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A NOVEL ACCELERATED ALGORITHM FOR SOLVING SPLIT VARIATIONAL
INCLUSION PROBLEMS AND FIXED POINT PROBLEMS
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Abstract. Motivated by the Tseng’s extragradient method and the Moudafi’s viscosity method, a new hybrid iner-
tial accelerated algorithm with the line search technique is proposed for solving fixed point problems of demimetric
mappings and split variational inclusion problems. A strong convergence theorem is established under some mild
conditions. Our proof is different with from those presented in the literatures. In addition, numerical results are
reported to support the main results.
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1. INTRODUCTION

Let H1 and H2 be two real Hilbert spaces. Let A : H1→H2 be a bounded linear operator.
Let B1 : H1→ 2H1 and B2 : H2→ 2H2 be multi-valued maximally monotone mappings. The
split variational inclusion problem (SVIP) aims to find a point x∗ ∈H1 such that

0 ∈ B1(x∗) and 0 ∈ B2(Ax∗), (1.1)

whose solutions set is denoted by SVIP(B1,B2) from now on. A wide variety of important
problems, such as convex minimization, monotone variational inequalities over convex sets,
equilibrium problems, and so on, can be reformulated and investigated in the form of (1.1).
Because of its wide applications in signal processing and image reconstruction, with particu-
lar progress in intensity-modulated radiation therapy [5], split variational inclusion problems
attracted many researchers worldwide. For efficient iterative methods to split variational inclu-
sion problems, we refer to [4, 8, 9, 12, 14, 18, 19]. Byrne et al. [3] introduced the following
iterative method in Hilbert spaces. For a given x1 ∈H1, let {xn} be generated as follows.

xn+1 = JB1
r (xn− γA∗(I− JB2

rn
)Axn),∀n ∈ N, (1.2)
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where JB
r = (I + rB)−1 for all x ∈H and r,γ are real positive constants. They proved that

the sequence {xn} defined by (1.2) converges to a solution of the SVIP under some suitable
conditions.

In 2001, Alvarez and Attouch [1] used the heavy ball method that was studied in [13] for
maximally monotone operators on the proximal point algorithm. Their algorithm is said to be
the inertial proximal point algorithm and it is as follows{

xn+1 = (I + rnT )−1yn,
yn = xn +θn(xn− xn−1),n≥ 1.

(1.3)

They also proved that the sequence {xn} constructed by (1.3) converges weakly to a zero point
of T under some suitable conditions.

Recently, using the idea of Alvarez and Attouch [1], Chuang [6] proposed the following
hybrid inertial proximal algorithm for the SVIP in Hilbert spaces

Algorithm 1: Hybrid inertial proximal algorithm for the SVIP (HSVIP).
Initialization. Let x1 ∈H1 be arbitrary.
Step 1. Compute yn = JB1

rn (xn− rnA∗(I− JB2
rn )Axn),

where rn ⊆ [γ, δ

‖A‖2 ]⊆ (0,∞) satisfies

rn‖A∗(I− JB2
rn
)Axn−A∗(I− JB2

rn
)Ayn‖ ≤ δ‖xn− yn‖.

Step 2. Compute
xn+1 = JB1

rn
(xn−dnen),

where
dn = xn− yn− rn(A∗(I− JB2

rn
)Axn−A∗(I− JB2

rn
)Ayn),

and

en =
〈xn− yn,dn〉
‖dn‖2 .

Set n = n+1 and go to Step 1.

Assume that S : H1 → H1 is a k-demicontractive mapping, A : H1 → H2 is a bounded
linear operator with adjoint A∗ : H2 →H1, B1 : H1 → 2H1 and B2 : H2 → 2H2 are multi-
valued maximally monotone mappings. They proved, under certain appropriate assumptions,
Algorithm 1 converges strongly to the unique element.

Recently, Jolaoso and Karahan [7] proposed the following splitting algorithm for solving the
SVIP in Hilbert spaces and proved its weak convergence under suitable conditions

Assume that S : H1 → H1 is a k-demicontractive mapping, A : H1 → H2 is a bounded
linear operator with adjoint A∗ : H2 →H1, B1 : H1 → 2H1 and B2 : H2 → 2H2 are multi-
valued maximally monotone mappings. They proved, under certain appropriate assumptions,
Algorithm 2 converges weakly to the unique element.

Motivated and inspired by Alvarez and Attouch [1], Chuang [6], Jolaoso and Karahan [7],
and Song [15], we propose and analyze a hybrid inertial accelerated method for finding common
solutions of split variational inclusion problems and fixed point problems of a demimetric map-
ping in a real Hilbert space. Strong convergence of presented method is proved under some mild
conditions. Numerical experiments are provided to demonstrate the efficiency of the proposed
method over some existing ones.
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Algorithm 2: Splitting algorithm for solving the SVIP (SSVIP).
Initialization. Set ζ > 0, l ∈ (0,1),δ ∈ (0,1),η ∈ (0,2), and let x1 ∈H1 be arbitrary.
Step 1. Compute

wn = xn +µn(xn− xn−1),yn = JB1
rn
(un− rnA∗(I− JB2

rn
)Aun),

where rn = σρmn and mn is the smallest nonnegative integer such that

rn‖A∗(I− JB2
rn
)Aun−A∗(I− JB2

rn
)Ayn‖ ≤ δ‖un− yn‖.

Step 2. Compute
xn+1 = un−φdnen,

where φ ∈ (0,2),

dn = un− yn− rn(A∗(I− JB2
rn
)Aun−A∗(I− JB2

rn
)Ayn),

and

en =
〈un− yn,dn〉+ γn‖(I− JB2

rn )Ayn‖2

‖dn‖2 .

Set n = n+1 and go to Step 1.

2. PRELIMINARIES

Throughout this paper, The set of fixed points of a mapping T is denoted by Fix(T ).
Let C be a nonempty, convex and closed subset of a real Hilbert space H . For u ∈H and

v ∈C, v = PCu if and only if 〈u− v,w− v〉 ≤ 0 for all w ∈C, where PC is the metric projection
from H onto C.

One has the following results in real Hilbert space H
(1) ‖ku+(1− k)v‖2 = k‖u‖2 +(1− k)‖v‖2− k(1− k)‖u− v‖2, ∀u,v ∈H and k ∈ [0,1].
(2)‖u± v‖2 = ‖u‖2±2〈u,v〉+‖v‖2,u,v ∈H .
(3) ‖u+ v‖2 ≤ ‖u‖2 +2〈v,u+ v〉,u,v ∈H .
Recall that a mapping S : C→H is said to be:
(1) nonexpansive if

‖Su−Sv‖ ≤ ‖u− v‖,∀u,v ∈C;

(2) γ-contractive if there exists γ ∈ [0,1) such that

‖Su−Sv‖ ≤ γ‖u− v‖,∀u,v ∈C;

(3) quasi-nonexpansive if Fix(S) 6= /0 and

‖Su− x∗‖ ≤ ‖u− x∗‖,∀u ∈C,x∗ ∈ Fix(S);

(4) α-strongly pseudo-contractive if there exists a constant α ∈ [0,1), such that

〈Su−Sv,u− v〉 ≤ α‖u− v‖2, ∀u,v ∈C;

(5) pseudo-monotone if

〈Sv,u− v〉 ≥ 0⇒ 〈Su,u− v〉 ≥ 0, ∀u,v ∈C;

(6) k-demicontractive if Fix(S) 6= /0 and there exists k ∈ [0,1), such that

‖Su− x∗‖2 ≤ ‖u− x∗‖2 + k‖u−Su‖2,∀u ∈C,x∗ ∈ Fix(S);



4 Y. PEI, Y. CHEN, S. SONG

(7) k-demimetric if Fix(S) 6= /0 and there exists k ∈ (−∞,1), such that

‖Su− x∗‖2 ≤ ‖u− x∗‖2 + k‖u−Su‖2,∀u ∈C,x∗ ∈ Fix(S).

Obviously, k-demimetric mappings includes k-demicontractive mappings. we remark that
Takahashi in [21] presented a specific example that is a demimetric mapping but not a demicon-
tractive mapping.

Finally, we need the following lemmas to obtain our main results.

Lemma 2.1. ([2]) Let C be a nonempty, convex and closed subset of a real Hilbert space H ,
and let T : C→C be a nonexpansive mapping. Then, I−T is demiclosed at zero, i.e., if {xn}
converges weakly to a point x ∈C and {I−T )xn} converges to zero, then x = T x.

Lemma 2.2. ([16, 20]) Let C be a nonempty, convex and closed subset of a real Hilbert space
H . Assume that S : C→H is k-demimetric such that Fix(S) is nonempty. Let κ be a real
number with κ ∈ (0,∞) and define T = (1−κ)I +κS. Then

(1) Fix(T ) = Fix(S) if κ 6= 0;
(2) T is a quasi-nonexpansive mapping for κ ∈ (0,1− k];
(3) Fix(S) is a closed convex subset of H .

Lemma 2.3. ([11]) Assume that {an} is a sequence of real numbers such that there exists a sub-
sequence {ni} of {n} with ani < ani+1 for all i ∈N. Then there exists a nondecreasing sequence
{m j} ⊆N such that m j→∞ and the following properties are satisfied for all (sufficiently large)
numbers j ∈ N: a j ≤ am j+1 and am j ≤ am j+1. Indeed, m j = max{k ≤ j : ak < ak+1}.

Lemma 2.4. ([10]) Assume that {an} is a sequence of nonnegative numbers satisfying the fol-
lowing inequality: an+1 ≤ (1− βn)an + γn + βnδn for all n ∈ N, where {βn},{γn}, and {δn}
satisfy the restrictions:

(i) ∑
∞
n=1 βn = ∞, limn→∞ βn = 0,

(ii) γn ≥ 0, ∑
∞
n=1 γn < ∞,

(iii) limsupn→∞ δn ≤ 0.
Then limn→∞ an = 0.

In order to study the SVIP, we recall some other lemmas which are needed in our proof. We
denote by B−1(0) = {x ∈H : 0 ∈ Bx}, D(T ) the domain of T and Fix(T ) the fixed point set of
T , that is, Fix(T ) = {x ∈H : x = T x}.

Lemma 2.5. Let H be a real Hilbert space, and let B : H → 2H be a set-valued maximal
monotone mapping. Then,

(1) JB
r is a single-valued and firmly nonexpansive mapping for each r > 0;

(2) D(JB
r ) = H and Fix(JB

r ) = {x ∈ D(B) : 0 ∈ B(x)};
(3) ‖x− JB

r1
x‖ ≤ ‖x− JB

r2
x‖ for all 0 < r1 ≤ r2 and for all x ∈H ;

(4) Suppose that B−1(0) 6= /0. Then ‖x− JB
r1

x‖2+‖x∗− JB
r1

x∗‖2≤‖x− x∗‖2 for each x∈H ,
each x∗ ∈ B−1(0), and each r > 0;

(5) ) Suppose that B−1(0) 6= /0. Then 〈x− JB
r x,JB

r x−w〉 ≥ 0 for each x ∈H , each w∗ ∈
B−1(0), and each r > 0.

Lemma 2.6. Assume that H1 and H2 are real Hilbert spaces, and A : H1 →H2 is a linear
and bounded operator with its adjoint A∗. Let B : H2→H2 be a set-valued maximal monotone
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mapping, and let JB
r be a resolvent mapping of B in order r. Define a mapping T̃ : H1→H1 as

T̃ x := A∗(I− JB
r )Ax for each x ∈H1. Then, the following statements hold:

(1) ‖T̃ x− T̃ y‖2 ≤ ‖A‖2〈T̃ x− T̃ y,x− y〉;
(2) ‖(I− JB

r )Ax− (I− JB
r )Ay‖2 ≤

〈
T̃ x− T̃ y,x− y

〉
.

Lemma 2.7. Assume that H1 and H2 are real Hilbert spaces, and A : H1→H2 is a linear and
bounded operator with its adjoint A∗. Let B1 : H1→H1 and B2 : H2→H2 be a set-valued
maximal monotone mappings, and let r,r > 0. Then, the following statements hold:

(1) If x̂ is a solution of the SVIP, then JB1
r

(
x̂− rA∗(I− JB2

r )Ax̂
)
= x̂;

(2) If JB1
r

(
x̂− rA∗(I− JB2

r )Ax̂
)
= x̂ and the solution set of (SFVIP) is nonempty, then x̂ is a

solution to SVIP.

3. MAIN RESULTS

Let C and Q be nonempty, convex and closed subsets of real Hilbert spaces H1 and H2,
respectively, and let A : H1 →H2 be a bounded linear operator with adjoint A∗ : H2 →H1.
Let B1 : H1→H1 and B2 : H2→H2 be a set-valued maximally monotone mappings. Assume
that S : H1→H1 is k-demimetric and I−S is demiclosed at zero. Let g : H1→H1 be contrac-
tive with constant α ∈ (0,1). Assume that Sol := SVIP(B1,B2)

⋂
Fix(S) 6= /0 and the following

conditions are satisfied:
(C1) {αn} ⊂ (0,1), limn→∞ αn = 0 and ∑

∞
n=1 αn = ∞;

(C2) {βn} ⊂ (0,1), 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1− k;
(C3) {µn} ⊂ [0,1] and limn→∞

µn
αn
‖xn− xn−1‖= 0, where {xn} is generated by Algorithm 3;

(C4) {rn} ⊂ (0,∞) and liminfn→∞ rn > 0.
We now introduce the following algorithm.

Algorithm 3: Hybrid inertial accelerated method for finding a common solution of the
split variational inclusion problem and the fixed point problem (HSVIPP).
Initialization: Set {rn} ⊂ (0,+∞), {αn} ⊂ (0,+∞), r1 > 0, υ > 0. Choose a nonnegative
real sequence {σn} such that ∑

∞
n=0 σn < ∞. Let x0,x1 ∈H1 be arbitrary.

Step 1. Given xn−1 and xn(n≥ 1), compute

un = xn +µn(xn− xn−1).

Step 2. Compute yn = JB1
rn

(
un− rnA∗(I− JB2

rn )Aun

)
, where {rn} is updated by

rn+1 =


min{ υ‖un−yn‖

‖A∗(I−JB2
rn )Aun−A∗(I−JB2

rn )Ayn‖
,rn +σn},

if A∗(I− JB2
rn )Aun−A∗(I− JB2

rn )Ayn 6= 0;
rn +σn, otherwise.

(3.1)

Step 3. Compute
zn = yn− rn

(
A∗(I− JB2

rn
)Ayn−A∗(I− JB2

rn
)Aun

)
.

Step 4. Compute xn+1 = Tn (αngxn +(1−αn)zn),
where Tn = (1−βn)I +βnS. Set n = n+1 and go to Step 1.
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Lemma 3.1. Suppose V I(C,A) 6= /0. Then the sequence {rn} generated by (3.1) is well defined
and limn→∞ rn = r and r ∈ [min{ υ

‖A‖ ,r1},r1 +ζ ], where ζ = ∑
∞
i=1 σn.

Proof. Indeed, using Lemma 2.6 (1), one sees that

‖A∗(I− JB2
rn
)Ayn−A∗(I− JB2

rn
)Aun‖ ≤ ‖A2‖yn−un‖.

By using Tan and Qin [17, Lemma 4], we can obtain the desired result immediately. �

Lemma 3.2. Suppose that Conditions (C1)-(C4) hold. Let {un},{yn} and {zn} be three se-
quences created by Algorithm 3. Then, for ∀q ∈ SVIP(B1,B2),

‖zn−q‖2 ≤ ‖un−q‖2−

(
1− υ2r2

n

r2
n+1

)
‖yn−un‖2.

Proof. Let q ∈ SVIP(B1,B2), that is, JB1
rn q = q, JB2

rn Aq = Aq. From the definitions of zn, we find

‖zn−q‖2

= ‖yn− rn
(
A∗(I− JB2

rn
)Ayn−A∗(I− JB2

rn
)Aun

)
−q‖2

= ‖yn−q‖2 + r2
n‖A∗(I− JB2

rn
)Ayn−A∗(I− JB2

rn
)Aun‖2

−2rn〈yn−q,A∗(I− JB2
rn
)Ayn−A∗(I− JB2

rn
)Aun〉

= ‖yn−un‖2 +‖un−q‖2 +2〈yn−un,un−q〉
+r2

n‖A∗(I− JB2
rn
)Ayn−A∗(I− JB2

rn
)Aun‖2−2rn〈yn−q,A∗(I− JB2

rn
)Ayn−A∗(I− JB2

rn
)Aun〉

= ‖yn−un‖2 +‖un−q‖2−2〈yn−un,yn−un〉
+2〈yn−un,yn−q〉−2rn〈yn−q,A∗(I− JB2

rn
)Ayn

−A∗(I− JB2
rn
)Aun〉+ r2

n‖A∗(I− JB2
rn
)Ayn−A∗(I− JB2

rn
)Aun‖2

= ‖un−q‖2−‖yn−un‖2 +2〈yn−un + rnA∗(I− JB2
rn
)Aun,yn−q〉

−2rn〈A∗(I− JB2
rn
)Ayn,yn−q〉+ r2

n‖A∗(I− JB2
rn
)Ayn−A∗(I− JB2

rn
)Aun‖2. (3.2)

From Lemma 2.5, we obtain that

〈yn−un + rnA∗(I− JB2
rn
)Aun,yn−q〉 ≤ 0. (3.3)

Noticing Aq = JB2
rn Aq, we obtain from Lemma 2.5(2) that

〈A∗(I− JB2
rn
)Ayn,yn−q〉 ≥ 0. (3.4)

It follows from (3.2), (3.3), and (3.4) that

‖zn−q‖2

≤ ‖un−q‖2−‖yn−un‖2 + r2
n‖A∗(I− JB2

rn
)Ayn−A∗(I− JB2

rn
)Aun‖2

≤ ‖un−q‖2−‖yn−un‖2 +
υ2r2

n

r2
n+1
‖yn−un‖2

= ‖un−q‖2−

(
1− υ2r2

n

r2
n+1

)
‖yn−un‖2.

The proof is completed. �
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Lemma 3.3. Let {un} and {yn} be created by Algorithm 3. If unk ⇀ z∗ and limn→∞ ‖un− yn‖=
0, then z∗ ∈ SVIP(B1,B2).

Proof. Taking any q∈ SVIP(B1,B2), we know that JB2
rn Aq = Aq. It implies that A∗(I−JB2

rn )Aq =
0. By Lemma 2.5, we obtain that

〈A∗(I− JB2
rn
)Ayn−A∗(I− JB2

rn
)Aq,yn−q〉 ≥ ‖(I− JB2

rn
)Ayn‖2.

This together with (3.3) and Lemma 2.6(1) yields that

rn‖Ayn− JB2
rn

Ayn‖2

≤ rn〈A∗(I− JB2
rn
)Ayn−A∗(I− JB2

rn
)Aq,yn−q〉

≤ rn〈A∗(I− JB2
rn
)Ayn−A∗(I− JB2

rn
)Aq,yn−q〉−〈yn− (un− rnA∗(I− JB2

rn
)Aun),yn−q〉

= 〈un− yn− rnA∗(I− JB2
rn
)Aun + rnA∗(I− JB2

rn
)Ayn,yn−q〉

≤ ‖un− yn− rnA∗(I− JB2
rn
)Aun + rnA∗(I− JB2

rn
)Ayn‖‖yn−q‖

≤
(
‖un− yn‖+ rn‖A∗(I− JB2

rn
)Aun−A∗(I− JB2

rn
)Ayn‖

)
‖yn−q‖

≤ (1+ rn‖A‖2)‖un− yn‖‖yn−q‖.

By Lemma 3.1 and limn→∞ ‖un− yn‖= 0, we find that

lim
n→∞
‖Ayn− JB2

rn
Ayn‖= 0.

Moreover, by Lemma 2.5, one can deduce that

‖Aun− JB2
rn

Aun‖ ≤ ‖Aun−Ayn +(JB2
rn

Ayn− JB2
rn

Aun)‖+‖Ayn− JB2
rn

Ayn‖
≤ 2‖A‖‖un− yn‖+‖Ayn− JB2

rn
Ayn‖.

This indicates that

lim
n→∞
‖Aun− JB2

rn
Aun‖= 0. (3.5)

Again using Lemma 2.5 and the definition of yn, we derive

‖yn− JB1
rn

un‖ = ‖JB1
rn
(un− rnA∗(I− JB2

rn
)Aun)− JB1

rn
un‖

≤ ‖rnA∗(I− JB2
rn
)Aun‖

≤ rn‖A‖‖Aun− JB2
rn

Aun‖,

which together with (3.5) gives that limn→∞ ‖yn− JB1
rn un‖= 0. From limn→∞ ‖yn−un‖= 0, we

can obtain that limn→∞ ‖un− JB1
rn un‖= 0. According to (C4), there exist a positive number r and

some positive integer N0 such that 0 < r < rn (∀n≥ N0). It follows from Lemma 2.5(3) that

lim
n→∞
‖un− JB1

r un‖ ≤ lim
n→∞
‖un− JB1

rn
un‖= 0.

This combining with Lemma 2.1, Lemma 2.5(1)(ii) and unk ⇀ z∗ yield z∗ ∈ Fix(JB1
r ) = B−1

1 (0).
Due to the fact that A is a linear bounded operator and unk ⇀ z∗, we get that

Aunk ⇀ Az∗. (3.6)

Using (3.5) and Lemma 2.5, we obtain that

lim
n→∞
‖Aun− JB2

r Aun‖ ≤ lim
n→∞
‖Aun− JB2

rn
Aun‖= 0. (3.7)
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By (3.6), (3.7), Lemma 2.1, and Lemma 2.5, we reach Az∗ ∈ Fix(JB2
r ) = B−1

2 (0). Thus, we
deduce that z∗ ∈ SVIP(B1,B2). The proof is completed. �

Theorem 3.4. Assume that conditions (C1)-(C4) are satisfied. Then the iterative sequence {xn}
constructed by Algorithm 3 converges to q in norm, where q = PSolgq.

Remark 3.5. We note that condition (C3) can be easily implemented due to the fact that the
value of ‖xn− xn−1‖ is known before choosing µn. Indeed, the parameter µn can be chosen such
that

µn =

{
ω, xn = xn−1,

ξn
‖xn−xn−1‖ , xn 6= xn−1,

where ω ≥ 0 and {ξn} is a positive sequence such that ξn = o(αn).

We now prove the Theorem 3.4.

Proof. Firstly, we prove that the sequence {xn} is bounded. Taking any q ∈ Sol, and noting
υ ∈ (0,1) and Lemma 3.2, there exists N1 ≥ 1 such that

‖zn−q‖ ≤ ‖un−q‖, ∀n≥ N1. (3.8)

In view of the definition of un, one deduces that

‖un−q‖ ≤ ‖xn−q‖+µn‖xn− xn−1‖. (3.9)

Invoking (C3), there exists a positive constant M1 < ∞ such that µn
αn
‖xn− xn−1‖ ≤ M1. From

(3.8), (3.9), and Lemma 2.2, one obtains that

‖xn+1−q‖ = ‖Tn (αngxn +(1−αn)zn)−q‖
≤ ‖αn(gxn−q)+(1−αn)(zn−q)‖
≤ αn‖gxn− f (q)‖+αn‖ f (q)−q‖+(1−αn)‖zn−q‖
≤ αnα‖xn−q‖+αn‖ f (q)−q‖+(1−αn)(‖xn−q‖+µn‖xn− xn−1‖)
≤ (1− (1−α)αn)‖xn−q‖+αn‖ f (q)−q‖+αnM1

≤ (1− (1−α)αn)‖xn−q‖+αn(1−α)
‖ f (q)−q‖+M1

1−α

≤ max{‖xn−q‖, ‖ f (q)−q‖+M1

1−α
}

≤ · · · ≤max{‖x1−q‖, ‖ f (q)−q‖+M1

1−α
}.

This implies that sequence {xn} is bounded. Using (3.8), (3.9) and the definition of {yn}, one
concludes that {zn}, {yn}, and {un} are bounded. It follows that

‖un−q‖2 = ‖xn−q+µn(xn− xn−1)‖2

≤ ‖xn−q‖2 +2µn〈xn− xn−1,un−q〉
≤ ‖xn−q‖2 +2µn ‖xn−1− xn‖‖un−q‖
≤ ‖xn−q‖2 +µn ‖xn−1− xn‖M2, (3.10)
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where M2 = supn≥0{2‖un−q‖}< ∞. It follows from Lemma 2.2, Lemma 3.2 and (3.10) that

‖xn+1−q‖2 = ‖Tn(αngxn +(1−αn)zn)−q‖2

≤ ‖αngxn +(1−αn)zn−q‖2

≤ αn ‖gxn−q‖2 +(1−αn)‖zn−q‖2

≤ αn ‖gxn−q‖2 +‖un−q‖2−

(
1− υ2r2

n

r2
n+1

)
‖yn−un‖2

≤ αn ‖gxn−q‖2 +‖xn−q‖2 +µn ‖xn−1− xn‖M2−

(
1− υ2r2

n

r2
n+1

)
‖yn−un‖2

≤ αnM3 +‖xn−q‖2−

(
1− υ2r2

n

r2
n+1

)
‖yn−un‖2 , (3.11)

where M3 = supn≥1{‖gxn−q‖2 + µn
αn
‖xn−1− xn‖M2}< ∞. Let us rewrite (3.11) as(

1− υ2r2
n

r2
n+1

)
‖yn−un‖2 ≤ αnM3 +‖xn−q‖2−‖xn+1−q‖2 . (3.12)

Setting gn = αngxn +(1−αn)zn and using (3.8) and (3.10), we infer

‖xn+1−q‖2

= ‖((1−βn)I +βnS)gn−q‖2

= (1−βn)‖gn−q‖2 +βn ‖Sgn−q‖2−βn(1−βn)‖gn−Sgn‖2

≤ ((1−βn)‖gn−q‖2 +βn(‖gn−q‖2 + k‖gn−Sgn‖2)−βn(1−βn)‖gn−Sgn‖2

= ‖gn−q‖2−βn(1−βn− k)‖gn−Sgn‖2

≤ αn ‖gxn−q‖2 +(1−αn)‖zn−q‖2−βn(1−βn− k)‖gn−Sgn‖2

≤ αn ‖gxn−q‖2 +‖xn−q‖2 +µn ‖xn−1− xn‖M2−βn(1−βn− k)‖gn−Sgn‖2 .

Thus

βn(1−βn− k)‖gn−Sgn‖2

≤ ‖xn−q‖2−‖xn+1−q‖2 +αn ‖gxn−q‖2 +µn ‖xn−1− xn‖M2. (3.13)

We next demonstrate that the convergence of {‖xn−q‖} to zero by the following two cases:
Case 1. Assume that there exists N0 ∈ N such that the sequence {‖xn−q‖}n≥N0 is monotone

decreasing; then, limn→∞ ‖xn−q‖ exists. Noting υ ∈ (0,1), from (C1) and putting n tend to
infinity in (3.12), we derive that

lim
n→∞
‖yn−un‖= 0. (3.14)

It follows from (C1), (C3) and the definitions of un that

lim
n→∞
‖un− xn‖= lim

n→∞
µn ‖xn− xn−1‖= 0. (3.15)

By (C1), (C2), (C3), and (3.13), we obtain that

lim
n→∞
‖gn−Sgn‖= 0. (3.16)
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Due to the fact that gn = αngxn +(1−αn)zn, we infer that

lim
n→∞
‖gn− zn‖= lim

n→∞
αn ‖gxn− zn‖= 0. (3.17)

In view of Lemma 3.1, the definition of zn, Lemma 2.5, and (3.14), one deduces that

lim
n→∞
‖zn− yn‖ = rn

∥∥A∗(I− JB2
rn
)Ayn−A∗(I− JB2

rn
)Aun

∥∥
≤ lim

n→∞
rn ‖A‖2 ‖yn−un‖= 0. (3.18)

Thanks to (3.14), (3.15), and (3.18), one infers that

lim
n→∞
‖zn− xn‖= 0. (3.19)

Taking into consideration that

‖xn+1− zn‖ = ‖((1−βn)I +βnS)gn− zn‖
≤ (1−βn)‖gn− zn‖+βn(‖Sgn−gn‖+‖gn− zn‖),

we can deduce from (3.16) and (3.17) that limn→∞ ‖xn+1− zn‖ = 0. Notice ‖xn+1− xn‖ ≤
‖xn+1− zn‖+‖zn− xn‖, which together with (3.19) implies

lim
n→∞
‖xn+1− xn‖= 0. (3.20)

Since {xn} is bounded, there exists a subsequence {xnk} of {xn} that converges weakly to some
z ∈H1 and

limsup
n→∞

〈 f (q)−q,xn−q〉= lim
k→∞
〈 f (q)−q,xnk−q〉= 〈 f (q)−q,z−q〉.

According to (3.14), (3.15), and Lemma 3.3, we derive that z ∈ SVIP(B1,B2). By the assump-
tion that I − S is demiclosed and noticing (3.16), (3.17), and (3.19), we deduce z ∈ Fix(S).
Therefor, z ∈ Sol. It is easy to see that PSolg is a contractive mapping. Banach’s Contraction
Mapping Principle implies that PSolg has a unique fixed point, say q ∈H1. Namely, q = PSolgq.
It follows that 〈 f (q)−q,y−q〉 ≤ 0 for ally ∈ Sol. Therefore, we have that

limsup
n→∞

〈 f (q)−q,xn−q〉 = lim
k→∞
〈 f (q)−q,xnk−q〉

= 〈 f (q)−q,z−q〉 ≤ 0.

This together with (3.20) implies that

limsup
n→∞

〈 f (q)−q,xn+1−q〉 ≤ 0. (3.21)
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It follows from (3.8), (3.10), and Lemma 2.2 that

‖xn+1−q‖2

≤ ‖αngxn +(1−αn)zn−q‖2

= ‖αn(gxn− f (q))+(1−αn)(zn−q)+αn( f (q)−q)‖2

≤ ‖αn(gxn− f (q))+(1−αn)(zn−q)‖2 +2αn〈 f (q)−q,xn+1−q〉
≤ αn ‖gxn− f (q)‖2 +(1−αn)‖zn−q‖2 +2αn〈 f (q)−q,xn+1−q〉
≤ αnα ‖xn−q‖2 +(1−αn)(‖xn−q‖2 +µn ‖xn− xn−1‖M2)+2αn〈 f (q)−q,xn+1−q〉

≤ (1−αn(1−α))‖xn−q‖2 +αn

(
µn

αn
‖xn− xn−1‖M2

)
+2αn〈 f (q)−q,xn+1−q〉.

Thus, from (3.21), (C1), (C3), and Lemma 2.4, we conclude that xn→ q.
Case 2. Assume that {‖xn−q‖} is not monotone decreasing. Then there exists a subsequence
{‖xni−q‖} of {‖xn−q‖} such that

‖xni−q‖< ‖xni+1−q‖ , ∀i ∈ N. (3.22)

According to Lemma 2.3, there exists a nondecreasing sequence {mk} ⊂ N such that

max{‖xmk−q‖,‖xk−q‖} ≤ ‖xmk+1−q‖. (3.23)

Following similar argument as in Case I, it is easy to obtain

lim
k→∞

∥∥xmk+1− xmk

∥∥= 0 (3.24)

We want to show that
limsup

k→∞

〈 f (q)−q,xmk+1−q〉 ≤ 0, (3.25)

where q = PSolgq. Without loss of generality, there exists a subsequence {xmk j
} of {xmk} such

that xmk j
⇀w for some w∈H1 and limsupk→∞〈 f (q)−q,xmk−q〉= lim j→∞〈 f (q)−q,xmk j

−q〉.
Like Case 1, we can also obtain ω ∈ Sol. Thus, we have that

limsup
k→∞

〈 f (q)−q,xmk−q〉= lim
j→∞
〈 f (q)−q,xmk j

−q〉

= 〈 f (q)−PSol f (q),w−PSol f (q)〉 ≤ 0.

This together with (3.24) implies that limsupk→∞〈 f (q)−q,xmk+1−q〉 ≤ 0. Resorting to (3.8),
(3.10), and Lemma 2.2, one deduces that∥∥xmk+1−q

∥∥2 ≤ ‖αmk( f xmk− f (q))+(1−αmk)(zmk−q)+αmk( f (q)−q)‖2

≤ ‖αmk( f xmk− f (q))+(1−αmk)(zmk−q)‖2 +2αmk〈 f (q)−q,xmk+1−q〉
≤ αmk ‖ f xmk− f (q)‖2 +(1−αmk)‖zmk−q‖2 +2αmk〈 f (q)−q,xmk+1−q〉
≤ αmkα ‖xmk−q‖2 +(1−αmk)‖umk−q‖2 +2αmk〈 f (q)−q,xmk+1−q〉
≤ αmkα ‖xmk−q‖2 +(1−αmk)(‖xmk−q‖2

+µmk

∥∥xmk− xmk−1
∥∥M2)+2αmk〈 f (q)−q,xmk+1−q〉

≤ (1−αmk(1−α))‖xmk−q‖2 +αmk

(
µn

αmk

∥∥xmk− xmk−1
∥∥M2

)
+2αmk〈 f (q)−q,xmk+1−q〉,
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which yields that

(1−α)αmk

∥∥xmk+1−q
∥∥2

≤ (1−αmk(1−α))
(
‖xmk−q‖2−

∥∥xmk+1−q
∥∥2
)
+αmk

(
µn

αmk

‖xmk− xn−1‖M2

)
+2αmk〈 f (q)−q,xmk+1−q〉.

Noticing (3.22), we infer∥∥xmk+1−q
∥∥2 ≤ 1

1−α

(
µn

αmk

‖xmk− xn−1‖M2

)
+

2
1−α

〈 f (q)−q,xmk+1−q〉.

By using (C1), (C3) and (3.25), we have that limk→∞

∥∥xmk+1−q
∥∥ = 0. It then follows from

(3.23) that limk→∞ ‖xk−q‖= 0. Hence we can obtain that the sequences constructed by Algo-
rithm 3 strongly converge to the unique fixed point q ∈ Sol of the contractive mapping PSolg.
Then the proof is completed. �

Remark 3.6. The main results in this paper have the following aspects compared with the
known results in the literature.

(1) The approach for proving the main results are simpler and different from those in the
early and recent literature manly duo to Lemma 2.5(3). In fact, Lemma 2.5(3) to-
gether with Lemma 3.3 presents an interesting and simple method to prove un → p ∈
SVIP(B1,B2) under conditions un ⇀ p and

∥∥un−T F
rn

un
∥∥→ 0.

(2) Theorem 3.4 strengthens the corresponding results in [1, 6, 7] including finding a so-
lution for the VIP, a solution to the SVIP, or common solutions of the SVIP and fixed
point problems for demicontractive mappings. Moreover, our proof is also different
from those.

Corollary 3.7. Assume that Conditions (C1)-(C4) are satisfied. Then the sequence {xn} con-
structed by Algorithm 3 converges strongly to a point q, where q = PSVIP(C,Q) f (q).

4. NUMERICAL RESULTS

In this section, we report the preliminary numerical results of our proposed method in com-
parison with related methods in the literature. We compare Algorithm 3 (HSVIPP) with Algo-
rithm 1 (HSVIP, Algorithm 2 of Chuang [6]) and Algorithm 2 (SSVIP, Algorithm 3.1 of Jolaoso
and Karahan [7]) using the following example. The performance of these three algorithms is
demonstrated in Figure 1.

Example 4.1. Let H1 =H2 =R2. Let g : R2→R2 be given by gx = 1
2x, A : R2→R2 be given

by Ax = x, B1,B2 : R2→R2 be given by B1x = B2x = 2x, and S : R2→R2 be given by Sx = 1
3x

for all x ∈R2. One immediately deduces that g is 1
2 -contraction, A is a bounded linear operator,

and S is 0-demimetric mapping. Let us choose αn =
1

2n+1 , βn =
1
2 , σn =

1
(n+1)2 , and r1 =

1
3 .

We test Algorithm 1 (HSVIP), Algorithm 2 (SSVIP) and Algorithm 3 (HSVIPP) from differ-
ent initial points x0 as follows:
Case I: x0 = (20,5)T ;
Case II: x0 = (10,1)T ;
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FIGURE 1. Top left: Case I; top right: Case II, bottom left: Case III, bottom
right: Case IV.

Case III: x0 = (1,10)T ;
Case IV: x0 = (3,30)T .

According to the performance figures, we can see that Algorithm 3 has a better convergence
behavior than Algorithm 1 and Algorithm 2 for Example 4.1.
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