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MULTIPLE SOLUTIONS FOR A CLASS OF NON-HOMOGENEOUS
p(x)-KIRCHHOFF TYPE EQUATIONS

JIA-FENG ZHANG∗, WEN-MIN LI, XIAO-WU LI, HONG-MIN SUO

School of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, China

Abstract. The main aim of this paper is to investigate the existence of nontrivial solutions for a class of variable
exponent p(x)-Kirchhoff type equations. We prove the existence of three solutions by using the mountain pass
theorem and Ekeland’s variational principle. Moreover, when λ = 0, we obtain the existence of infinite many
solutions by using the symmetric mountain pass theorem.
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1. INTRODUCTION AND MAIN RESULTS

In this work, we consider the following nonlocal problem−
(

a−b
∫

Ω

1
p(x)
|∇u|p(x)dx

)
∆p(x)u = g(x,u)+λ f (x), in Ω,

u = 0, on ∂Ω,
(1.1)

where Ω is a bounded open subset of RN(N ≥ 1), with smooth boundary ∂Ω, λ is a posi-
tive parameter, ∆p(x)u = div(|∇u|p(x)−2∇u) is the p(x)-Laplacian operator, and g satisfies the
following hypotheses:

(g1) for any (x,s) ∈Ω×R, g(x,s) satisfies the following subcritical growth condition:

|g(x,s)| ≤C(1+ |s|q(x)−1),

where C is a positive constant and p(x)< q(x)< p∗(x);
(g2) lim

s→0

g(x,s)
|s|p(x)−2s

= 0;

(g3) for any x ∈Ω, lim
s→+∞

G(x,s)
|s|p+

=+∞;
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(g4) there exist a continuous function σ : Ω→ [0,+∞) and a1,a2 > 0, µ ∈ (p+, 2(p−)2

p+ ) such
that σ+ < p+ and

1
µ

g(x,s)s−G(x,s)≥−a1−a2|s|σ(x), for each (x,s) ∈Ω×R;

(g5) g(x,−t) =−g(x, t), for any (x, t) ∈Ω×R.
In recent years, much attention has been paid to various problems with variable exponential

growth conditions, we refer to [2, 8, 12, 21, 24] for related results. The reason why people are
interested in this is that the problems with variable exponents have a wide range of real appli-
cations, such as elastic mechanics and electrorheological fluids [25], continuum mechanics [5],
dielectric breakdown, electrical resistivity and polycrystal plasticity [6] and image restoration
[9].

It is known that problem (1.1) is related to the stationary problem of a model introduced by
Kirchhoff [22]. To be more precise, Kirchhoff gave the following physical model

ρ
∂ 2u
∂ t2 −

(
ρ0

h
+

E
2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2dx
)

∂ 2u
∂x2 = 0.

The above model extends the classical D’Alemberts wave equation by considering the effects of
the changes in the length of the strings during the vibrations. Lately, Kirchhoff type equations
were extended to the following p-Laplacian Kirchhoff type equations by many authors

−M
(∫

Ω

|∇u|pdx
)

∆pu = f (x,u), in Ω, (1.2)

where ∆pu = div(|∇u|p−2∇u) is the p-Laplacian; see, e.g., [1, 7, 15, 26, 29].
Particularly, under the conditions on M(t) = a− bt, f (x,u) = |u|2u + µh(x), p = 2, and

Ω = R4, the existence of at least two positive solutions for (1.2) was obtained in [26] by using
variational methods, where a,b are positive constants, µ is a non-negative parameter, and h(x)∈
L

4
3 (R4) is a non-negative function. Under the conditions on M(t) = a− bt, f (x,u) = |u|q−2u,

p = 2, Ω⊂RN , at least a nontrivial non-negative solution and a nontrivial non-positive solution
for (1.2) were demonstrated in [29] by variational methods, where q ∈ (2,2∗) with 2∗ = 2N

N−2 if
N ≥ 3 and 2∗ =+∞ otherwise.

As a natural generalization of p-Laplacian operator, p(x)-Laplacian operator has strong in-
homogeneity. In recent years, a large number of results with p(x)-Laplacian operator have
appeared; see, e.g., [3, 10, 11, 12, 13, 17, 19].

In [17], the following equation−
(

a−b
∫

Ω

1
p(x)
|∇u|p(x)dx

)
∆p(x)u = g(x,u)+λ |u|p(x)−2u, in Ω,

u = 0, on ∂Ω,
(1.3)

was studied, in which a mountain pass solution to (1.3) was obtained under the assumption that
g satisfies some appropriate conditions, where a≥ b are positive constants, λ is a real parameter,
p ∈C(Ω) with N > p(x)> 1, and Ω⊂ RN is a bounded smooth domain.
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In [10], the following kind of fourth order elliptic variable exponent Kirchhoff type equations∆
2
p(x)u−M

(∫
Ω

1
p(x)
|∇u|p(x)dx

)
∆p(x)u = f (x,u)+h(x), in Ω,

u = 0, on ∂Ω,
(1.4)

were considered, in which at least two nontrivial solutions to equation (1.4) were obtained by
using variational argument under certain conditions for h, p and Ambrosetti-Rabinowitz type
conditions for f , where Ω⊂RN (N ≥ 3) is a smooth bounded domain, M(t) = a+btk, a,k > 0,
b≥ 0, and ∆2

p(x)u = ∆(|∆u|p(x)−2∆u) is the p(x)-biharmonic operator.
Inspired by [10, 17], a natural question is that if we can generalize the results of [26, 29]

to the case of p(x)-Kirchhoff variable exponent and obtain the existence of multiple nontrivial
solutions. This paper will give an affirmative answer to this question. In the present work, we
will prove the existence and multiplicity of nontrivial solutions for the perturbation problem
(1.1) involving the following negative nonlocal item

a−b
(∫

Ω

1
p(x)
|∇u|p(x)dx

)
.

The main results extend in several directions previous results recently appeared in the litera-
ture (for example [18, 26, 29]). The difficulty in this case is the Palais-Smale condition for the
corresponding energy functional could not be checked directly. To overcome this difficulty, we
must give a threshold value of J to prove the Palais-Smale condition. As far as we know, the
results of the present paper do not appear in the existing literature.

Our main results are as follows.

Theorem 1.1. Suppose that conditions (g1)-(g4) hold. If function q∈C(Ω) satisfies

1 < p− < p(x)< p+ < q− < q(x)< p∗(x) and p+ < 2p−, (1.5)

then there exist a constant λ ∗ > 0 such that, when λ ∈ (0,λ ∗), problem (1.1) has at least three
nontrivial weak solutions.

Theorem 1.2. Suppose that λ = 0 and (g1)-(g5) hold. If function q∈C(Ω) satisfies (1.5), then
problem (1.1) has a sequence of weak solutions ±uk such that I(±uk)→+∞ as k→+∞.

Remark 1.3. In [10, 17], the nonlinearities satisfy the (AR) condition, whereas the nonlinear-
ity g considered in this paper does not satisfy the (AR) condition. Therefore, this paper is a
generalization of the results in [10, 17].

Now, we give the organizational structure of this article as follows. In Section 2, we will
recall some basic facts about the variable exponent Lebesgue and Sobolev spaces. Proof of
Theorem 1.1 is given in Section 3. Section 4 is devoted to proving Theorem 1.2.

2. PRELIMINARIES

Let Ω be a bounded domain of RN for any x ∈ Ω. Let p− = infΩ p(x) ≤ p(x) ≤ p+ =
supΩ p(x)< N and denote C+(Ω) = {p(x) : p(x) ∈C(Ω), p(x)> 1}.

We introduce the following variable exponential Lebesgue space:

Lp(·)(Ω) =
{

u :
∫

Ω

|u(x)|p(x)dx < ∞

}
,
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where p(x) ∈ C+(Ω), u is a measurable real-valued function, and endowed with the so-called
Luxemburg norm

||u||Lp(x)(Ω) = |u|p(·) = inf
{

µ > 0 :
∫

Ω

∣∣∣u(x)
µ

∣∣∣p(x)dx < 1
}
.

Obviously, Lp(·)(Ω) is a separable and reflexive Banach space. For basic properties of the
variable exponent Lebesgue spaces, we refer to [16, 23, 28] and the references therein.

Proposition 2.1. [28] The space (Lp(x)(Ω), |.|p(x)) is uniformly convex , separable, and reflex-
ive, and its the corresponding conjugate space is (Lq(x)(Ω), |.|q(x)), where q(x) and p(x) are
conjugate functions of each other. That is, for any x ∈Ω,

1
p(x)

+
1

q(x)
= 1.

For each v ∈ Lq(x)(Ω),u ∈ Lp(x)(Ω), the following Hölder type inequality∣∣∣∫
Ω

uvdx
∣∣∣≤ ( 1

p−
+

1
q−

)
|u|p(x)|v|q(x)

holds.

The inclusion between Lebesgue spaces also extends the classical variational framework,
that is, if p1 and p2 are variable exponents such that p1 ≤ p2 in Ω, and 0 < |Ω| < ∞, then
Lp2(x)(Ω) ↪→ Lp1(x)(Ω) is continuous. Let the module of generalized Lebesgue-Sobolev space
Lp(·)(Ω) be ρp(·), and

ρp(·)(u) :=
∫

Ω

|u|p(x)dx,

which plays an important role in the generalized Lebesgue-Sobolev space Lp(·)(Ω).

Lemma 2.2. [14] Assume that p+ <+∞ and un,u ∈ Lp(·). Then we have the following proper-
ties:

1. |u|p(·) > 1⇒ |u|p
−

p(·) ≤ ρp(·)(u)≤ |u|
p+

p(·);

2. |u|p(·) < 1⇒ |u|p
+

p(·) ≤ ρp(·)(u)≤ |u|
p−

p(·);
3. |u|p(·) < 1 (individually,= 1;> 1)⇐⇒ ρp(·)(u)≤ 1 (individually,= 1;> 1);
4. |un|p(·)→ 0 (individually,→+∞)⇐⇒ ρp(·)(un)→ 0 (individually,→+∞);
5. limn→∞ |un−u|p(x) = 0⇐⇒ limn→∞ ρp(·)|un−u|p(x) = 0.

The Sobolev space W 1,p(x)(Ω) with variable exponent is defined by

W 1,p(x)(Ω) :=
{

u : Ω⊂ RN → R : u ∈ Lp(x)(Ω), |∇u| ∈ Lp(x)(Ω)
}
,

and the corresponding norm is

||u||1,p(x) = ||∇u||p(x)+ ||u||p(x).

Then the closure of C∞
0 (Ω) under norm ||u||1,p(x) is defined by W 1,p(x)

0 (Ω). According to the

above information, W 1,p(x)(Ω), W 1,p(x)
0 (Ω), and Lp(x)(Ω) become reflexive Banach spaces and
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separeble. For more information, we refer to [14, 21]. In addition, we define

p∗(x) =

{
N p(x)

N−p(x) , if p(x)< N,

+∞, if p(x)≥ N.

Proposition 2.3. (Sobolev Embedding [21]). For p,q ∈ C+(Ω) such that 1 ≤ q(x) ≤ p∗(x),
there is a continuous embedding

W 1,p(x)(Ω) ↪→ Lq(x)(Ω) for each x ∈Ω.

Furthermore, if 1 < q(x) < p∗(x), then, for any x ∈ Ω, embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω) is
compact.

Proposition 2.4. (Poincaré Inequality [21]). For any u∈W 1,p(x)
0 (Ω), there is a positive constant

C such that ||u||Lp(x)(Ω) ≤C||∇u||Lp(x)(Ω).

Remark 2.5. According to Proposition 2.4, it is not difficult for us to find that ||∇u||Lp(x)(Ω) and

||u||W 1,p(x)(Ω) are equivalent on W 1,p(x)
0 (Ω).

Lemma 2.6. ([20]). For any u ∈W 1,p(x)
0 (Ω), we first define A(u) =

∫
Ω

1
p(x) |∇u|p(x)dx. Then it is

not difficult to verify that A(u) ∈C1(W 1,p(x)
0 (Ω),R), and, for any u,v ∈W 1,p(x)

0 (Ω), derivative
given by 〈A′(u),v〉=

∫
Ω
|∇u|p(x)−2∇u∇vdx. Moreover, A and A′ have the following properties:

1. for any u ∈W 1,p(x)
0 (Ω), A(u)→+∞ as ||u|| →+∞;

2. A′ : W 1,p(x)
0 (Ω)→ (W−1,p′(x)(Ω)) = (W 1,p(x)

0 (Ω))∗ is a strictly monotone and bounded
homeomorphism operator, where p(x) and p′(x) satisfies 1

p(x) +
1

p′(x) = 1;
3. A′ is an S+-type mapping, that is, if limsup〈A′(un),un−u〉 ≤ 0 and un ⇀ u, then un→ u

(strongly) in W 1,p(x)
0 (Ω).

Definition 2.7. If, for any ϕ ∈W 1,p(x)
0 (Ω),(

a−b
∫

Ω

1
p(x)
|∇u|p(x)dx

)∫
Ω

|∇u|p(x)−2
∇u∇ϕdx =

∫
Ω

g(x,u)ϕdx−λ

∫
Ω

f (x)ϕdx,

then the function u ∈W 1,p(x)
0 (Ω) is a weak solution to (1.1).

Define the energy functional J : W 1,p(x)
0 (Ω)→ R associated with problem (1.1) by

J(u) = a
∫

Ω

1
p(x)
|∇u|p(x)dx− b

2

(∫
Ω

1
p(x)
|∇u|p(x)dx

)2
−
∫

Ω

G(x,u)dx

−λ

∫
Ω

f (x)udx.

It is not difficult to find that J(u) is well defined and of C1 class on W 1,p(x)
0 (Ω). Furthermore,

for any u,ϕ ∈W 1,p(x)
0 (Ω), we have

〈J′(u),ϕ〉=
(

a−b
∫

Ω

1
p(x)
|∇u|p(x)dx

)∫
Ω

|∇u|p(x)−2
∇u∇ϕdx−

∫
Ω

g(x,u)ϕdx

−λ

∫
Ω

f (x)ϕdx.
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Therefore, if a function u is the weak solution of problem (1.1) if and only if u is the critical point
of functional J. In addition, for the sake of simplicity, we will denote the norm of W 1,p(x)

0 (Ω)
by ||.|| instead of ||.||

W 1,p(x)
0 (Ω)

.

3. PROOF OF THEOREM 1.1

Now, let us briefly review the definition of the Palais-Smale compactness condition.

Definition 3.1. [17] Let (W 1,p(x)
0 (Ω), ||.||) be a complete normed linear space and J ∈C1(W 1,p(x)

0 (Ω)).

Given c ∈ R, if any sequence {un} ∈W 1,p(x)
0 (Ω) satisfying

J(un)→ c and J′(un)→ 0 in W−1,p′(x)
0 (Ω) as n→ ∞, (3.1)

and for sequence {un} there exists a convergent subsequence, then we say that J satisfies the
Palais-Smale condition at the level c ∈ R (“(PS)c” condition for short).

Next, we give the proof of the (PS)c condition of functional J. In the following, we denotes
W 1,p(x)

0 (Ω) by X for simplicity.

Lemma 3.2. Suppose that the above conditions (g1)− (g4) hold. When c < a2

2b , functional J
satisfies the (PS)c condition.

Proof. We divide the proof into two steps.
Step 1. Verify that {un} is bounded in X .
Let {un} ⊂ X satisfy

J(un)→ c and J′(un)→ 0 in W−1,p′(x)
0 (Ω) as n→ ∞,

and c < a2

2b . For n large enough, by (3.1) and (g4), we obtain that

on(1)+ c

≥ J(un)−
1

p+
〈J′(un),un〉

≥ a
∫

Ω

1
p(x)
|∇un|p(x)dx− b

2

(∫
Ω

1
p(x)
|∇un|p(x)dx

)2
−
∫

Ω

G(x,un)dx

−λ

∫
Ω

f (x)undx− 1
p+

([
a−b

∫
Ω

1
p(x)
|∇un|p(x)dx

]∫
Ω

|∇un|p(x)dx−
∫

Ω

g(x,un)undx
)

+
1

p+
λ

∫
Ω

f (x)undx

≥ b
( 1

(p+)2 −
1

2(p−)2

)(∫
Ω

|∇un|p(x)dx
)2
−λ

(
1− 1

p+

)∫
Ω

f (x)undx

−
∫

Ω

(
G(x,un)−

1
p+

g(x,un)un

)
dx

≥ b
( 1

(p+)2 −
1

2(p−)2

)(∫
Ω

|∇un|p(x)dx
)2
−a1|Ω|−a2

∫
Ω

|un|σ(x)dx

−λ

(
1− 1

p+

)∫
Ω

f (x)undx.
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So, we can deduce that

on(1)+ c≥
( 1

(p+)2 −
1

2(p−)2

)
b||un||2p−−a1|Ω|−a2||un||p

+

−
(

1− 1
p+

)
| f | 6

5
S−

1
2 ||u||.

It follows from (1.5) that {un} is bounded in X .
Step 2. Prove that there exists u ∈ X such that un→ u in X .
According to Proposition 2.3, for 1≤ s(x)< p∗(x), it is not difficult to find that the embedding

X ↪→ Ls(x)(Ω) is compact. Due to {un} is bounded in X , then there exists u ∈ X such that (up to
a subsequence)

un ⇀ u in X , un→ u in Ls(x)(Ω), un(x)→ u(x) a.e. in Ω. (3.2)

By condition (g1) and (g2), it is not difficult to verify that, for each ε ∈ (0,1), there exists
positive constant Cε such that

|g(x,un)| ≤ ε|un|p(x)−1 +Cε |un|q(x)−1. (3.3)

According to (3.3) and Proposition 2.3, we obtain that

lim
n→∞

∫
Ω

g(x,un)(un−u)dx = 0. (3.4)

From (3.1), we have 〈J′(un),un−u〉= 0 and then

〈J′(un),un−u〉=
(

a−b
∫

Ω

1
p(x)
|∇un|p(x)dx

)∫
Ω

|∇un|p(x)−2
∇un(∇un−∇u)dx

−
∫

Ω

g(x,un)(un−u)dx−λ

∫
Ω

f (x)(un−u)dx→ 0.

So, using(3.4), we can easily verify that(
a−b

∫
Ω

1
p(x)
|∇un|p(x)dx

)∫
Ω

|∇un|p(x)−2
∇un(∇un−∇u)dx→ 0.

Since {un} is bounded in X , we may assume that∫
Ω

1
p(x)
|∇un|p(x)dx→ t0 > 0 as n→ ∞.

Case 1. If t0 = 0, then un→ u = 0 in X , that is, the conclusion is established immediately.
Case 2. If t0 > 0, we will consider it in two subcases:
Subcase 1. If t0 = a

b , then a−b
∫

Ω
1

p(x) |∇un|p(x)dx→ 0. For each u∈W 1,p(x)
0 (Ω), we consider

the following functional

ϕ(u) = λ

∫
Ω

f (x)udx+
∫

Ω

G(x,u)dx.

Obviously, for any u,v ∈W 1,p(x)
0 (Ω), we obtain that

〈ϕ ′(u),v〉= λ

∫
Ω

f (x)vdx+
∫

Ω

g(x,u)vdx,

from which we deduce

〈ϕ ′(un)−ϕ
′(u),v〉=

∫
Ω

(g(x,un)−g(x,u))vdx.
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Subcase 2. If t0 6= a
b , then we can easily verify a− b

∫
Ω

1
p(x) |∇un|p(x)dx 9 0 and no sub-

sequence of {a− b
∫

Ω
1

p(x) |∇un|p(x)dx→ 0} converges to zero. Hence, there exists a positive

constant δ such that 0 < δ < |a−b
∫

Ω
1

p(x) |∇un|p(x)dx| when n is large enough. So,{
a−b

∫
Ω

1
p(x)
|∇un|p(x)dx→ 0

}
is bounded.

To end the proof, we also need the following lemma.

Lemma 3.3. [17] Let un,u ∈ X satisfies (3.2). Then, for any v ∈ X, the following properties
hold:

(i) lim
n→∞

∫
Ω
|g(x,un)−g(x,u)||v|dx = 0;

(ii) 〈ϕ ′(un)−ϕ ′(u),v〉 → 0 as n→+∞.

Next, we complete the proof of lemma 3.2.
Since 〈J′(u),v〉=(a−b

∫
Ω

1
p(x) |∇u|p(x)dx)

∫
Ω
|∇u|p(x)−2∇u∇vdx−〈ϕ ′(u),v〉, 〈J′(un),v〉→ 0,

and a− b
∫

Ω
1

p(x) |∇un|p(x)dx→ 0, then it follows from lemma 3.3 that ϕ ′(un)→ 0 (n→ ∞),

namely, for each v ∈W 1,p(x)
0 (Ω), we have

〈ϕ ′(u),v〉= λ

∫
Ω

f (x)vdx+
∫

Ω

g(x,u)vdx.

Thus, for a.e. x ∈ Ω, we obtain that λ f (x)+ g(x,u(x)) = 0. Then, it follows from the funda-
mental lemma of the variational method (see [27]) that u = 0. This implies that

ϕ(un) = λ

∫
Ω

f (x)undx+
∫

Ω

G(x,un)dx→ λ

∫
Ω

f (x)udx+
∫

Ω

G(x,u)dx = 0.

Therefore, we can easily see that, for t0 = a
b ,

J(un) =a
∫

Ω

1
p(x)
|∇un|p(x)dx− b

2

(∫
Ω

1
p(x)
|∇un|p(x)dx

)2
−
∫

Ω

G(x,un)dx

−λ

∫
Ω

f (x)undx→ a2

2b
.

Obviously, this is a contradiction due to J(un)→ c < a2

2b . Then a− b
∫

Ω
1

p(x) |∇un|p(x)dx 9 0.
Using a method similar to Subcase 1, we obtain{

a−b
∫

Ω

1
p(x)
|∇un|p(x)dx

}
is bounded.

Therefore, we arrive at ∫
Ω

|∇un|p(x)−2
∇un(∇un−∇u)dx→ 0.

On account of S+ condition (see Lemma 2.6), we can easily deduce that ||un|| → ||u|| as n→∞,
which implies that, for any c < a2

2b , J satisfies the (PS)c condition.

Lemma 3.4. Assume that the above conditions (g1) and (g2) hold. Then, for any u ∈ X, there
exist ρ > 0 and α > 0 such that 0 < α ≤ J(u) with ||u||= ρ .
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Proof. Let ε > 0 be small enough so that 1
2p+ = ε

λp(x)p− . Using conditions (g1) and (g2), we
obtain that

|G(x,u)| ≤ ε

p(x)
|u|p(x)+ Cε

q(x)
|u|q(x). (3.5)

For u ∈ X , let ρ ∈ (0,1) such that ||u|| = ρ . According to Lemma 2.2, Proposition 2.3, (1.5),
and (3.5), we can easily deduce that

J(u) = a
∫

Ω

1
p(x)
|∇u|p(x)dx− b

2

(∫
Ω

1
p(x)
|∇u|p(x)dx

)2
−
∫

Ω

G(x,u)dx−λ

∫
Ω

f (x)udx

≥ a
∫

Ω

1
p(x)
|∇u|p(x)dx− b

2

(∫
Ω

1
p(x)
|∇u|p(x)dx

)2
− ε

∫
Ω

|u|p(x)

p(x)
dx

−Cε

∫
Ω

|u|q(x)

q(x)
dx−λ | f | 6

5
S−

1
2 ||u||

≥ a
∫

Ω

1
p(x)
|∇u|p(x)dx− b

2

(∫
Ω

1
p(x)
|∇u|p(x)dx

)2
− ε

λp(x)

∫
Ω

1
p(x)
|∇u|p(x)dx

−CCε

q−

∫
Ω

|∇u|q(x)dx−λ | f | 6
5
S−

1
2 ||u||

≥
( a

p+
− ε

λp(x)p−

)
ρp(x)(∇u)− b

2(p−)2 (ρp(x)(∇u))2−CCε

q−
ρq(x)(∇u)−λ | f | 6

5
S−

1
2 ||u||

≥ a
2p+
||u||p

+
− b

2(p−)2 ||u||
2p−−CCε

q−
||u||q

−
−λ | f | 6

5
S−

1
2 ||u||

≥
( a

2p+
||u||p

+−1− b

2(p−)2 ||u||
2p−−1−CCε

q−
||u||q

−−1−λ | f | 6
5
S−

1
2

)
||u||.

Consider the function γ1 : [0,+∞)→ R given by the formula

γ1(s) =
a

2p+
sp+−1− b

2(p−)2 s2p−−1−CCε

q−
sq−−1.

Thanks to q− > 2p− > p+, there exists s = ρ > 0 such that γ(ρ) = maxs∈[0,+∞) γ1(s) > 0.

Taking Λ = γ1(ρ)

| f | 6
5

S−
1
2

, for each u ∈ X and λ ∈ (0,Λ), we can choose positive constant α and ρ

such that 0 < α ≤ J(u) with ||u||= ρ .

Lemma 3.5. Suppose that (g3) holds. Then there exist e ∈ X such that J(e)< 0 with ρ < ||e||
(where ρ is defined in Lemma 3.4.).

Proof. By (g3), we can infer that, for all A > 0, there exists a positive constant cA such that

A|u|p
+
− cA ≤ G(x,u), for any (x,u) ∈Ω×R. (3.6)
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Let t > 1, ψ ∈C∞
0 (Ω) and ψ > 0. According to (3.6), we obtain that

J(tψ) = a
∫

Ω

1
p(x)
|t∇ψ|p(x)dx− b

2

(∫
Ω

1
p(x)
|t∇ψ|p(x)dx

)2
−
∫

Ω

G(x, tψ)dx

−λ

∫
Ω

f (x)tψdx

≤ a
∫

Ω

1
p(x)
|t∇ψ|p(x)dx− b

2

(∫
Ω

1
p(x)
|t∇ψ|p(x)dx

)2
−At p+

∫
Ω

|ψ|p
+

dx+ cA|Ω|

≤ at p+

p−

∫
Ω

|∇ψ|p(x)dx− bt2p−

2(p+)2

(∫
Ω

|∇ψ|p(x)
)2
−At p+

∫
Ω

|ψ|p
+

dx+ cA|Ω|.

Due to p− < p+ < 2p−, we can easily see that J(tψ)→−∞ as t→+∞. Then, for t > 1 large
enough, at this very moment, we just take e = tψ so that ||e||> ρ and such that J(e)< 0.

Proof of the existence of the first solution. According to Lemmas 3.2, 3.4, and 3.5, there exists
a positive constant δ such that, for | f |p′(x) < δ , all postulated conditions of the mountain pass
theorem [4] hold. Then, there exists a critical point u1 ∈ X of the functional J, namely u1
satisfies J′(u1) = 0. Hence, problem (1.1) has a nontrivial weak solution u1 ∈ X and such that
J(u1) = c > 0.

In addition, we need the following lemma to help us verify the condition of Ekeland’s varia-
tional principle.

Lemma 3.6. Suppose that the above conditions (g1)− (g3) hold. Then, for any s > 0 small
enough, there exists a function ψ ∈ X and ψ 6≡ 0, such that J(sψ)< 0.

Proof. Similar to the argument in [10], there exist constants C1,C2 such that

F(x, t)≥C1|t|µ −C2|t|p
+
, ∀ x ∈Ω, t ∈ R. (3.7)

For any s> 0 small enough, we first prove that there exists a function ψ ∈X such that J(sψ)< 0.
As a matter of fact, let ψ ∈C∞

0 (Ω) be such that
∫

Ω
f (x)ψ(x)dx > 0. Due to p−> 1, for any s> 0

small enough, it follows from (3.7) that

J(sψ) = a
∫

Ω

1
p(x)
|∇(tψ)|p(x)dx− b

2

(∫
Ω

1
p(x)
|∇tψ|p(x)dx

)2
−
∫

Ω

G(x,sψ)dx

−λ

∫
Ω

f (x)sψdx

≤ asp−

p−

∫
Ω

|∇ψ|p(x)dx− bt2p+

2(p−)2

(∫
Ω

|∇ψ|p(x)dx
)2
−C1sµ

∫
Ω

|ψ|µdx

+C2sp+
∫

Ω

|ψ|p
+

dx−λ s
∫

Ω

f (x)ψdx

< 0.

Proof of the existence of the second solution. By using Ekeland’s variational principle, we will
show that the existence of the second non-trivial weak solution u2 ∈ X and u1 6= u2.

In fact, it follows from Lemma 3.4 that on the boundary of the ball centered at the origin and
of radius ρ in X , denoted by Bρ(0)

c = inf
u∈∂Bρ (0)

J(u)> 0.
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It follows from Lemma 3.4 again that functional J is bounded from below on Bρ(0). In addition,
according to Lemma 3.6, for any τ > 0 small enough, there exists a function φ ∈ X such that
J(τφ)< 0, which implies that

−∞ < c = inf
u∈Bρ (0)

J(u)< 0.

Choose ε > 0 such that 0 < ε < infu∈∂Bρ (0) J(u)− infu∈Bρ (0) J(u). We apply the Ekeland’s
variational principle [27] to J : Bρ(0)→R. It is not difficult to infer that there exists uε ∈ Bρ(0)
such that

J(uε)< inf
u∈Bρ (0)

J(u)+ ε,

and

J(uε)< J(u)+ ε||u−uε ||, u 6= uε .

Then, we have J(uε)< infu∈Bρ (0) J(u) and then uε ∈ Bρ(0).
Next, we define the functional I(u) = J(u)+ ε||u−uε ||. It is not hard to find I : Bρ(0)→ R

and easily to verify that uε is a minimum point of I. Thus

I(uε + τv)− I(uε)

τ
≥ 0,

for any v ∈ Bρ(0) and each τ > 0 small enough. Hence, we have

J(uε + τv)− J(uε)

τ
+ ε||v|| ≥ 0.

Letting τ → 0+ in the above inequality, we obtain that

0≤ 〈J′(uε),v〉+ ε||v||,

which implies that ||J′(uε)||X∗ ≤ ε . Hence, there exists a sequence {un} ⊂ Bρ(0) such that

J(un)→ c = inf
u∈Bρ (0)

J(u)< 0 and J′(un)→ 0 in X∗ as n→ ∞. (3.8)

According to Lemma 3.2, we can easily find that un → u2 as n→ ∞. Furthermore, due to
J ∈C1(X ,R), it follows from (3.8) that J′(u2) = 0. Therefore, u2 is a nontrivial weak solution
to problem (1.1) with J(u2) = c < 0. In conclusion, thanks to J(u1) = c > 0 > c = J(u2), we
find the fact that u1 6= u2. J(u2) = c < 0. This completes the proof.

Proof of the existence of the third solution. Letting M = sup
u∈X

J(u), we have M < +∞. Hence

−M = inf
u∈X
−J(u). Using Ekeland’s variational principle on space X for −J(u), there exists a

(PS)−M sequence of −J(u), so it is a (PS)M sequence of J(u). Since −M is a global minimum
of −J(u) on X , we let {uk}k∈N be a minimizing sequence. By standard argument, we can prove
that {uk}k∈N converge strongly to u3. So,−M is a critical value of−J(u) and the corresponding
critical point is u3. Moreover, u3 is a critical point of J(u) and then we obtain our third solution.
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4. PROOF OF THEOREM 1.2

In this section, we prove Theorem 1.2 by using the symmetric mountain pass lemma. The
method of proving (PS)c condition is similar to Lemma 2.6.

Next, let us recall the detail of symmetric mountain pass lemma.

Lemma A. (Symmetric mountain pass lemma, See[27]) For finite dimensional space Y , let
infinite dimensional Banach space X = Y

⊕
Z, and functional J ∈ C1(X ,R) satisfy the (PS)c

condition as well as the following properties:
(i) J(u) = 0 and there exist two positive constants r and α , such that J|∂Br ≥ α;
(ii) for any u ∈ X , J(−u) = J(u), that is, J is even;
(iii) for any finite dimensional subspaces X̃ ⊂ X , there exists R = R(X̃)> 0 such that J(u)≤ 0
for each u ∈ X \BR(X̃), where BR(X̃) = {u ∈ X̃ : ||u||< R}.
Then J there exist an unbounded sequence of critical points.

Proof of Theorem 1.2 Under all the hypothetical conditions on Theorem 1.2, J satisfies the (PS)c
condition. We now prove that J satisfies conditions (i)-(iii) of Lemma A.

(i) Obviously, J(0) = 0. Since p+ < (p+)2 < q− < q(x) < p∗2(x),X ↪→ L2p+(Ω), X ↪→
Lq(x)(Ω), then

|u|2p+ ≤C3||u||, |u|q(x) ≤C4||u||,
for some C3,C4 > 0. It follows from (g1) and (g2) that

|G(x,u)| ≤ ε

p(x)
|u|p(x)+ Cε

q(x)
|u|q(x), for all (x,u) ∈Ω×R. (4.1)

Let r ∈ (0,1) and u ∈ X be such that ||u||= r. Thus, by considering (4.1), Propositions 2.3, 2.4,
and (1.5), we have

J(u) = a
∫

Ω

1
p(x)
|∇u|p(x)dx− b

2

(∫
Ω

1
p(x)
|∇u|p(x)dx

)2

−
∫

Ω

G(x,u)dx

≥ a
∫

Ω

1
p(x)
|∇u|p(x)dx− b

2

(∫
Ω

1
p(x)
|∇u|p(x)dx

)2

− ε

p(x)

∫
Ω

|u|p(x)dx− Cε

q(x)

∫
Ω

|u|q(x)dx

≥ a
∫

Ω

1
p(x)
|∇u|p(x)dx− b

2

(∫
Ω

1
p(x)
|∇u|p(x)dx

)2

− εC1||u||p(x)−CεC2||u||q(x)

≥ a
p+
||u||p

+
− b

2(p−)2 ||u||
2p−− εC3||u||p

−
−CεC4||u||q

−

= ||u||p
+
(

a
p+
− b

2(p−)2 ||u||
2p−−p+− εC3||u||p

−−p+−CεC4||u||q
−−p+

)
= rp+

(
a

p+
− b

2(p−)2 r2p−−p+− εC3rp−−p+−CεC4rq−−p+
)
,

so, we can choose ε,r > 0 small enough such that u ∈ X and J(u)≥ α > 0, where ||u||= r.
(ii) It is clear that J is even.
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(iii) Using (g3), we obtain that

C|t|p
+
−C ≤ G(x, t). (4.2)

Let R = R(X̃)> 1 for any u ∈ X̃ with ||u||> R. By (4.2), one has

J(u) = a
∫

Ω

1
p(x)
|∇u|p(x)dx− b

2

(∫
Ω

1
p(x)
|∇u|p(x)dx

)2

−
∫

Ω

G(x,u)dx

≤ a
p−

∫
Ω

|∇u|p(x)dx− b
2(p+)2

(∫
Ω

|∇u|p(x)dx
)2

−C
∫

Ω

|u|p
+

dx+C
∫

Ω

dx

=
a

p−

∫
Ω

|∇u|p(x)dx− b
2(p+)2

(∫
Ω

|∇u|p(x)dx
)2

−C
∫

Ω

|u|p
+

dx+λC|Ω|.

Moreover, the equivalence of all norms on the finite dimensional space X̃ implies that there
exists a positive constant CW such that∫

Ω

|u|p
+

dx≥CW ||u||p
+
.

Therefore, we obtain

J(u)≤ a
p−
||u||p

+
− b

2(p+)2 ||u||
2p−−CCW ||u||p

+
+C|Ω|.

Due to p+ < 2p−, we can deduce J(u) ≤ 0 some ||u|| > R large enough. Subsequently, the
conclusion of Theorem 1.2 can be obtained by using the symmetric mountain pass lemma.
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[7] F. J. S. A. Corrêa, G. M. Figueiredo. On an elliptic equation of p-Kirchhoff type via variational methods,

Bull. Aust. Math. Soc. 74 (2006) 263–277.



14 J.F. ZHANG, W.M. LI, X.W. LI, H.M. SUO

[8] J. Chabrowski, Y. Fu. Existence of solutions for p(x)-Laplacian problems on a bounded domain, J. Math.
Anal. Appl. 306 (2005) 604–618.

[9] Y. Chen, S. Levine, R. Rao. Variable exponent, linear growth functionals in image restoration, SIAM J. Appl.
Math. 66 (2006) 1383–1406.

[10] N. T. Chung. Multiple solutions for a fourth-order elliptic equation of Kirchhoff type with variable exponent,
Asian-European J. Math. 13 (2020) 289–303.

[11] F. Colasuonno, P. Pucci. Multiplicity of solutions for p(x)-polyharmonic elliptic Kirchhoff equations, Non-
linear. Anal. 74 (2011) 5962–5974.

[12] G. Dai. Infinitely many solutions for a p(x)-Laplacian equation in RN , Nonlinear. Anal. 71 (2009) 1133–1139.
[13] G. Dai. Three solutions for a nonlocal Dirichlet boundary value problem involving the p(x)-Laplacian, App.

Anal. 92 (2013) 191–210.
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