Step 1. Give xn and compute 

sn = Tµnxn,

zn = Sγxn,

xn+1 = βnzn +(1−βn)sn,

(3.4)

where the stepsize

µn = τn
h(xn)+ lµn(xn)

θ 2(xn)
(3.5)

with δ ≤ τn ≤ 4h(xn)
h(xn)+lµn(xn)

−δ .

Step 2. If h(xn)+ lµn(xn)< ε, then the iterative process stops. Otherwise, set n := n+1 and go
to Step 1.

Lemma 3.1. Let {µn} be generated by (3.5), then {µn} has a lower bound.

Proof. By the definitions of h(x) and lµn(x), we obtain ∇h(x)=A∗(I− proxλ f )Ax and ∇lµn(x)=
(I− proxµnλg)x, respectively. We have

‖∇h(x)‖2 = ‖A∗(I− proxλ f )Ax‖2 ≤ ‖A‖2‖(I− proxλ f )Ax‖2 = 2‖A‖2h(x), (3.6)

and

‖∇lµn(x)‖2 = ‖(I− proxµnk λg)x‖2 = 2lµn(x). (3.7)

Putting together (3.6) and (3.7), we arrive at

τn
h(xn)+ lµn(xn)

θ 2(xn)
≥ δ

h(xn)+ lµn(xn)

2(‖A‖2 +1)(h(xn)+ lµn(xn))
=

δ

2(‖A‖2 +1)
> 0. (3.8)

Setting µ0 := δ

2(‖A‖2+1) , we have µn ≥ µ0 > 0. �

Theorem 3.2. Let H1 and H2 be two real Hilbert spaces and Assumption 3.1 holds. Assume
that Tµ and Sγ are defined by (3.1) and (3.2), respectively. Given x1 ∈ H arbitrarily, suppose
that

(i) βn ∈ (0,1), limn→∞ βn = 0 and ∑
∞
n=1 βn = ∞;

(ii) δ ≤ τn ≤ 4h(xn)
h(xn)+lµn(xn)

−δ for some δ > 0 small enough;

(iii) λ > 0 and γ ∈ (0, 2
Lω+ϖ

].
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Then {xn} generated by Algorithm 1 converges strongly to x∗, where x∗ is a solution to (1.3).
And x∗ is also the unique solution of the variational inequality

〈∇ω(x∗), x̃− x∗〉 ≥ 0,∀ x̃ ∈Ω. (3.9)

Proof. The proof is divided into three steps.
Step 1. Prove that {xn} is bounded.

For any p ∈Ω, we have p ∈ Fix(Tµn). Using the nonexpasiveness of proxλ µng, we obtain

‖sn− p‖2 = ‖proxλ µng(I−µnA∗(I− proxλ f )A)xn− proxλ µng(I−µnA∗(I− proxλ f )A)p‖2

≤ ‖xn−µnA∗(I− proxλ f )Axn− (p−µnA∗(I− proxλ f )Ap)‖2

= ‖xn− p‖2−2µn〈∇h(xn),xn− p〉+µ
2
n‖∇h(xn)‖2. (3.10)

Since minimizers of the convex function h(xn) are exactly zero points of its gradient mapping,
using the definition of adjoint operators and the firmly nonexpansiveness of I− proxλ f , we have

〈∇h(xn),xn− p〉= 〈(I− proxλ f )Axn,Axn−Ap〉 ≥ ‖(I− proxλ f )Axn‖2 = 2h(xn). (3.11)

It follows from (3.5), (3.10), and (3.11) that

‖sn− p‖2 ≤ ‖xn− p‖2−4µnh(xn)+ τ
2
n
(h(xn)+ lµn(xn))

2

θ 4(xn)
‖∇h(xn)‖2

= ‖xn− p‖2−4τn
h(xn)+ lµn(xn)

θ 2(xn)
h(xn)+ τ

2
n
(h(xn)+ lµn(xn))

2

θ 2(xn)

‖∇h(xn)‖2

θ 2(xn)

≤ ‖xn− p‖2− τn(
4h(xn)

h(xn)+ lµn(xn)
− τn)

(h(xn)+ lµn(xn))
2

θ 2(xn)
. (3.12)

By condition (ii), we derive

‖sn− p‖ ≤ ‖xn− p‖. (3.13)

According to the iterative process, we have

‖xn+1− p‖ ≤ βn‖Sγxn−Sγ p‖+βn‖Sγ p− p‖+(1−βn)‖sn− p‖

≤ (1−βn(1−ρ))‖xn− p‖+βn(1−ρ)
‖Sγ p− p‖

1−ρ
. (3.14)

Then by the mathematical induction, it is easy to obtain

‖xn+1− p‖ ≤max{‖x1− p‖,
‖Sγ p− p‖

1−ρ
}.

Therefore, the sequence {xn} is bounded, so are {zn} and {sn}.
Step 2. Prove that limk→∞ ηnk = 0 implies
limk→∞ h(xnk) = 0 and limk→∞ lµnk

(xnk) = 0 for any sequence {nk} ⊂ {n}. The expression of ηn
is under inequality (3.17).

Firstly, fixing p ∈Ω, we find from (3.4), (3.13), and Schwarz’s inequality that

‖xn+1− p‖2 = β
2
n ‖zn− p‖2 +(1−βn)

2‖sn− p‖2 +2βn(1−βn)〈zn− p,sn− p〉
= β

2
n ‖Sγxn−Sγ p+Sγ p− p‖2 +(1−βn)

2‖sn− p‖2

+2βn(1−βn)〈Sγxn−Sγ p+Sγ p− p,sn− p〉
≤ 2β

2
n (ρ

2‖xn− p‖2 +‖Sγ p− p‖2)+(1−βn)
2‖xn− p‖2
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+2βn(1−βn)(ρ‖xn− p‖‖sn− p‖+ 〈Sγ p− p,sn− p〉)
≤ 2β

2
n (ρ

2‖xn− p‖2 +‖Sγ p− p‖2)+(1−βn)
2‖xn− p‖2

+2βn(1−βn)ρ‖xn− p‖2 +2βn(1−βn)〈Sγ p− p,sn− p〉
≤ (1−βn(2−βn(1+2ρ

2)−2ρ(1−βn)))‖xn− p‖2 +2β
2
n ‖Sγ p− p‖2

+2βn(1−βn)〈Sγ p− p,sn− p〉. (3.15)

Setting bn := ‖xn− p‖2,

σn := βn(2−βn(1+2ρ
2)−2ρ(1−βn)),

and

an :=
2(βn‖Sγ p− p‖2 +(1−βn)〈Sγ p− p,sn− p〉)

2−βn(1+2ρ2)−2ρ(1−βn)
,

we deduce from the above inequality that

bn+1 ≤ (1−σn)bn +σnan. (3.16)

Applying Lemma 2.3 (i), (iii), and (3.12), we obtain

‖xn+1− p‖2

≤ βn‖zn− p‖2 +(1−βn)‖sn− p‖2

= βn‖Sγxn−Sγ p+Sγ p− p‖2 +(1−βn)‖sn− p‖2

≤ βn(ρ
2‖xn− p‖2 +2〈zn−Sγ p,Sγ p− p〉+‖Sγ p− p‖2)+(1−βn)‖sn− p‖2

≤ βn(ρ
2‖xn− p‖2 +2〈zn− p+ p−Sγ p,Sγ p− p〉+‖Sγ p− p‖2)+(1−βn)‖sn− p‖2

≤ βn(ρ
2‖xn− p‖2 +2〈zn− p,Sγ p− p〉−‖Sγ p− p‖2)+(1−βn)‖sn− p‖2

≤ ‖xn− p‖2− (1−βn)τn(
4h(xn)

h(xn)+ lµn(xn)
− τn)

(h(xn)+ lµn(xn))
2

θ 2(xn)
+2βn〈zn− p,Sγ p− p〉.

(3.17)

Setting

ηn := (1−βn)τn(
4h(xn)

h(xn)+ lµn(xn)
− τn)

(h(xn)+ lµn(xn))
2

θ 2(xn)

and
ϕn := 2βn〈zn− p,Sγ p− p〉,

we obtain the second inequality required in Lemma 2.7

bn+1 ≤ bn−ηn +ϕn. (3.18)

Since ∑
∞
n=1 βn = ∞, it is easy to obtain ∑

∞
n=1 σn = ∞. By the boundedness of {zn} and βn→ 0,

we have lim
n→∞

ϕn = 0. The sequences of parameters {σn} and {ϕn} satisfy the conditions (i) and

(ii) of Lemma 2.7. In order to complete the proof, it suffices to verify that ηnk → 0(k→ ∞)
implies that limsupk→∞ ank ≤ 0 for any subsequence {nk} ⊂ {n}. Indeed, if ηnk → 0, then

(h(xnk)+ lµnk
(xnk))

2

θ 2(xnk)
→ 0.
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From the boundedness of the function θ 2(xnk), we have h(xnk) + lµnk
(xnk)→ 0. Since both

h(xnk) and lµnk
(xnk) are nonnegative, we further obtain

h(xnk) =
1
2
‖(I− proxλ f )Axnk‖

2→ 0 (3.19)

and

lµnk
(xnk) =

1
2
‖(I− proxµnk λg)xnk‖

2→ 0. (3.20)

Step 3. Prove that

ωw(xnk)⊂Ω. (3.21)

Since {xnk} is bounded, we see that ωw(xnk) 6= /0. Take x̄ ∈ ωw(xnk) and assume that {xnk j
} is

a subsequence of {xnk} weakly converging to x̄. Without loss of generality, we still use {xnk}
to denote {xnk j

}. By the lower semi-continuity of h, we have 0≤ h(x̄)≤ liminfk→∞ h(xnk) = 0.
Thus we obtain

h(x̄) =
1
2
‖(I− proxλ f )Ax̄‖2 = 0. (3.22)

Choosing a fixed positive constant µ , using the proximal identity of Lemma 2.5 and the nonex-
pansiveness of proximal operators, we deduce that

lµ(xnk) =
1
2
‖(I− proxλ µnk g)xnk +(proxλ µnk g− proxλ µg)xnk‖

2

≤ ‖(I− proxλ µnk g)xnk‖
2 +‖(proxλ µnk g− proxλ µg)xnk‖

2

= 2lµnk
(xnk)+‖proxλ µg(

µ

µnk

xnk +(1− µ

µnk

)proxλ µnk gxnk)− proxλ µgxnk‖
2

≤ 2lµnk
(xnk)+‖

µ

µnk

xnk +(1− µ

µnk

)proxλ µnk gxnk− xnk‖
2

≤ 2lµnk
(xnk)+(1− µ

µnk

)2‖proxλ µnk gxnk− xnk‖
2

≤ 2lµnk
(xnk)+2(1− µ

µnk

)2lµnk
(xnk). (3.23)

By Lemma 3.1, 1− µ

µ0
≤ 1− µ

µnk
≤ 1. From (3.23) and (3.20), we conclude lµ(xnk)→ 0 as

k→ ∞. It follows that

lµ(x̄) =
1
2
‖(I− proxµλg)x̄‖2 = 0. (3.24)

Combining (3.22) and (3.24), we obtain x̄ ∈ Ω, which yields ωw(xnk) ⊂ Ω. Since proxλ µnk g is
nonexpansive, we have

‖Tµnk
xnk− xnk‖ ≤ ‖Tµnk

xnk− proxλ µnk gxnk‖+‖proxλ µnk gxnk− xnk‖
≤ ‖µnkA∗(I− proxλ f )Axnk‖+‖proxλ µnk gxnk− xnk‖
≤ µnk‖A‖ · ‖(I− proxλ f )Axnk‖+‖proxλ µnk gxnk− xnk‖ (3.25)

According to (3.19) and (3.20), we obtain

‖Tµnk
xnk− xnk‖→ 0 (3.26)
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as k→ ∞. Since Sγ is a contraction and PΩ is a nonexpansive mapping, we obtain that PΩSγ is
also contractive. Hence there exists the unique fixed point x∗ of PΩSγ (x∗ = PΩSγx∗), and x∗ ∈Ω

is the projection of Sγx∗ onto Ω. By Lemma 2.2, x∗ is the unique solution of the following
variational inequality problem

〈Sγx∗− x∗, x̃− x∗〉 ≤ 0,∀ x̃ ∈Ω. (3.27)

Meanwhile, by invoking (3.26) and Schwarz’s inequality, we have

limsup
k→∞

〈Sγx∗− x∗,snk− x∗〉

≤ limsup
k→∞

〈Sγx∗− x∗,xnk− x∗〉+ lim
k→∞
‖Tµnk

xnk− xnk‖ · ‖Sγx∗− x∗‖

= limsup
k→∞

〈Sγx∗− x∗,xnk− x∗〉

Now, we can take subsequence {xnki
} of {xnk} such that {xnki

}⇀ x̂ as i→ ∞ and

limsup
k→∞

〈Sγx∗− x∗,xnk− x∗〉= lim
i→∞
〈Sγx∗− x∗,xnki

− x∗〉= 〈Sγx∗− x∗, x̂− x∗〉.

Since x̂ ∈ ωw(xnk) ⊂ Ω and x∗ is the solution of the variational inequality problem (3.27), we
conclude that

limsup
k→∞

〈Sγx∗− x∗,snk− x∗〉 ≤ 〈Sγx∗− x∗, x̂− x∗〉 ≤ 0.

Hence, limsupk→∞ ank ≤ 0 combing conditions (i). Applying Lemma 2.7 yields that {xn} con-
verges strongly to a point x∗ in Ω. Indeed, using the fact that Sγ = I− γ∇ω , we see that (3.27)
is equivalent to

〈x∗− (x∗− γ∇ω(x∗)), x̃− x∗〉= γ〈∇ω(x∗), x̃− x∗〉 ≥ 0, ∀ x̃ ∈Ω,

which directly implies that (3.9) holds true due to γ > 0. This means that x∗ satisfies the first
order optimality condition and therefore x∗ is also the optimal solution to problem (1.1). This
completes the proof. �

Next, we introduce an inertial acceleration version for solving convex bilevel optimization
based on the inertial technique proposed by Nesterov [15].
Algorithm 2
Step 0. Input β ≥ 3, λ > 0 and γ ∈ (0, 2

Lω+ϖ
]. Give ε > 0, δ > 0, and two initial points

x0, x1 ∈ H1. Set n := 1.
Step 1. Given xn−1,xn, compute

yn = xn +∆n(xn− xn−1),

sn = Tµnyn,

zn = Sγyn,

xn+1 = βnzn +(1−βn)sn,

(3.28)

where ∆n satisfies 0≤ |∆n| ≤ ∆n with ∆n defined by

∆n =


min{ n−1

n+β −1
,

εn

‖xn− xn−1‖
}, xn 6= xn−1,

n−1
n+β −1

, xn = xn−1
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and the stepsize µn = τn
h(yn)+lµn(yn)

θ 2(yn)
with δ ≤ τn ≤ 4h(yn)

h(yn)+lµn(yn)
−δ .

Step 2. If h(yn)+ lµn(yn)< ε, then the iterative process stops. Otherwise, set n := n+1 and go
to Step 1.

Theorem 3.3. Let H1 and H2 be two real Hilbert spaces and Assumption 3.1 holds. Assume that
Tµ and Sγ are defined by (3.1) and (3.2), respectively. Given x0,x1 ∈ H1 arbitrarily, suppose
that

(i) βn ∈ (0,1), limn→∞ βn = 0 and ∑
∞
n=1 βn = ∞;

(ii) δ ≤ τn ≤ 4h(yn)
h(yn)+lµn(yn)

−δ for some δ > 0 small enough;

(iii) λ > 0 and γ ∈ (0, 2
Lω+ϖ

];
(iv) εn = o(βn), i.e., limn→∞

εn
βn

= 0.

Then {xn} generated by Algorithm 2 converges strongly to x∗, where x∗ is a solution to (1.3),
and x∗ is also the unique solution of the variational inequality

〈∇ω(x∗), x̃− x∗〉 ≥ 0,∀ x̃ ∈Ω. (3.29)

Proof. The proof is divided into three steps.
Step 1. Prove that {xn} is bounded.

For any p ∈Ω, we have

‖yn− p‖= ‖xn +∆n(xn− xn−1)− p‖ ≤ ‖xn− p‖+ |∆n| · ‖xn− xn−1‖. (3.30)

Using a technique similar to Theorem 3.2, we have

‖sn− p‖2 ≤ ‖yn− p‖2−2µn〈yn− p,∇h(yn)〉+µ
2
n‖∇h(yn)‖2 (3.31)

and

〈yn− p,∇h(yn)〉= 〈(I− proxλ f )Ayn,Ayn−Ap〉 ≥ ‖(I− proxλ f )Ayn‖2 = 2h(yn). (3.32)

It follows that

‖sn− p‖2 ≤ ‖yn− p‖2− τn(
4h(yn)

h(yn)+ lµn(yn)
− τn)

(h(yn)+ lµn(yn))
2

θ 2(xn)
. (3.33)

Condition (ii) together with the nonnegativity of (h(yn)+lµn(yn))
2

θ 2(xn)
ensures that

‖sn− p‖ ≤ ‖yn− p‖. (3.34)

Combining (3.30) and (3.34), we obtain

‖xn+1− p‖ ≤ βn‖Sγyn−Sγ p‖+βn‖Sγ p− p‖+(1−βn)‖sn− p‖
≤ (1−βn(1−ρ))‖yn− p‖+βn‖Sγ p− p‖

≤ (1−βn(1−ρ))‖xn− p‖+βn(1−ρ)
‖Sγ p− p‖+ |∆n| · ‖xn− xn−1‖/βn

1−ρ
. (3.35)

Using the definition of ∆n, condition (iv), and the mathematical induction, we conclude that
{xn} is bounded.
Step 2. Prove that limk→∞ ηnk = 0 implies limk→∞ h(ynk) = 0 and limk→∞ lµnk

(ynk) = 0 for any
sequence {nk} ⊂ {n}. The expression of ηn is under inequality (3.39).

Firstly, fixing p ∈Ω, we have from Lemma 2.3 (ii) that

‖yn− p‖2 ≤ ‖xn− p‖2 +2〈xn− p+∆n(xn− xn−1),∆n(xn− xn−1)〉



SELF-ADAPTIVE ALGORITHMS 11

≤ ‖xn− p‖2 +2(‖xn− p‖+ |∆n| · ‖xn− xn−1‖)|∆n| · ‖xn− xn−1‖. (3.36)

According to (3.36) and condition (iv), we obtain similar results to those in Theorem 3.2.

‖xn+1− p‖2 ≤ (1−βn(2−βn(1+2ρ
2)−2ρ(1−βn)))‖yn− p‖2

+2β
2
n ‖Sγ p− p‖2 +2βn(1−βn)〈Sγ p− p,sn− p〉

≤ (1−βn(2−βn(1+2ρ
2)−2ρ(1−βn)))‖xn− p‖2 +2M|∆n| · ‖xn− xn−1‖

+2β
2
n ‖Sγ p− p‖2 +2βn(1−βn)〈Sγ p− p,sn− p〉

≤ (1−βn(2−βn(1+2ρ
2)−2ρ(1−βn)))‖xn− p‖2 +2Mεn

+2β
2
n ‖Sγ p− p‖2 +2βn(1−βn)〈Sγ p− p,sn− p〉, (3.37)

where M := supn≥1{‖xn− p‖+ |∆n| · ‖xn− xn−1‖}. Set bn := ‖xn− p‖2,

σn := βn(2−βn(1+2ρ
2)−2ρ(1−βn)),

and

an :=
2(Mεn/βn +βn‖Sγ p− p‖2 +(1−βn)〈Sγ p− p,sn− p〉)

2−βn(1+2ρ2)−2ρ(1−βn)
,

we deduce from the above inequality that

bn+1 ≤ (1−σn)bn +σnan. (3.38)

Combining (3.28), (3.33), and (3.36), we have

‖xn+1− p‖2 ≤ ‖yn− p‖2− (1−βn)τn(
4h(yn)

h(yn)+ lµn(yn)
− τn)

(h(yn)+ lµn(yn))
2

θ 2(yn)

+2βn〈zn− p,Sγ p− p〉

≤ ‖xn− p‖2− (1−βn)τn(
4h(yn)

h(yn)+ lµn(yn)
− τn)

(h(yn)+ lµn(yn))
2

θ 2(yn)

+2Mεn +2βn〈zn− p,Sγ p− p〉. (3.39)

Set

ηn := (1−βn)τn(
4h(yn)

h(yn)+ lµn(yn)
− τn)

(h(yn)+ lµn(yn))
2

θ 2(yn)

and
ϕn := 2Mεn +2βn〈zn− p,Sγ p− p〉,

we have

bn+1 ≤ bn−ηn +ϕn. (3.40)

It is easy to verify that {σn} and {ϕn} satisfy the conditions (i) and (ii) of Lemma 2.7. Assume
that ηnk→ 0. With similar processes, we can derive that limk→∞ h(ynk)= 0 and limk→∞ lµnk

(ynk)=
0.
Step 3. Prove that

ωw(xnk)⊂Ω. (3.41)

Take x̄ ∈ ωw(xnk). Since ‖ynk − xnk‖ = |∆nk | · ‖xnk − xnk−1‖ ≤ εnk → 0 as k → ∞, we obtain
x̄ ∈ ωw(ynk) immediately. The following proof can be carried out by a similar argument to Step
3 in Theorem 3.2. Applying Lemma 2.7 yields that {xn} converges strongly to a point x∗ in Ω.
This completes the proof. �
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4. NUMERICAL ILLUSTRATIONS

In this section, we present numerical comparisons with our proposed algorithms and that of
the algorithm (called Bilevel Gradient Sequential Averaging Method, abbreviated as BiG-SAM)
in [20]. Our numerical experiments are coded using software MATLAB.

Example 4.1. Let H1 = Rm and H2 = Rk. The inner objective function is taken here as

F(x) := δC(x)+δQ(Ax),

where A∈Rk×m is a random matrix whose elements are normally distributed, δC and δQ denote
the indicator functions of two nonempty closed convex sets C,Q of H1 and H2, respectively. δC
is defined as δC(x) = 0 if x ∈C and +∞ otherwise. Problem (1.3) reduces to

min
x∈H1

F(x) = min
x∈C
{1

2
‖(I−PQ)Ax‖2}.

We take the outer objective function as ω(x) = 1
2xT Px with P being a given positive definite

matrix.
In this example, let C = {x ∈H1|‖x‖ ≤ r} with a random r > 0, Q = {y ∈H2|〈a,y〉 ≤ b} with

a random vector a ∈ H2 and a random b ∈ R. Set the parameters λ = 1,, γ = 2
Lω+ϖ

, βn =
1

n+1 ,
εn = βn/n0.1 (Algorithm 2), and µ = 1/L f (BIG-SAM). For simplicity, we set P = I. Take
arbitrary x1,x0 ∈ H1. Tables 1 and 2 demonstrate that Algorithm 1 and Algorithm 2 are better
than BiG-SAM in terms of averaged running time and number of iterations under different error
limitations. Because Algorithm 1 and Algorithm 2 do not require to calculate or estimate the
norm of A, they have obvious advantages in running time.

TABLE 1. Comparison of Algorithm 1, Algorithm 2 and BIG-SAM. β = 3, ε = 10−3.

Algorithm 1 Algorithm 2 BiG-SAM

Parameters Iterations Time(s) Iterations Time(s) Iterations Time(s)

m=1000,k=300 5 0.2989 5 0.2031 4 1.3428

m=2000,k=500 6 1.5020 5 1.4197 13 2.4682

m=5000,k=1000 8 1.5909 8 1.4577 15 3.8438

m=10000,k=2000 9 1.7500 11 1.5725 12 12.8906

m=20000,k=2000 8 5.5781 7 5.0844 17 30.2500

In Example 4.1, settomg m = 10000,k = 3000, we compare the running time of the three
algorithms in the case of different ε . From Figure 1, one sees that the test values of our proposed
algorithms are faster to reach the stop criteria, especially Algorithm 2 with inertia step.
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TABLE 2. Comparison of Algorithm 1, Algorithm 2 and BIG-SAM. β = 3, ε = 10−5.

Algorithm 1 Algorithm 2 BiG-SAM

Parameters Iterations Time(s) Iterations Time(s) Iterations Time(s)

m=1000,k=300 5 0.5033 5 0.3781 6 2.3973

m=2000,k=500 8 2.5702 8 1.53702 9 3.2823

m=5000,k=1000 8 5.0076 7 4.1271 8 8.8536

m=10000,k=2000 11 6.5862 10 6.3281 12 14.3095

m=20000,k=2000 16 7.4688 12 6.8312 18 39.5938

0 2 4 6 8 10 12 15 18
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10-6
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10-4

10-3
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10-1 m=10000,k=3000

Algorithm 1
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FIGURE 1. Comparison of running time of three algorithms
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