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TWO-STEP INERTIAL ADAPTIVE ITERATIVE ALGORITHM FOR SOLVING
THE SPLIT COMMON FIXED POINT PROBLEM OF DIRECTED OPERATORS

SHUYU CHEN, HENG DU, JIAJUN HUANG, ZHENTAO CHEN, JING ZHAO∗
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Abstract. In this paper, we use the dual variable to propose a two-step inertial adaptive iterative algorithm for solv-
ing the split common fixed point problem of directed operators in real Hilbert spaces. Under suitable conditions,
we obtain the weak convergence of the proposed algorithm and give applications in the split feasibility problem.
A numerical experiment is given to illustrate the efficiency of the proposed iterative algorithm.
Keywords. Adaptive iterative algorithm; Inertial acceleration; Numerical experiment; Split feasibility problem;
Weak convergence.

1. INTRODUCTION

Over the past two decades, the split common fixed-point problem (SCFP) and the split fea-
sibility problem (SFP) received more and more attention, especially in medical image recon-
struction and signal proceeding [2].

Let H1 and H2 be two real Hilbert spaces. Let U : H1→ H1 and T : H2→ H2 be nonlinear
mappings, and let A : H1→H2 be a bounded linear operator. In 2009, the SCFP was introduced
by Censor and Segal [6], and it can be formulated as the problem of finding

x ∈ F(U) such that Ax ∈ F(T ), (1.1)

where F(U) and F(T ) stand for the fixed point sets of U : H1→ H1 and T : H2→ H2, respec-
tively. In particular, if U and T are projection operators, the SCFP is transformed into the SFP
[3, 5, 19, 20], which can be formulated as the problem of finding

x ∈C such that Ax ∈ Q, (1.2)

where C and Q are nonempty closed convex subsets of H1 and H2, respectively.
Many algorithms have been introduced to solve the SFP recently. In 2002, Byrne [3] first pro-

posed the following celebrated CQ algorithm for numerically solving the SFP which generates
a sequence {xk} by

xk+1 = PC(I− γkA∗(I−PQ)A)xk, (1.3)

∗Corresponding author.
E-mail address: zhaojing200103@163.com (J. Zhao)
Received November 30, 2022; Accepted April 17, 2023.

c©2023 Journal of Nonlinear Functional Analysis

1



2 S. CHEN, H. DU, J. HUANG, Z. CHEN, J. ZHAO

where γk ∈ (0, 2
λ
) and λ is the spectral radius of the operator A∗A. A number of scholars focused

on extending the CQ algorithm which avoids computing the inverse of the matrix.
In CQ algorithm and its variants, we notice that the stepsize γk depends on the largest eigen-

value of matrix or bounded linear operator norm. In order to avoid this difficulty, Lopez et al.
[14] proposed and investigated the following stepsize selection method:

γk :=
ρk f (xk)

‖∇ f (xk)‖2 ,

where infk ρk(4−ρk)> 0 and f (x) := 1
2‖(I−PQ)Ax‖2.

It is known that the SFP can be turned into an optimization problem. Indeed it is also clear.
We assume that the SFP (1.2) is consistent, and then the SFP is equivalent to the following
minimization: minx∈C f (x), where f (x) := 1

2‖(I−PQ)Ax‖2. Furthermore, the SFP can be also
turned into a separable convex optimization problem:

min
x∈H1

ιC(x)+ f (x),

where ιC(x) is an indicator function of the set C defined by

ιC(x) =

{
0, x ∈C,

+∞, x 6∈C.

In 2013, Chen et al. [7] considered minimizing the sum of two proper lower semi-continuous
convex functions, as demonstated below:

x∗ = arg min
x∈Rn

f1(x)+ f2(x), (1.4)

where f1 and f2 are proper lower semi-continuous convex functions from Rn to (−∞,+∞], and
f2 is differentiable on Rn with 1/β -Lipschitz continuous gradient for some β ∈ (0,+∞). They
introduced the following iterative sequence to solve the convex separable problem (1.7):{

vk+1 = (I− prox γ

λ
f1)(xk− γ∇ f2(xk)+(1−λ )vk),

xk+1 = xk− γ∇ f2(xk)−λvk+1,
(1.5)

where λ and γ are two positive numbers. Under appropriate conditions [7], the sequence {xk}
converges to a solution of the problem (1.4). They obtained that x is the primal variable and
v is actually the dual variable of the primal-dual form related to (1.4). Let f1(x) = ιC(x) and
f2(x) = f (x), then the algorithm (1.5) becomes the following primal-dual method for solving
the SFP (1.2): {

vk+1 = (I−PC)(xk− γA∗(I−PQ)Axk +(1−λ )vk),

xk+1 = xk− γA∗(I−PQ)Axk−λvk+1.
(1.6)

Censor and Segal [6] proposed the following iterative algorithm for solving the SCFP (1.1)
of directed operators:

xk+1 =U(xk− γA∗(I−T )Axk). (1.7)

We note that, when projection operators PC and PQ are replaced by directed operators, CQ-
algorithm (1.3) becomes iterative scheme (1.7).
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In [25], the following self-adaptive iterative algorithm with the dual variable was proposed
based on the idea in [7] for solving the SCFP (1.1) of directed operators:{

vk+1 = (I−U)(xk− γkA∗(I−T )Axk +(1−λ )vk),

xk+1 = xk− γkA∗(I−T )Axk−λvk+1,
(1.8)

where the stepsize γk is chosen by

γk :=

{
ρk‖(I−T )Axk‖2

‖A∗(I−T )Axk‖2 , (I−T )Axk 6= 0,
γ, (I−T )Axk = 0

with 0 < ρk < 2 and γ > 0. Observe that algorithm (1.8) generalizes algorithm ((1.7) since
algorithm (1.8) becomes algorithm (1.7) as λ = 1.

Some authors introduced some algorithms to solve the SCFP (1.1); see, e.g., [4, 11, 12, 16,
23, 24]. In optimization theory, the inertial technique is used to speed up the convergence rate.
Polyak [18] firstly proposed the heavy ball method and Nesterov [17] introduced a modified
heavy ball method for minimizing a smooth convex function. It is remarkable that inertial term
makes use of the previous two iterates such that the performance of the algorithm is improved
greatly. In [1], by employing the idea of the heavy ball method to the setting of a general
maximal monotone operator, Alvarez and Attouch proposed inertial proximal point algorithm:{

yk = xk +αk(xk− xk−1),

xk+1 = (I +λkF)−1(yk),
(1.9)

where F is a maximal monotone operator. They proved that, if {αk} ⊆ [0,1) satisfies
∞

∑
k=1

αk‖xk− xk−1‖2 < ∞

and {λk} is non-decreasing, then {xk} generated by (1.9) converges weakly to a zero point of
F .

In [15], Maingé introduced the following inertial Mann iterative algorithm to find the fixed
point of nonexpansive mapping T :{

yk = xk +αk(xk− xk−1),

xk+1 = (1−βk)yk +βkT (yk).
(1.10)

Recently, for solving the SFP in Hilbert spaces, Dang et al. [8] proposed the inertial relaxed
CQ algorithm: {

yk = xk +αk(xk− xk−1),

xk+1 = PCk(yk−λkA∗(I−PQk)Ayk).

They proved the weak convergence theorem for Picard-type and Mann-type iteration processes,
where the stepsize γ ∈ (0,2/L) and L denotes the spectral radius of A∗A. In order to overcome
the difficulty of computing the bounded linear operator norm, Gibali et al. [13] introduced
self-adaptive inertial relaxed CQ algorithm for solving the SFP in real Hilbert spaces. Shehu et
al. [21] proposed self-adaptive projection method with an inertial technique and proved strong
convergence for split feasibility problems in Banach spaces.
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In [26], a self-adaptive inertial iterative algorithm with one-step inertial technique was pro-
posed and demonstrated below:

yk = xk +αk(xk− xk−1),

ωk+1 = (I−U)(yk− γkA∗(I−T )Ayk +(1−λ )ωk),

xk+1 = yk− γkA∗(I−T )Ayk−λωk+1,

(1.11)

where 0≤ αk ≤ ᾱk, and

ᾱk :=
{

min{θ , εk
‖xk−xk−1‖2+‖ωk−1‖2}, i f xk 6= xk−1 or ωk−1 6= 0,

θ , otherwise.

Besides, the stepsize γk is chosen in such a way that

γk :=

{
ρk‖(I−T )Ayk‖2

‖A∗(I−T )Ayk‖2 , (I−T )Ayk 6= 0,
γ, (I−T )Ayk = 0.

The numerical experiments demonstrate that this algorithm has faster convergence speed and
shorter iteration time, and it can effectively solve the SCFP.

In [10], Dong et al. proposed the following multi-step inertial Krasnosel’skiľ–Mann algo-
rithm(MiKM) for solving the fixed point problem of nonexpansive operator T :

yk = xk + ∑
n∈Sk

ak,n (xk−n− xk−n−1) ,

zk = xk + ∑
n∈Sk

bk,n (xk−n− xk−n−1) ,

xk+1 = (1−λk)yk +λkT (zk) ,

where ak,n,bk,n ∈ (−1,2]|Sk| for each k ≥ 2 and |Sk| denotes the number of elements of the set
Sk.

Inspired and motivated by the above research works, for solving the SCFP (1.1) of directed
operators, we construct two-step self-adaptive iterative algorithm by using inertial extrapolation
and primal-dual algorithm. The contents of this paper are as follows. First, we give some
useful definitions and results for the convergence analysis of the iterative algorithm. Second, we
prove a weak convergence theorem of the proposed algorithm. Finally, we provide a numerical
experiment for solving the SFP (1.2) to illustrate the convergence behavior and the effectiveness
of the proposed algorithm.

2. PRELIMINARIES

In this paper, we denote the inner product by 〈·, ·〉 and the norm by ‖ · ‖, we use ⇀ and →
to denote the weak convergence and strong convergence, respectively. We use ωw(xk) = {x :
∃xk j ⇀ x as j→ ∞} to stand for the weak limit set of {xk}, and let H be a real Hilbert space.

Definition 2.1. An oprator T : H→ H is said to be
(i) nonexpansive if

‖T x−Ty‖ ≤ ‖x− y‖
for all x,y ∈ H;

(ii) firmly nonexpansive if 2T − I is nonexpansive or equivalent to

‖T x−Ty‖2 ≤ ‖x− y‖2−‖(x− y)− (T x−Ty)‖2

for all x,y ∈ H;
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(iii) firmly quasi-nonexpansive (also called directed operator) if F(T ) 6=∅ and

‖T x−q‖2 6 ‖x−q‖2−‖x−T x‖2

or equivalent to
〈x−q,T x−q〉> ‖T x−q‖2

for all x ∈ H and q ∈ F(T ).

(iv) demiclosed at the origin if, for any sequence {xk} which weakly converges to x, the
sequence {T xk} strongly converges to 0, then T x = 0.

Lemma 2.2. [22] Let T : H→H be an operator. Then the following statements are equivalent:
(i) T is directed;
(ii) there holds the relation:

‖x−T x‖2 ≤ 〈x−q,x−T x〉, q ∈ F(T ), x ∈ H.

Lemma 2.3. [10] For any a,b ∈ H, the following holds:

‖a−b‖2 ≤ (1+‖b‖)‖a‖2 +‖b‖+‖b‖2.

Lemma 2.4. [9] Assume that {ak} is a sequence of nonnegative real numbers such that

ak+1 6 (1+ γk)ak +δk,

where the sequences {γk} is in [0,+∞), in addition, both {γk} and {δk} satisfy the following
conditions:

(i) ∑
∞
k=0 γk <+∞;

(ii) ∑
∞
k=0 δk <+∞ or supδk 6 0.

Then limk→+∞ ak exists.

Lemma 2.5. Let K be a nonempty closed convex subset of real Hilbert space. Let {xk} be a
bounded sequence which satisfies the following properties:

(i) every weak limit point of {xk} lies in K;

(ii) limk→∞ ‖xk− x‖ exists for every x ∈ K.

Then {xk} converges weakly to a point in K.

3. WEAK CONVERGENCE OF TWO-STEP INERTIAL ADAPTIVE ITERATIVE ALGORITHM

In this paper, we make use of the following assumptions:
(A1) U : H1 → H1 and T : H2 → H2 are directed operators, and A : H1 → H2 is a bounded

linear operator such that A 6= 0;
(A2) Γ denotes the solution set of the SCFP (1.1) and Γ is nonempty.

Algorithm 3.1. (Two-step inertial adaptive iterative algorithm)
Choose two sequences {ρk}∞

k=1 ⊂ [0,∞) and {εk}∞

k=1 ⊂ [0,∞) satisfying

0 < ρk < 2

and
∞

∑
k=1

εk < ∞.

Select arbitrary starting points x0, x1, v1 ∈ H1, λ ∈ [0,1], γ > 0.
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Iterative step: For k ≥ 1, given the iterates xk−2, xk−1, xk and vk, choose αk,βk such that
06max{αk,βk}6 αk, where

αk =

{
εk

‖xk−xk−1‖+‖xk−1−xk−2‖
, xk 6= xk−1 or xk−1 6= xk−2,

θ , otherwise.
(3.1)

Compute  yk = xk +αk (xk− xk−1)+βk (xk−1− xk−2) ,
vk+1 = (I−U)(yk− γkA∗(I−T )Ayk +(1−λ )vk) ,
xk+1 = yk− γkA∗(I−T )Ayk−λvk+1,

where the stepsize γk is chosen in such a way that

γk :=

 ρk‖(I−T )Ayk‖2

‖A∗(I−T )Ayk‖2 , (I−T )Ayk 6= 0,

γ, (I−T )Ayk = 0.
(3.2)

Remark 3.1. By (3.1), we have that

max{αk,βk}(‖xk− xk−1‖+‖xk−1− xk−2‖)≤ εk,

and then
∞

∑
k=1

max{αk,βk}(‖xk− xk−1‖+‖xk−1− xk−2‖)<+∞.

There are many choices for sequence {εk}. For example, we take εk =
1
k2 , i.e.,

max{αk,βk} ≤
1

k2 (‖xk− xk−1‖+‖xk−1− xk−2‖)
.

Then
∞

∑
k=1

max{αk,βk}(‖xk− xk−1‖+‖xk−1− xk−2‖)<+∞.

Lemma 3.2. The stepsize γk defined by (3.2) is well-defined.

Proof. Taking x ∈ Γ, i.e., x ∈ F(U) and Ax ∈ F(T ), by Lemma 2.2 (ii) we have

‖A∗(I−T )Ayk‖ · ‖yk− x‖ ≥ 〈A∗(I−T )Ayk,yk− x〉
= 〈(I−T )Ayk,Ayk−Ax〉

≥ ‖(I−T )Ayk‖2 .

Consequently, we have ‖A∗(I−T )Ayk‖> 0 when ‖(I−T )Ayk‖ 6= 0. �

Lemma 3.3. Let {(vk,xk)} be the sequence generated by Algorithm 3.1. Then, for any z ∈ Γ,
the following inequality holds:

‖xk+1− z‖2 +λ ‖vk+1‖2 ≤‖yk− z‖2 +λ ‖vk‖2−λ
2 ‖vk‖2−λ (1−λ )‖vk+1− vk‖2

− γk
(
2‖(I−T )Ayk‖2− γk‖A∗(I−T )Ayk‖2) .

Proof. Denoting uk = yk−γkA∗(I−T )Ayk, we have vk+1 = (I−U)(uk +(1−λ )vk) and xk+1 =
uk−λvk+1. Taking z ∈ Γ, we have z ∈ F(U) and Az ∈ F(T ). It following from Algorithm 3.1
and Lemma 2.2 (ii) that

‖vk+1‖2 = ‖(I−U)(uk +(1−λ )vk)‖2 ≤ 〈vk+1,uk− z+(1−λ )vk〉
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and

‖xk+1− z‖2 = ‖uk− z‖2−2λ 〈uk− z,vk+1〉+λ
2 ‖vk+1‖2 .

Thus we have

‖xk+1− z‖2 +λ ‖vk+1‖2

=‖uk− z‖2−2λ 〈uk− z,vk+1〉+λ
2 ‖vk+1‖2 +λ ‖vk+1‖2

=‖uk− z‖2−2λ 〈uk− z,vk+1〉+2λ ‖vk+1‖2−λ (1−λ )‖vk+1‖2

≤‖uk− z‖2−2λ 〈uk− z,vk+1〉+2λ 〈uk− z+(1−λ )vk,vk+1〉−λ (1−λ )‖vk+1‖2

=‖uk− z‖2 +2λ (1−λ )〈vk,vk+1〉−λ (1−λ )‖vk+1‖2 .

Since 2〈vk+1,vk〉= ‖vk+1‖2−‖vk+1− vk‖2 +‖vk‖2 , we obtain

‖xk+1− z‖2 +λ ‖vk+1‖2

≤‖uk− z‖2 +λ (1−λ )‖vk‖2−λ (1−λ )‖vk+1− vk‖2

=‖uk− z‖2 +λ ‖vk‖2−λ
2 ‖vk‖2−λ (1−λ )‖vk+1− vk‖2 .

It follows from Az ∈ F(T ) and Lemma 2.2 (ii) that

〈yk− z,A∗(I−T )Ayk〉= 〈Ayk−Az,(I−T )Ayk〉 ≥ ‖(I−T )Ayk‖2 ,

which implies that

‖uk− z‖2

=‖yk− γkA∗(I−T )Ayk− z‖2

=‖yk− z‖2−2γk 〈yk− z,A∗(I−T )Ayk〉+ γ
2
k ‖A∗ (I−T )Ayk‖2

≤‖yk− z‖2−2γk ‖(I−T )Ayk‖2 + γ
2
k ‖A∗(I−T )Ayk‖2

=‖yk− z‖2− γk

(
2‖(I−T )Ayk‖2− γk ‖A∗(I−T )Ayk‖2

)
.

Hence, we have

‖xk+1− z‖2 +λ ‖vk+1‖2

≤‖yk− z‖2 +λ ‖vk‖2−λ
2 ‖vk‖2−λ (1−λ )‖vk+1− vk‖2

− γk

(
2‖(I−T )Ayk‖2− γk ‖A∗(I−T )Ayk‖2

)
.

�

Theorem 3.4. Suppose I−U and I−T are demiclosed at the origin, 0 < λ ≤ 1, and

0 < lim
k→∞

infρk ≤ lim
k→∞

supρk < 2.

Let {(vk,xk)} be the sequence generated by Algorithm 3.1. Then the sequence {xk} converges
weakly to a solution x∗ ∈ Γ and the sequence {(vk,xk)} weakly converges to the point (0,x∗).
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Proof. Taking z ∈ Γ, from Lemma 3.3, we obtain

‖xk+1− z‖2 +λ ‖vk+1‖2

≤‖yk− z‖2 +λ ‖vk‖2−λ
2 ‖vk‖2−λ (1−λ )‖vk+1− vk‖2

− γk

(
2‖(I−T )Ayk‖2− γk ‖A∗(I−T )Ayk‖2

)
≤‖yk− z‖2 +λ ‖vk‖2−λ

2 ‖vk‖2− γk

(
2‖(I−T )Ayk‖2− γk ‖A∗(I−T )Ayk‖2

)
.

(3.3)

By Lemma 2.3, we have

‖yk− z‖2 =‖xk +αk (xk− xk−1)+βk (xk−1− xk−2)− z‖2

=‖xk− z− (αk (xk−1− xk)+βk (xk−2− xk−1))‖2

≤‖xk− z‖2 (1+‖αk (xk−1− xk)+βk (xk−2− xk−1)‖)
+‖αk (xk−1− xk)+βk (xk−2− xk−1)‖+‖αk (xk−1− xk)+βk (xk−2− xk−1)‖2.

(3.4)
Set bk = αk (xk−1− xk)+βk (xk−2− xk−1). It follows from (3.3) and (3.4) that

‖xk+1− z‖2 +λ ‖vk+1‖2

≤‖xk− z‖2 (1+‖bk‖)+‖bk‖+‖bk‖2 +λ ‖vk‖2

−λ
2 ‖vk‖2− γk

(
2‖(I−T )Ayk‖2− γk ‖A∗(I−T )Ayk‖2

)
≤
(
‖xk− z‖2 +λ ‖vk‖2

)
(1+‖bk‖)+‖bk‖+‖bk‖2

−λ
2 ‖vk‖2− γk

(
2‖(I−T )Ayk‖2− γk ‖A∗(I−T )Ayk‖2

)
.

Let dk = ‖xk− z‖2 +λ ‖vk‖2. Then it follows that

dk+1 ≤dk (1+‖bk‖)+‖bk‖+‖bk‖2

−λ
2 ‖vk‖2− γk

(
2‖(I−T )Ayk‖2− γk ‖A∗(I−T )Ayk‖2

)
.

(3.5)

For the case (I−T )Ayk = 0, we have

dk+1 ≤ dk (1+‖bk‖)+‖bk‖+‖bk‖2−λ
2 ‖vk‖2 . (3.6)

Otherwise, we deduce from (3.2) and (3.5) that

dk+1 ≤dk (1+‖bk‖)+‖bk‖+‖bk‖2

−λ
2 ‖vk‖2−ρk (2−ρk)

‖(I−T )Ayk‖4

‖A∗(I−T )Ayk‖2 .
(3.7)

From the assumptions on ρk, λ , (3.6) and (3.7), we see that dk+1≤ dk (1+‖bk‖)+‖bk‖+‖bk‖2 .
Apply Lemma 2.4 and assume that

ak+1 := dk+1,γk := ‖bk‖, and δk := ‖bk‖+‖bk‖2.
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It follows from (3.1) that
‖bk‖=‖αk (xk−1− xk)+βk (xk−2− xk−1)‖

≤max{αk,βk}(‖xk− xk−1‖+‖xk−1− xk−2‖)
<εk.

That means ∑
∞
k=1 ||bk||<+∞, ∑

∞
k=0 γk <+∞, ∑

∞
k=0 δk <+∞, and then we obtain that limk→∞ dk

exists. Thus it follows that {dk} is bounded and hence {xk} is bounded. From (3.6) and (3.7),
we also have

λ
2 ‖vk‖2 ≤−dk+1 +dk (1+‖bk‖)+‖bk‖+‖bk‖2

=dk−dk+1 +dk ‖bk‖+‖bk‖+‖bk‖2 ,

which implies that
lim
k→∞

‖vk‖= 0 (3.8)

by taking into account that λ > 0, and limk→∞ δk = 0. Then limk→∞ ‖xk− z‖2 = limk→∞(dk−
λ ‖vk‖2) = limk→∞ dk exists. We still denote uk = yk− γkA∗(I−T )Ayk.

Now, we prove that
lim
k→∞

‖(I−T )yk‖= lim
k→∞

‖yk−uk‖= 0.

If (I−T )Ayk = 0, it is clear that

yk−uk = γkA∗(I−T )Ayk = 0. (3.9)

Otherwise, it follows from (3.7) that

ρk (2−ρk)
‖(I−T )Ayk‖4

‖A∗(I−T )Ayk‖2 ≤ dk−dk+1 +dk ‖bk‖+‖bk‖+‖bk‖2 .

It is obvious from assumption 0 < liminfk→∞ ρk ≤ limsupk→∞ ρk < 2 that

lim
k→∞

‖(I−T )Ayk‖4

‖A∗(I−T )Ayk‖2 = 0.

Thus

lim
k→∞

‖(I−T )Ayk‖2

‖A∗(I−T )Ayk‖
= 0. (3.10)

It follows from A 6= 0, (3.10) and

‖(I−T )Ayk‖2

‖A∗(I−T )Ayk‖
≥ ‖(I−T )Ayk‖2

‖A‖‖(I−T )Ayk‖
=

1
‖A‖
‖(I−T )Ayk‖ ,

that limk→∞ ‖(I−T )Ayk‖= 0. And from (3.10), we have

‖yk−uk‖= ‖γkA∗(I−T )Ayk‖= ρk
‖(I−T )Ayk‖2

‖A∗(I−T )Ayk‖
→ 0 (3.11)

as k→ ∞. Combining (3.9) and (3.11), for the whole sequence {yk}, we obtain

lim
k→∞

‖(I−T )Ayk‖= lim
k→∞

‖yk−uk‖= 0. (3.12)

From Algorithm 3.1, we have xk+1 = uk−λvk+1. It follows from (3.8) that

lim
k→∞

‖xk+1−uk‖= lim
k→∞

λ ‖vk+1‖= 0. (3.13)
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On the other hand, it follows from (3.1) that

lim
k→∞

(αk (‖xk− xk−1‖)+βk (‖xk−1− xk−2‖)) = 0,

which further yields that

lim
k→∞

‖yk− xk‖= lim
k→∞

(αk (‖xk− xk−1‖)+βk (‖xk−1− xk−2‖)) = 0. (3.14)

From (3.12), (3.13), and (3.14), we have

lim
k→∞

‖xk−uk‖= lim
k→∞

‖xk+1− xk‖= 0. (3.15)

By Algorithm 3.1 and (3.8), we have

lim
k→∞
‖uk +(1−λ )vk−U (uk +(1−λ )vk)‖= lim

k→∞
‖vk+1‖= 0. (3.16)

Now, we show that ωw (xk)⊆ Γ. Let x̄ ∈ωw (xk), i.e., there exist a subsequence
{

xk j

}
of {xk}

such that xk j ⇀ x̄ as j→∞. Then, from (3.14), we have Ayk j ⇀Ax̄ as j→∞. By (3.8) and (3.15),
we have uk j +(1−λ )vk j ⇀ x̄ as j→ ∞. It follows from (3.12), (3.16), and the demiclosedness
of U and T that x̄ ∈ F(U) and Ax̄ ∈ F(T ), which imply that x̄ ∈ Γ, so ωw (xk)⊆ Γ.

Finally, by Lemma 2.5, we have xk ⇀ x∗ as k→ ∞, where x∗ ∈ Γ. Thus, it follows from
vk→ 0 that (vk,xk)⇀ (0,x∗) as k→ ∞. �

Remark 3.5. (i) When αk = βk = 0, Algorithm 3.1 becomes the self-adaptive primal-dual al-
gorithm (1.8) which was proposed in [25] for solving the SCFP of directed operators. (ii) When
βk = 0, Algorithm 3.1 becomes the one-step inertial adaptive iterative algorithm (1.11) for solv-
ing the SCFP of directed operators.

4. NUMERICAL EXPERIMENTS

In this section, we carry out a numerical experiment and demonstrate the performance of the
proposed Algorithm 3.1 for solving the SFP (1.2) by comparing Algorithm 3.1, the original
algorithm (1.8), and the self-adaptive one-step inertial iterative algorithm (1.11). All the codes
are written by MATLAB and are performed on a personal ASUS computer with AMD RyzenTM

7 5800H CPU @3.2GHz 4.4GHz and RAM 16.00GB. We denote e0 = (0,0, · · · ,0)T and e1 =
(1,1, · · · ,1)T , and in the table, we use ‘Iter.’ to denote the number of iteration.

Example 4.1. Let A =
(
ai j
)

N×M be a random matrix, where ai j ∈ [−40,−20] and N,M are two
positive integers. Choose a M-dimensional negative vector z. Let r = ‖z‖ and b = Az. Take

C =

{
x = (xi) ∈ RM |

M

∑
i=1

x2
i 6 r

}
,

and
Q =

{
y ∈ RN | y6 b

}
.

Now we find x ∈C and Ax ∈ Q. It is easy to see that Γ 6= ∅. In Algorithm 3.1, the directed
operators U and T become projection operators PC and PQ, respectively, and we take θ = 0.1,
γ = 0.5, ρk = 1.95, εk =

1
k1.01 . We define the function p(x) by

p(x) = ‖x−PCx‖+‖Ax−PQAx‖
and we take p(x)< ε = 10−20 as the stopping criterion.

In order to solve our example, we can take inertial extrapolation factor αk, βk ∈ [0,αk]. In our
example, if βk = 0, Algorithm 3.1 becomes the self-adaptive inertial iterative algorithm (1.11)
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with one-step inertial technique, and if αk = βk ≡ 0, Algorithm 3.1 becomes the primal-dual
algorithm (1.11) without inertial technique and we can choose different inertial extrapolation
factors by adjusting parameter τ ∈ [0,1].

In Table 1-Table 3, we present out numerical experiments with different dimension spaces and
inertial extrapolation factors. Let αk = βk = ταk. We show iteration numbers with dimesions
(N,M) = (20,40),(30,50),(40,60) and initial points x0,x1,x2,ω0 are generated randomly. In
addition, we adjust parameters τ = 0,0.1,0.2, ...,0.9,1.0.

We can find that Algorithm 3.1 is more effective for solving our example with different
dimension spaces and inertial extrapolation factors.

TABLE 1. Numerical result with different αk, βk, where the two cases are αk =
ταk, βk = 0 and αk = βk = ταk.

(N, M)=(20, 40)
τ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

αk = ταk, βk = 0 Iter. 346 55 44 40 37 34 32 31 30 29 28
αk = βk = ταk Iter. 346 42 33 30 27 26 25 24 23 23 22

TABLE 2. Numerical result with different αk, βk, where the two cases are αk =
ταk, βk = 0 and αk = βk = ταk.

(N, M)=(30, 50)
τ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

αk = ταk, βk = 0 Iter. 316 52 44 39 36 34 31 30 29 28 27
αk = βk = ταk Iter. 316 41 34 30 28 27 25 25 24 23 23

TABLE 3. Numerical result with different αk, βk, where the two cases are αk =
ταk, βk = 0 and αk = βk = ταk.

(N, M)=(40, 60)
τ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

αk = ταk, βk = 0 Iter. 404 54 46 41 37 34 32 30 28 27 26
αk = βk = ταk Iter. 404 41 32 29 27 25 25 24 23 23 22
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