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A RELAXED EXTENDED CQ ALGORITHM FOR THE SPLIT FEASIBILITY
PROBLEM IN HILBERT SPACES

WANRONG ZHAN, HAI YU∗

Department of Mathematics, Luoyang Normal University, Luoyang 471934, China

Abstract. In this paper, we study a split feasibility problem in Hilbert spaces. To solve the problem, Byrne
introduced the extended CQ algorithm that involves the projections onto convex and closed subsets. However,
the projections onto convex and closed subsets might be hard to be implemented in general. To overcome this
difficulty, we propose a relaxed extended CQ algorithm in which the projections onto convex and closed subsets
are replaced by the projections onto half-spaces. Under mild conditions, we establish the weak convergence of the
proposed algorithm to a solution of the split feasibility problem.
Keywords. CQ algorithm; Split feasibility problem; Numerical experiment; Weak convergence.

1. INTRODUCTION

Let H1 and H2 be two real Hilbert spaces. Let C and Q be nonempty, convex, and closed
subsets of H1 and H2, respectively. Let A : H1→ H2 be a nonzero bounded linear operator and
let A∗ be its adjoint. The split feasibility problem (SFP) is formulated to find a point x ∈ H1
satisfying

x ∈C and Ax ∈ Q. (1.1)
The SFP was first introduced by Censor and Elfving [5] in Euclidean spaces. Their aim is to
model an inverse problem, which arises from intensity-modulated radiation therapy (IMRT)
[6, 7, 8]. Since the celebrated the result was established, the problem received great attention
and was applied to numerous situations; see, e.g., [13, 11, 15, 16, 19, 20, 24].

The SFP can be reformulated as the following constrained minimization:

min
x∈C

1
2
‖(I−PQ)Ax‖2,

where PQ is the orthogonal projection of H2 onto set Q. In view of this reformulation, Byrne [2,
3] introduced and studied the CQ algorithm, which is based on the projected-gradient method.
The iterative step of the CQ algorithm is formulated as follows:

xn+1 = PC(xn− τA∗(I−PQ)Axn),
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where PC is the orthogonal projection of H1 onto set C, I is the identity operator on H1, and
τ ∈ (0, 2

‖A‖2 ). Since the CQ algorithm requires calculating the orthogonal projections on both
C and Q in each step, this can be applied only whenever an explicit formula available for these
projections exist and this is mainly the case when the sets are quite “simple”. In real scenarios,
the involved sets C and Q are often given as level sets of some convex functions. In a way of
handling these cases, Yang [22] proposed the so-called relaxed CQ algorithm, in which C and
Q are given by

C = {x ∈ H1 | c(x)≤ 0} (1.2)

and

Q = {y ∈ H2 | q(y)≤ 0}, (1.3)

where c : H1→ R and q : H2→ R are two lower semicontinuous convex functions on H1 and
H2, respectively. The relaxed CQ algorithm is given as follows:

xn+1 = PCn(xn− τA∗(I−PQn)Axn),

where τ ∈ (0, 2
‖A‖2 ) and

Cn = {x ∈ H1 | c(xn)+ 〈ξn,x− xn〉 ≤ 0}, ξn ∈ ∂c(xn), (1.4)

and

Qn = {y ∈ H2 | q(Axn)+ 〈ηn,y−Axn〉 ≤ 0}, ηn ∈ ∂q(Axn), (1.5)

where ∂c(·) and ∂q(·) are the subdifferential of c and q, respectively (see Definition 2.3). In
the relaxed CQ algorithm, since Cn and Qn are both half-spaces, the projections PCn and PQn are
easily calculated.

In a recent paper [4], to avoid the hard constraint that x lies in C, Byrne proposed to consider
the following problem

min
(

α

2
‖(I−PC)x‖2 +

1−α

2
‖(I−PQ)Ax‖2

)
,

for some α in the interval (0,1). Byrne [4] introduced the extended CQ algorithm, which is
based on the forward-backward splitting method (see also [14]). The extended CQ algorithm is
defined as follows:

xn+1 =
1

1+ γα
(I + γαPC)

(
I− γ(1−α)A∗(I−PQ)A

)
xn, (1.6)

where γ ∈ (0, 2
(1−α)‖A‖2 ). Let f1(x) = α

2 ‖(I−PC)x‖2 and f2(x) = 1−α

2 ‖(I−PQ)Ax‖2. It is easy
to verify that

proxγ f1(x) = (I + γ∇ f1)
−1(x) =

1
1+ γα

(I + γαPC)(x),

where proxγ f1 is the proximal operator of f1 of order γ (see Definition 2.8). So the extended
CQ algorithm can also be written as

xn+1 = proxγ f1(I− γ∇ f2)xn,

which is just the famous proximal gradient algorithm (see [10, 21]).
Similar to the CQ algorithm, the extended CQ algorithm also involves two projections PC and

PQ, which are still hard to be implemented in the case where one of them fails to have a closed-
form expression. We here propose a relaxed extended CQ algorithm in which the projections
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onto C and Q are replaced by projections onto half-spaces Cn and Qn, respectively. Under mild
assumptions, we prove the weak convergence of the proposed algorithm in this paper.

2. PRELIMINARIES

In this section, we review some definitions and basic results that are used in this paper. From
now on, we denote by H a Hilbert space and by I the identity operator on H. If f : H→ R is a
differentiable functional, then we denote by ∇ f the gradient of f . Given a sequence {xn} in H,
ωw(xn) (resp., ω(xn)) stands for the set of cluster points in the weak (resp., strong) topology.
‘xn ⇀ x’ (resp.,‘xn→ x’) means the weak (resp., strong) convergence of {xn} to x.

Definition 2.1. [1, 3] Let D be a nonempty subset of H and let T : D→ H. Then T is
(1) nonexpansive if

‖T x−Ty‖ ≤ ‖x− y‖, ∀x,y ∈ D;
(2) firmly nonexpansive if

‖T x−Ty‖2 ≤ ‖x− y‖2−‖(I−T )x− (I−T )y‖2, ∀x,y ∈ D;

(3) ν-inverse strongly monotone (ν-ism) if there is ν > 0 such that

〈T x−Ty,x− y〉 ≥ ν‖T x−Ty‖2, ∀x,y ∈ D.

For any x ∈ H, the orthogonal projection onto a nonempty, convex, and closed subset C is
defined as

PCx = argmin{‖y− x‖ | y ∈C}.
The projection PC has the following useful properties [1, 3].

Lemma 2.2. Let C ⊆ H be a nonempty, convex and closed subset. Then, for all x,y ∈ H and
z ∈C,
(1) 〈x−PCx,z−PCx〉 ≤ 0;
(2) PC and I−PC are both nonexpansive;
(3) PC and I−PC are both firmly nonexpansive;
(4) PC and I−PC are both 1-ism.

Definition 2.3. Let λ ∈ (0,1) and f : H→ (−∞,+∞] be a proper function.
(1) f is convex if

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y), ∀x,y ∈ H.

(2) A vector u ∈ H is a subgradient of f at a point x if

f (y)≥ f (x)+ 〈u,y− x〉, ∀y ∈ H.

(3) The set of all subgradients of f at x, denoted by ∂ f (x), is called the subdifferential of f .

Definition 2.4. Let f : H→ (−∞,+∞] be a proper function.
(1) f is lower semi-continuous at x if xn→ x implies

f (x)≤ liminf
n→∞

f (xn).

(2) f is weakly lower semi-continuous at x if xn ⇀ x implies

f (x)≤ liminf
n→∞

f (xn).
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(3) f is lower semi-continuous on H if it is lower semi-continuous at every point x ∈ H. f is
weakly lower semi-continuous on H if it is weakly lower semi-continuous at every point
x ∈ H.

Lemma 2.5. [1, 17] Suppose that H is finite-dimensional and let f : H → R be a convex func-
tion. Then
(1) The function f is continuous;
(2) The function f is subdifferentiable everywhere;
(3) The subdifferentials of f are uniformly bounded on any bounded subset.

Lemma 2.6. [1] Let f : H→ (−∞,+∞] be a proper convex function. Then f is semi-continuous
if and only if it is weakly semi-continuous.

Lemma 2.7. [3, 12] Let f (x) = 1
2‖(I−PQ)Ax‖2. Then

(1) f is convex and differential.
(2) ∇ f (x) = A∗(I−PQ)Ax, x ∈ H.
(3) f is weakly lower semi-continuous on H.
(4) ∇ f is ‖A‖2-Lipschitz: ‖∇ f (x)−∇ f (y)‖ ≤ ‖A‖2‖x− y‖ for all x,y ∈ H.

Let Γ0(H) be the space of convex functions in H that are proper and lower semi-continuous.

Definition 2.8. The proximal operator of ϕ ∈ Γ0(H) is defined by

proxϕ(x) := argmin
v∈H

{
ϕ(v)+

1
2
‖v− x‖2}, x ∈ H.

The proximal operator of ϕ of order λ > 0 is defined as the proximal operator of λϕ , that is,

proxλϕ(x) := argmin
v∈H

{
ϕ(v)+

1
2λ
‖v− x‖2}, x ∈ H.

The proximal operators can be used to minimize the sum of two convex functions

min
x∈H

f (x)+g(x), (2.1)

where f ,g ∈ Γ0(H). It is often the case where one of them is differentiable. The following is
an equivalent fixed point formulation of (2.1).

Lemma 2.9. [21] Let f ,g ∈ Γ0(H). Let x∗ ∈ H and λ > 0. Assume that f is finite-valued and
differentiable on H. Then x∗ is a solution to (2.1) if and only if x∗ solves the equation

x∗ = proxλg ◦ (I−λ∇ f )x∗.

Lemma 2.10. Let H be a Hilbert space. Then

‖tx+ sy‖2 = t(t + s)‖x‖2 + s(t + s)‖y‖2− st‖x− y‖2, ∀x,y ∈ H,∀s, t ∈ R.

The convergence analysis of the proposed algorithm is based on the Fejér monotonicity.

Definition 2.11. Let C be a nonempty, convex, and closed subset in H. A vector sequence {xn}
in H is said to be Fejér monotone with respect to C if

‖xn+1− z‖ ≤ ‖xn− z‖, ∀n≥ 1, ∀z ∈C.

Lemma 2.12. [9] Let C be a nonempty, convex, and closed subset in H. If the vector sequence
{xn} is Fejér monotone with respect to C, then the following hold:
(1) xn ⇀ x∗ ∈C if and only if ωw(xn)⊆C;
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(2) the sequence {PCxn} converges strongly;
(3) if xn ⇀ x∗ ∈C, then x∗ = lim

n→∞
PCxn.

3. THE RELAXED EXTENDED CQ ALGORITHM

In what follows, we will treat the SFP (1.1) under the following assumptions.
(A1) The solution set S = {x ∈C | Ax ∈ Q} is nonempty.
(A2) The sets C and Q are given by (1.2) and (1.3), respectively.
(A3) For any x ∈ H1 and y ∈ H2, at least one subgradient ξ ∈ ∂c(x) and η ∈ ∂q(y) can be

calculated, respectively. We also assume that the subdifferential operators ∂c and ∂q
are bounded on bounded sets.

Remark 3.1. (1) It is worth noting that every convex function defined on a finite dimensional
Hilbert space satisfies assumption (A3) by Lemma 2.5.

(2) Since c : H1→R and q : H2→R are convex, one sees from Lemma 2.6 that both c and q
are weakly lower semicontinuous by condition (A2).

Let us now give the relaxed extended CQ algorithm for solving the SFP (1.1).

Algorithm 3.2. Let x0 be arbitrary. Given xn, construct xn+1 via the formula

xn+1 =
1

1+ γα
(I + γαPCn)

(
I− γ(1−α)A∗(I−PQn)A

)
xn, (3.1)

where γ ∈ (0, 2
(1−α)‖A‖2 ), Cn and Qn are given by (1.4) and (1.5), respectively. If xn+1 = xn, then

stop; otherwise, set n := n+1 and go to (3.1) to compute the next iterate xn+2.

Remark 3.3. It is easily seen that C ⊆Cn and Q ⊆ Qn for all n ∈ N. Note that Cn and Qn are
half-spaces and thus the corresponding projections have closed-form expressions.

Subsequently, we give the convergence analysis of the sequence {xn} generated by Algorithm
3.2.

Theorem 3.4. In Algorithm 3.2, if xn+1 = xn for some n ≥ 0, then xn is a solution to the SFP
(1.1).

Proof. Let
gn(x) =

α

2
‖(I−PCn)x‖

2

and
fn(x) =

1−α

2
‖(I−PQn)Ax‖2.

From (3.1), if xn+1 = xn, then

xn =
1

1+ γα
(I + γαPCn)

(
I− γ(1−α)A∗(I−PQn)A

)
xn

= proxγgn
◦ (I− γ∇ fn)xn.

According to Lemma 2.9, xn is a solution to the following optimization problem:

min
x∈H

fn(x)+gn(x).

Since C ⊆Cn, Q⊆Qn, and S 6= /0, we obtain that fn(xn) = 0 and gn(xn) = 0, which implies that
xn ∈Cn and Axn ∈ Qn. From (1.4) and (1.5), we have that xn is in C and Axn is in Q. The proof
is complete. �
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By Theorem 3.4, we see that if Algorithm 3.2 terminates in a finite (say n) step of iterations,
then xn is a solution to the SFP. Thus in the rest of this section, we assume that Algorithm 3.2
does not terminate in a finite number of iterations, and hence generates an infinite sequence
{xn}. The convergence of Algorithm 3.2 is proved below.

Theorem 3.5. Let the sequence {xn} be generated by Algorithm 3.2. Then {xn} converges
weakly to a solution of the SFP (1.1).

Proof. Let x∗ ∈ S be arbitrarily chosen. Put yn = xn− γ(1−α)A∗(I−PQn)Axn. Then we have

‖yn− x∗‖2 = ‖(xn− x∗)− γ(1−α)A∗(I−PQn)Axn‖2

= ‖xn− x∗‖2−2γ(1−α)〈A∗(I−PQn)Axn,xn− x∗〉
+ γ

2(1−α)2‖A∗(I−PQn)Axn‖2.

Note that I−PQn is 1-ism, which implies that

〈A∗(I−PQn)Axn,xn− x∗〉= 〈(I−PQn)Axn,Axn−Ax∗〉
= 〈(I−PQn)Axn− (I−PQn)Ax∗,Axn−Ax∗〉
≥ ‖(I−PQn)Axn‖2.

Therefore,

‖yn− x∗‖2 ≤ ‖xn− x∗‖2−2γ(1−α)‖(I−PQn)Axn‖2

+ γ
2(1−α)2‖A∗(I−PQn)Axn‖2

≤ ‖xn− x∗‖2−2γ(1−α)‖(I−PQn)Axn‖2

+ γ
2(1−α)2‖A‖2‖(I−PQn)Axn‖2

= ‖xn− x∗‖2− γ(1−α)(2− γ(1−α)‖A‖2)‖(I−PQn)Axn‖2.

From (3.1), we have

xn+1 =
1

1+ γα
yn +

γα

1+ γα
PCnyn.

Since C ⊆Cn, then x∗ = PC(x∗) = PCn(x
∗). It follows from Lemma 2.10 that

‖xn+1− x∗‖2 = ‖ 1
1+ γα

(yn− x∗)+
γα

1+ γα
(PCnyn− x∗)‖2

=
1

1+ γα
‖yn− x∗‖2 +

γα

1+ γα
‖PCnyn− x∗‖2

− γα

(1+ γα)2‖(I−PCn)yn‖2

≤ ‖yn− x∗‖2− γα

(1+ γα)2‖(I−PCn)yn‖2

≤ ‖xn− x∗‖2− γ(1−α)(2− γ(1−α)‖A‖2)‖(I−PQn)Axn‖2

− γα

(1+ γα)2‖(I−PCn)yn‖2. (3.2)

Hence, the sequence {xn} is Fejér monotone with respect to S. This implies that the sequence
{‖xn− x∗‖} is convergent and {xn} is a bounded sequence. Furthermore, from (3.2) and the
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assumption on γ , we can immediately reach that
∞

∑
n=0
‖(I−PQn)Axn‖2 < ∞,

and
∞

∑
n=0
‖(I−PCn)yn‖2 < ∞.

In particular, we have
lim
n→∞
‖(I−PQn)Axn‖= 0,

and
lim
n→∞
‖(I−PCn)yn‖= 0.

By Lemma 2.12, to prove the weak convergence of {xn} to a solution of the SFP (1.1), it suffices
to prove that ωw(xn) ⊆ S, since {xn} is Fejér monotone with respect to S. Now let x̄ ∈ ωw(xn)
and {xnk} be a subsequence of {xn} such that xnk ⇀ x̄. In the following, we prove that x̄ ∈ S.
First we prove Ax̄ ∈ Q. Since ∂q is bounded on bounded sets, there is a constant δ1 > 0 such
that ‖ηn‖ ≤ δ1 for all n≥ 0. From (1.5) and the fact that PQn(Axn) ∈ Qn, it follows that

q(Axn)≤ 〈ηn,Axn−PQn(Axn)〉 ≤ δ1‖(I−PQn)Axn‖. (3.3)

The weakly lower semicontinuity of q and (3.3) imply that

q(Ax̄)≤ liminf
k→∞

q(Axnk)≤ lim
k→∞

δ1‖(I−PQnk
)Axnk‖= 0.

It turns out that Ax̄ ∈ Q.
We next turn to x̄ ∈C. By the definition of yn, we have

‖yn− xn‖= γ(1−α)‖A∗(I−PQn)Axn‖ ≤ γ(1−α)‖A‖‖(I−PQn)Axn‖→ 0.

Since ∂c is bounded on bounded sets, there is a constant δ2 > 0 such that ‖ξn‖ ≤ δ2 for all
n≥ 0. By the definition of Cn and the fact that PCn(yn) ∈Cn, we obtain

c(xn)≤ 〈ξn,xn−PCnyn〉
= 〈ξn,(xn− yn)+(I−PCn)yn〉
≤ δ2(‖xn− yn‖+‖(I−PCn)yn‖). (3.4)

Again, the weakly lower semicontinuity of c and (3.4) imply that

c(x̄)≤ liminf
k→∞

c(xnk)≤ lim
k→∞

δ2(‖xnk− ynk‖+‖(I−PCnk
)ynk‖) = 0.

Consequently, x̄ ∈C. In conclusion, we conclude that x̄ ∈ S. This completes the proof. �

From Theorem 3.5 and Remark 3.1, the following corollary can be obtained immediately.

Corollary 3.6. Let H1 and H2 be the finite dimensional Hilbert space Rn and Rm, respectively.
Assume that conditions (A1) and (A2) hold. Then the sequence {xn} generated by Algorithm
3.2 converges to a solution to the SFP (1.1).

Remark 3.7. (1) The relaxed CQ algorithm (1.6) is the projection gradient algorithm, while the
relaxed extended CQ algorithm (3.1) is the proximal gradient algorithm.

(2) Let yn = xn−γ(1−α)A∗(I−PQn)Axn. In algorithm (3.1), the half-space Cn is constructed
via xn. In [23], the authors constructed the half-space C′n via yn instead xn, where C′n is defined
as follows:

C′n = {x ∈ H1 | c(yn)+ 〈ξ ′n,x− yn〉 ≤ 0}, ξ
′
n ∈ ∂c(yn).
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Inspired by [23], we introduce the following algorithm:

xn+1 =
1

1+ γα
(I + γαPC′n)

(
I− γ(1−α)A∗(I−PQn)A

)
xn.

Similar to the proof of Theorem 3.5, the sequence {xn} generated by this algorithm converges
weakly to a solution of the SFP (1.1).

4. NUMERICAL EXPERIMENTS

To give some insight into the behavior of the algorithm presented in this paper, we imple-
mented it in MATLAB to solve the following example. For simplicity, we denote the relaxed
CQ algorithm and the relaxed extended CQ algorithm by RCQA and RECQA, respectively. The
experiments were carried out in the environment of MATLAB2014a and the CPU is Intel(R)
Core(TM) i5-8265U with @3.20GHz. In the results reported below, all CPU times reported are
in seconds.

Example 4.1. In this example, we apply RCQA and RECQA to solve the celebrated LASSO
problem. Let us first recall the LASSO problem [18] which is given as follows:

minx∈Rn
1
2‖Ax−b‖2,

s.t. ‖x‖1 ≤ t,
(4.1)

where A ∈ Rm×n, b ∈ Rm, and t > 0 is a given constant. Let C = {x | c(x) ≤ 0}, where c(x) =
‖x‖1− t and Q = {b}. Then problem (4.1) can be seen as an SFP (1.1). In this example, the
vector x in Rn is a K-sparse signal that is generated from uniform distribution in the interval
[−2,2] with K non-zero elements. The matrix A∈Rm×n is generated from a normal distribution
with mean zero and one variance. The vector b is taken as equal to Ax, so no noise is assumed.
The goal is then to recover the K-sparse signal x by solving the LASSO problem (4.1).

Throughout the experiment, the parameters used in these algorithms are set with m = 50, n =
100, t = K, τ = 0.1

‖A‖2 , α = 0.1, and γ = 0.1
(1−α)‖A‖2 . It is worth noting that the initial point in this

experiment is generated randomly. As a stopping criterion, 1000 iterations are the maximum
allowed. The numerical behavior of each algorithm is demonstrated in Table 1 and Figure 1.

TABLE 1. Numerical results for Example 4.1

K-sparse signal RCQA (CPU (s)) RECQA (CPU (s))
K = 5 0.0413 0.0371

K = 10 0.0438 0.0373
K = 20 0.0412 0.0370
K = 30 0.0405 0.0365

As demonstrated in Table 1 and Figure 1, our proposed algorithm converges more quickly
than the RCQA. The algorithm proposed in this research is therefore efficient.

Funding
This work was supported by the National Natural Science Foundation of China (Nos. 11971216
and 62072222).
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FIGURE 1. Numerical results for Example 4.1
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