
J. Nonlinear Funct. Anal. 2023 (2023) 21 https://doi.org/10.23952/jnfa.2023.21

EXACT NULL CONTROLLABILITY FOR SEMILINEAR DIFFERENTIAL
EQUATIONS WITH NONLOCAL CONDITIONS IN HILBERT SPACES
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Abstract. We present some sufficient conditions for the exact null controllability of semilinear differen-
tial equations with nonlocal conditions in Hilbert spaces. By using operator semigroups and fixed point
theorems, we obtain some new results on exact null controllability when the nonlocal item is Lipschitz
continuous and is neither Lipschitz nor compact, respectively. The method in this paper can also be
applied to other nonlocal differential systems to weaken the compactness of nonlocal item. An example
concerning the partial differential equation is presented to illustrate our results.
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1. INTRODUCTION

Controllability is one of the fundamental concepts in mathematical control system. As scien-
tific and engineering problems can be modelled by ordinary differential equations, partial differ-
ential equations, and fractional differential equations, the controllability of linear and semilinear
systems represented by differential equations has been extensively studied, using operator semi-
groups and other approaches. Results on exact controllability, approximate controllability, and
exact null controllability can be found in [7, 8, 12, 15, 18, 20, 23, 24, 26] and the references
therein.

This paper is concerned with the exact null controllability of the following semilinear differ-
ential equations with nonlocal conditions:{

x′(t) = Ax(t)+ f (t,x(t))+Bu(t), t ∈ J := [0,b],
x(0) = g(x),

(1.1)
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where A : D(A) ⊆ X → X is the infinitesimal generator of a strongly continuous semigroup
T (t), t ≥ 0 in a Hilbert space X , B is a linear bounded operator from a Hilbert space U into X ,
f : J×X→ X , the control function u(·) is given in L2(J,U), and the nonlocal item g : C(J,X)→
X is an appropriate continuous function to be specified later.

Exact controllability enables us to steer the system to arbitrary final state while exact null
controllability means that the system can be steered to zero state; see, e.g., [4, 6, 10, 11, 16].
Balachandran et al. [4] obtained the local null controllability for nonlinear functional differ-
ential systems. In [10] Dauer and Balasubramaniam discussed and investigated the sufficient
conditions for the exact null controllability of integro-differential systems with infinite delay.
The main approach in the papers above is to convert the controllability problem into a fixed
point problem with the assumption that linear convolution operator Lb

0u =
∫ b

0 T (b− s)Bu(s)ds
has a bounded inverse operator with values in L2(J,U)/ker(Lb

0), but, in view of the result in
[11], their conclusions on exact null controllability hold only in finite dimensional spaces when
semigroup T (t) is compact. To solve this problem, the authors of [21] replaced the condition of
bounded inverse operator by the exact null controllability of the associated linear system with
additive term. The new assumption condition does not guarantee the boundedness of (L0)

−1,
but it guarantees the boundedness of the operator (L0)

−1(Nb
0 ), see Lemma 2.4.

On the other hand, many types of differential equations with nonlocal initial condtions were
studied in the literatures as the nonlocal problems (x(0) = g(x)) are found to have better effects
in applications than the classical ones(x(0) = x0); see, e.g., [1, 2, 3, 15, 19, 24, 25]. When oper-
ator semigroups are applied to the existence and controllability of nonlocal problems in Banach
spaces, the main difficulty is to deal with the compactness of solution operators under a compact
semigroup. Some methods, including approximate solutions and measure of noncompactness,
were used to discuss this problem; see [9, 17]. By using approximation methods, Fu and Zhang
[14] studied the exact null controllability of nonlocal functional differential systems under the
assumption of boundedness of (L0)

−1(Nb
0 ). In practice, we find compactness conditions to non-

local items are too strong for applications. Then the initial motivation of this paper is to discuss
the exact null controllability of the nonlocal problem without the compactness restriction to
nonlocal items. Here under some weaker hypotheses, (H6) and (H7), we obtain the exact null
controllability of nonlocal differential system (1.1) without the Lipschitz continuity to nonlin-
ear item f . Firstly the compactness of the Cauchy operator is obtained, and then the nonlocal
control system is discussed when the nonlocal items is Lipschitz continuous and is neither Lips-
chitz nor compact, respectively. The conditions here are more general than the previous results,
and the exact null controllability result in [14] can be obtained as corollaries of our results. In
fact, the research method of this paper is also applicable to other nonlocal differential problems,
such as [9, 19, 24], which can improve the related research results.

The paper is organized as follows. In Section 2, we recall some concepts and facts about the
operator semigroups and the exact null controllability. In Section 3, we transform controllability
problem (1.1) into a fixed point problem and use some fixed point theorems to establish our
results. An example is presented to illustrate the application of our results in Section 4. Finally,
Section 5 ends this paper.
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2. PRELIMINARIES

Throughout this paper, let X be a Hilbert space with norm ‖ · ‖. We denote by C(J,X) the
space of X-valued continuous functions on J with norm ‖x‖ = sup{‖x(t)‖, t ∈ J} and L2(J,X)

the space of X-valued Bochner integrable functions with norm ‖ f‖L2 = (
∫ b

0 ‖ f (t)‖2 dt)
1
2 . The

exact null controllability for differential equations is connected with the form of solutions to
differential equations. So we give the definition of mild solutions to differential system (1.1).

Definition 2.1. A function x ∈C(J,X) is called a mild solution to (1.1) if it satisfies

x(t) = T (t)g(x)+
∫ t

0
T (t− s)[ f (s,x(s))+Bu(s)]ds, t ∈ J,

for some control function u ∈ L2(J,U).

Definition 2.2. System (1.1) is said to be exactly null controllable if there is a function u ∈
L2(J,U) such that, under this control, x(b) = 0.

Define the operators Lb
0 : L2(J,U)→ X and Nb

0 : X×L2(J,U)→ X as

Lb
0u =

∫ b

0
T (b− s)Bu(s)ds, u ∈ L2(J,U)

and

Nb
0 (z0, f ) = T (b)z0 +

∫ b

0
T (b− s) f (s)ds, (z0, f ) ∈ X×L2(J,X),

and consider the linear system{
z′(t) = Az(t)+ f (t)+Bu(t), t ∈ [0,b],
z(0) = z0,

(2.1)

associated with system (1.1), where f ∈ L2(J,X).

Remark 2.3. It was proved in [8] that linear system (2.1) is exactly null controllable on [0,b] if
Im Lb

0 ⊃ Im Nb
0 , and system (2.1) is exactly null controllable if and only if there exists a number

k > 0 such that ‖(Lb
0)
∗z‖ ≥ k‖(Nb

0 )
∗z‖ for all z ∈ X .

The following lemma is important in the discussion of exact null controllability for differen-
tial system 1.1.

Lemma 2.4 ([11]). Suppose that linear system (2.1) is exactly null controllable on [0,b]. Then
linear operator H := (L0)

−1(Nb
0 ) : X×L2(J,X)→ L2(J,U) is bounded and the control

u(t) =−(L0)
−1(T (b)z0 +

∫ b

0
T (b− s) f (s)ds

)
(t) =−H(z0, f )(t)

transfers system (2.1) from z0 to 0, where L0 is the restriction of Lb
0 to [Ker Lb

0]
⊥.

Next, we introduce the Hausdorff’s measure of noncompactness β (·) defined by

β (B) = inf{ε > 0; B has a finite ε−net in X},

for each bounded subset B in Banach space X . We recall the following properties of the Haus-
dorff’s measure of noncompactness β .
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Lemma 2.5 ([5]). Let X be a real Banach space and B,C ⊆ X be bounded. Then the following
properties are satisfied:

(1) B is relatively compact if and only if β (B) = 0;
(2) β (B) = β (B) = β (conv B), where B and conv B mean the closure and convex hull of B,

respectively;
(3) β (B)≤ β (C) when B⊆C;
(4) β (B+C)≤ β (B)+β (C), where B+C = {x+ y : x ∈ B,y ∈C};
(5) β (B∪C)≤max{β (B),β (C)};
(6) β (λB)≤ |λ |β (B) for any λ ∈ R;
(7) If Q : D(Q) ⊆ X → Z is Lipschitz continuous with constant k, then βZ(QB) ≤ kβ (B) for

any bounded subset B⊆ D(Q), where Z is a Banach space.

The map Q : D ⊆ X → X is said to be a β -contraction if, for any bounded subset B ⊆ D,
β (QB)< kβ (B) and k < 1, where X is a Banach space.

Lemma 2.6 (See [5], Darbo-Sadovskii). If D ⊆ X is bounded closed and convex, and the con-
tinuous map Q : D→ D is a β -contraction, then Q has at least one fixed point in D.

3. MAIN RESULTS

Define the solution operator G : C(J,X)→C(J,X) by

(Gx)(t) = T (t)g(x)+
∫ t

0
T (t− s)[ f (s,x(s))+Bu(s)]ds, (3.1)

u(t) =−H(g(x), f ) =−(L0)
−1(T (b)g(x)+∫ b

0
T (b− s) f (s,x(s))ds

)
(t), (3.2)

with (G1x)(t) = T (t)g(x), and (G2x)(t) =
∫ t

0 T (t− s)[ f (s,x(s))+Bu(s)], ds for all t ∈ [0,b]. It
is easy to see that u(t) is well defined as g(x) ∈ X , f ∈ L2(J,X) and this control u(·) steers x0 to
0. In fact, for mild solution x(·), by using control u(t) defined by (3.2), we have

x(b) = T (b)g(x)+
∫ b

0
T (b− s)[ f (s,x(s))+Bu(s)]ds

= T (b)g(x)+
∫ b

0
T (b− s) f (s,x(s))ds

−
∫ b

0
T (b− s)B(L0)

−1(T (b)g(x)+∫ b

0
T (b− s) f (s,x(s))ds

)
(s)ds

= 0.

We show that the operator G from C(J,X) into itself has a fixed point, which is just the mild
solution to system (1.1).

We give the following hypotheses on differential system (1.1). Let r be a finite positive
constant and set Wr = {x ∈C(J,X) : ‖x(t)‖ ≤ r, t ∈ J}.

(H1) The semigroup {T (t) : t ≥ 0} generated by A is compact, i.e., operator T (t) is compact
as t > 0. Moreover, there exists a positive number M such that M = sup0≤t≤b ‖T (t)‖ (see [22]).

(H2) The function f (t, ·) : X → X is continuous for a.e. t ∈ [0,b] and f (·,x) : [0,b]→ X is
measurable for all x ∈ X . Moreover, for any r > 0, there exists a function ρr ∈ L2(J,R+) such
that ‖ f (t,x)‖ ≤ ρr(t) for a.e. t ∈ [0,b] and x ∈ X satisfying ‖x‖ ≤ r.
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(H3) g : C(J,X)→ X is a continuous mapping, and there exists a nondecreasing function
γ : R+→ R+ such that ‖g(x)‖ ≤ γ(‖x‖C)‖.

(H4) Linear system (2.1) is exactly null controllable on [0,b].
Here, we first discuss the compactness property of Cauchy operator to system (1.1).

Lemma 3.1. Suppose that conditions (H1)− (H4) are satisfied. Then the mapping G2 : Wr→
C(J,X) defined by (G2x)(t) =

∫ t
0 T (t− s)[ f (s,x(s))−BH(g(x), f )(s)]ds is compact.

Proof. It is suffice to prove that G2Wr is relatively compact in C(J,X). Firstly, we prove that,
for each t ∈ [0,b], set {(G2x)(t) : x ∈Wr} is relatively compact in X . If t = 0, it is easy to see
that {(G2x)(0) : x ∈Wr} is relatively compact in X . For t ∈ (0,b] and ε ∈ (0, t), define

(Gε
2x)(t) :=

∫ t−ε

0
T (t− s)[ f (s,x(s))−BH(g(x), f )(s)]ds

= T (ε)
∫ t−ε

0
T (t− ε− s)[ f (s,x(s))−BH(g(x), f )(s)]ds.

As T (ε) is compact, set (Gε
2Wr)(t)= {(Gε

2x)(t) : x∈Wr} is relatively compact in X . Letting ε→
0+, we have (Gε

2x)(t)→ (G2x)(t), which infers that, for each t ∈ [0,b], (G2Wr)(t) is relatively
compact in X by using the total boundedness.

Next, we prove the equicontinuity of G2Wr. Let 0≤ t1 < t2 ≤ b, and x ∈Wr. Then∥∥∥∥∫ t2

0
T (t2− s)[ f (s,x(s))−BH(g(x), f )(s)]ds

−
∫ t1

0
T (t1− s)[ f (s,x(s))−BH(g(x), f )(s)]ds

∥∥∥∥
=

∥∥∥∥∫ t1

0
[T (t2− s)−T (t1− s)][ f (s,x(s))−BH(g(x), f )(s)]ds

+
∫ t2

t1
T (t2− s)[ f (s,x(s))−BH(g(x), f )(s)]ds

∥∥∥∥
≤

∫ t1

0
‖T (t2− s)−T (t1− s)‖‖ f (s,x(s))−BH(g(x), f )(s)‖ds

+M
∫ t2

t1
‖ f (s,x(s))−BH(g(x), f )(s)‖ds. (3.3)

If t1 = 0, then the right hand of (3.3) can be made small when t2 is small independent of x ∈Wr.
If t1 > 0, then we can find a small number ε > 0 with t1− ε > 0. It follows from (3.3) that∫ t1

0
‖T (t2− s)−T (t1− s)‖‖ f (s,x(s))−BH(g(x), f )(s)‖ds

+M
∫ t2

t1
‖ f (s,x(s))−BH(g(x), f )(s)‖ds

≤
∫ t1−ε

0
‖T (t2− s)−T (t1− s)‖‖ f (s,x(s))−BH(g(x), f )(s)‖ds

+2M
∫ t1

t1−ε

‖ f (s,x(s))−BH(g(x), f )(s)‖ds+M
∫ t2

t1
‖ f (s,x(s))−BH(g(x), f )(s)‖ds

:= I1 + I2 + I3. (3.4)
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Here, as T (t) is compact for t > 0, T (t) is continuous by operator norm for t > 0 and we have
I1→ 0 as t1→ t2, independent of particular choice of x(·). Considering I3, by the boundedness
of linear operator H,∫ t2

t1
‖ f (s,x(s))−BH(g(x), f )(s)‖ds

≤
∫ t2

t1
‖ f (s,x(s))‖ds+

∫ t2

t1
‖BH(g(x), f )(s)‖ds

≤
√

t2− t1

(∫ t2

t1
‖ f (s,x(s))‖2 ds

) 1
2

+‖B‖
√

t2− t1

(∫ t2

t1
‖H(g(x), f )(s)‖2 ds

) 1
2

≤
√

t2− t1

(∫ b

0
‖ f (s,x(s))‖2 ds

) 1
2

+‖B‖
√

t2− t1

(∫ b

0
‖H(g(x), f )(s)‖2 ds

) 1
2

≤
√

t2− t1‖ρr‖L2 +‖B‖
√

t2− t1‖H‖(‖g(x)‖+‖ f‖L2)

≤
√

t2− t1‖ρr‖L2 +‖B‖
√

t2− t1‖H‖(‖γ(r)‖+‖ρr‖L2),

which demonstrates that I3 → 0 as t1 → t2 independent of x. Similar estimation can ensure
that I2→ 0 as ε → 0+. Then, from (3.4) and the absolute continuity of integrals, we see that
{(G2x)(·) : x ∈Wr} is equicontinuous on [0,b]. By the Ascoli-Arzela theorem, we know that
G2Wr is relatively compact in C(J,X). This completes the proof. �

Now, we give some sufficient conditions for the exact null controllability of (1.1). We make
the following assumption.

(H5) g : C(J,X)→ X is Lipschitz continuous with Lipschitz constant k such that Mk < 1.

Theorem 3.2. Assume that hypotheses (H1)− (H5) are satisfied. Then system (1.1) is exactly
null controllable on [0,b], provided that the condition

lim
x→+∞

sup
M
[
γ(x)+

√
b‖ρx‖L2 +‖B‖

√
b‖H‖(γ(x)+‖ρx‖L2)

]
x

< 1 (3.5)

is satisfied.

Proof. We consider the solution operator G : C(J,X)→ C(J,X) defined in (3.1). It is easy to
see that if we can obtain the fixed point of G, then differential system (1.1) is exactly null con-
trollable on [0,b]. Subsequently, we prove that G has a fixed point by using Darbo-Sadovskii’s
fixed point theorem (Lemma 2.6).

Firstly, G is continuous on C(J,X). For this purpose, let {xn}∞
n=1 be a sequence in C(J,X)

with lim
n→∞

xn = x. By the continuity of f with respect to the second argument, we have that, for

each s ∈ [0,b], f (s,xn(s)) converges to f (s,x(s)) in X , and, for t ∈ [0,b],

‖Gxn(t)−Gx(t)‖ ≤
∥∥∥∫ t

0
T (t− s)

[
BH(g(xn), f (s,xn(s)))(s)−BH(g(x), f (s,x(s)))(s)

]
ds
∥∥∥

+‖
∫ t

0
T (t− s)[ f (s,xn(s))− f (s,x(s))]ds‖+M‖g(xn)−g(x)‖.
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It follows that

‖Gxn−Gx‖ = sup
t∈[0,b]

‖Gxn(t)−Gx(t)‖

≤ M‖B‖
∫ b

0
‖H(g(xn), f (s,xn(s)))(s)−H(g(x), f (s,x(s)))(s)‖ds

+M
∫ b

0
‖ f (s,xn(s))− f (s,x(s))‖ds+M‖g(xn)−g(x)‖.

Then by the continuity of g, H, f (t, ·), and the Lebesgue dominated convergence theorem, we
obtain limn→∞ Gxn = Gx in C(J,X).

Secondly, there exists a number r > 0 such that G maps Wr into itself. For x ∈Wr, from
hypotheses (H1)-(H4), we have

‖(Gx)(t)‖

≤ ‖T (t)g(x)‖+‖
∫ t

0
T (t− s) f (s,x(s))ds‖+‖

∫ t

0
T (t− s)BH(g(x), f )(s)ds‖

≤ M‖g(x)‖+M
∫ t

0
‖ f (s,x(s))‖ds+M‖B‖

∫ t

0
‖H(g(x), f )(s)‖ds

≤ Mγ(r)+M
√

b‖ρr‖L2 +M‖B‖
√

b
(∫ b

0
‖H(g(x), f )(s)‖2 ds

) 1
2

≤ Mγ(r)+M
√

b‖ρr‖L2 +M‖B‖
√

b‖H‖(‖g(x)‖+‖ f‖L2)

≤ M
[
γ(r)+

√
b‖ρr‖L2 +‖B‖

√
b‖H‖(γ(r)+‖ρr‖L2)

]
,

for t ∈ [0,b]. By condition (3.5), we know that there exists a constant r > 0 such that

M
[
γ(r)+

√
b‖ρr‖L2 +‖B‖

√
b‖H‖(γ(r)+‖ρr‖L2)

]
≤ r.

Hence G(Wr)⊆Wr.
Now, according to Lemma 2.6, it remains to prove that G is a β−contracton in Wr. From

assumption (H5), we can obtain that G1 : Wr → C(J,X) is Lipschitz continuous with constant
Mk. In fact, for u,v ∈Wr,

‖G1u−G1v‖ ≤M‖g(u)−g(v)‖ ≤Mk‖u− v‖.

Then it follows from Lemma 2.5 that β (G1Wr)≤Mkβ (Wr).
Considering Lemma 3.1, we know the operator G2 is compact on C(J,X) and hence β (G2Wr)=

0. Consequently,
β (GWr)≤ β (G1Wr)+β (G2Wr)≤Mkβ (Wr).

As Mk < 1, we have that G is a β−contraction on Wr. By Darbo-Sadovskii’s fixed point theo-
rem, operator G has a fixed point in Wr, which infers that system (1.1) is exactly null controllable
on [0,b]. This completes the proof. �

Now, We give a new assumption on nonlocal function g, which is neither Lipschitz nor com-
pact.

(H6) For any r > 0, the set g(convGWr) is relatively compact in X , where convB denotes the
convex closed hull of set B⊆C(J,X), G is defined in (3.1).
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Remark 3.3. Clearly condition (H6) is weaker than the compactness and convexity of g. In the
following, we give some special types of nonlocal item g which are neither Lipschitz continuous
nor compact, but satisfy the condition (H6) in the corollaries.

Theorem 3.4. Assume that hypotheses (H1)− (H4) and (H6) are satisfied. Then system (1.1)
is exactly null controllable on [0,b], provided that condition (3.5) is satisfied.

Proof. Now we prove that G has a fixed point by using the Schauder fixed point theorem.
From the proof of Theorem 3.2, we have known that G : Wr →Wr is continuous. Next we
show that there exists a set W ⊆Wr such that G : W →W is compact. For each t ∈ (0,b], set
{T (t)g(x) : x ∈Wr} is relatively compact in X since T (t) is compact for t > 0. Now, we prove
that G1Wr is equicontinuous on [η ,b] for any small positive number η . As T (t) is operator
norm continuous for t > 0. Then, for x ∈Wr and η ≤ t1 < t2 ≤ b, we ‖T (t2)g(x)−T (t1)g(x)‖=
‖[T (t2)−T (t1)]g(x)‖→ 0 as t1→ t2, uniformly for all x ∈Wr.

Moreover, due to Lemma 3.1, we have that, for each t ∈ [0,b], set (G2Wr)(t) is relatively
compact in X and G2Wr is equicontinuous on [0,b]. Thus, for the operator G = G1 +G2, we
have proved that (GWr)(t) is relatively compact for each t ∈ (0,b] and GWr is equicontinuous
on [η ,b] for any small positive number η .

Letting W = convGWr, we see that W is a bounded, closed, and convex subset of C(J,X),
satisfying W ⊂Wr and GW ⊂W . It is easy to see that GW (t) is relatively compact in X for
every t ∈ (0,b] and GW is equicontinuous on [η ,b] for any small positive number η . From
hypothesis (H6), we know that g(W ) = g(convGWr) is relatively compact in X .

Now we claim that G : W →W is a compact mapping. In fact, (G1W )(t) is relatively compact
in X for every t ≥ 0 as g(W ) = g(convGWr) is relatively compact by hypothesis (H6). It remains
to prove that G1W is equicontinuous on [0,b]. Letting x ∈W , and 0≤ t1 < t2 ≤ b, we have

‖(G1x)(t1)− (G1x)(t2)‖ ≤ ‖[T (t1)−T (t2)]g(x)‖.

In view of the compactness of g(W ) and the strong continuity of T (t) on [0,b], we obtain the
equicontinuity of G1W on [0,b]. Thus, G1 : W → C(J,X) is a compact mapping by Ascoli-
Arzela theorem. Hence G = G1 +G2 is also compact due to Lemma 3.1.

Now G has been proved to be a compact continuous operator on W ⊂ C(J,X). From the
Schauder fixed point theorem, G has a fixed point. This completes the proof. �

Next, we give some special types of nonlocal item g, which is neither Lipschitz nor compact
but satisfies condition (H6). We give the following assumptions.

(H7) g : C(J,X)→ X is a continuous mapping, and there is a δ = δ (r) ∈ (0,b) such that
g(x) = g(y) for any x,y ∈Wr, with x(s) = y(s), s ∈ [δ ,b].

Corollary 3.5. Assume that hypotheses (H1)− (H4) and (H7) are satisfied. Then system (1.1)
is exactly null controllable on [0,b], provided that condition (3.5) is satisfied.

Proof. Let

(GWr)δ = {x∈C([0,b],X) : x(t) = y(t) for t ∈ [δ ,b], x(t) = y(δ ) for t ∈ [0,δ ), where y∈GWr}.

From the proof of Theorem 3.4, we know that (GWr)δ is relatively compact in C(J,X). As
mapping g is continuous, we have that set g(conv(GWr)δ ) is relatively compact in X . Moreover,
by conditions (H7), g(convGWr) = g(conv(GWr)δ ) is also relatively compact in X . Thus all the
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conditions in Theorem 3.4 are satisfied. Therefore system (1.1) is exactly null controllable on
[0,b]. �

Remark 3.6. Fu and Zhang[14] discussed the exact null controllability of evolution systems
with nonlocal conditions under condition (H7) by means of an approximation method. Here
by using a different approach, we obtain their results as the corollary of Theorem 3.4. In
some studies of nonlocal Cauchy problems, for example [3, 13], the mapping g is given by
g(t1, · · · , ts,x(t1), · · · ,x(ts)) = ∑

s
i=1 cix(ti) for some given constants ci. Then the nonlocal item

g(t1, · · · , ts,x(t1), · · · ,x(ts)) allows the measurements at t = t1, · · · , ts, rather than just at t = 0. It
is easy to see that g satisfies condition (H7).

4. APPLICATIONS

We consider the following partial differential system to illustrate our abstract results.
∂

∂ t x(t,θ) = ∂ 2

∂θ 2 x(t,θ)+ f (t,x(t,θ))+u(t,θ), 0≤ t ≤ b, 0≤ θ ≤ 1,
x(t,0) = x(t,1) = 0,
x(0,θ) = ∑

q
j=1 c j

3
√

x(t j,θ),

(4.1)

where t j ∈ (0,b), c j ∈ R, j = 1, · · · ,q, and f : R×R→ R is continuous.
Let X = L2([0,1]) and operator A : D(A)⊆ X → X be defined by Az = z

′′
with

D(A) = {z ∈ X : z,z′ are absolutely continuous, z′′ ∈ X ,z(0) = z(1) = 0}.
From Pazy [22], we know that A is the infinitesimal generator of an analytic semigroup T (t), t ≥
0, which implies that A satisfies condition (H1). It is known that A has the eigenvalues λn =
−n2π2, n ∈ N, and the corresponding eigenvectors en(θ) =

√
2sin(nπθ) for n ≥ 1, e0 = 1,

form an orthonormal basis for L2([0,1]). Then T (t) is given by

T (t)z =
∞

∑
n=1

e−n2π2t < z,en > en

=
∞

∑
n=1

2e−n2π2t sin(nπθ)
∫ 1

0
z(α)sin(nπα)dα, z ∈ X ,

and it is self-adjoint.
Let u ∈ L2([0,b],X). Then B = I and B∗ = I. Firstly, we consider the condition for exact null

controllability of the corresponding linear system with additive term f ∈ L2([0,b],X)
∂

∂ t x(t,θ) = ∂ 2

∂θ 2 x(t,θ)+ f (t,θ)+u(t,θ), 0≤ t ≤ b, 0≤ θ ≤ 1,
x(t,0) = x(t,1) = 0,
x(0,θ) = x0.

(4.2)

From Remark 2.3, the exact null controllability of linear system (4.2) is equal to the existence
of a number k > 0 such that∫ b

0
‖B∗T ∗(b− s)z‖2 ds≥ k

(
‖T ∗(b)z‖2 +

∫ b

0
‖T ∗(b− s)z‖2 ds

)
,

or equivalently ∫ b

0
‖T (b− s)z‖2 ds≥ k

(
‖T (b)z‖2 +

∫ b

0
‖T (b− s)z‖2 ds

)
.
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For the linear control system (4.2) with f = 0, it was demonstrated in [8] that it is exactly null
controllable if ∫ b

0
‖T (b− s)z‖2 ds≥ b‖T (b)z‖2.

It follows that
1

1+b

∫ b

0
‖T (b− s)z‖2 ds≥ b

1+b
‖T (b)z‖2,

which infers ∫ b

0
‖T (b− s)z‖2 ds≥ b

1+b

(
‖T (b)z‖2 +

∫ b

0
‖T (b− s)z‖2 ds

)
.

Thus linear system (4.2) is exactly null controllable on [0,b] with k = b
1+b .

In addition, we may assume that function f : [0,b]×X → X is continuous and there exists
ρ ∈ L2([0,b],R+) such that ‖ f (t,z)‖ ≤ ρ(t)(‖z‖ 1

3 +1) for (t,z) ∈ [0,b]×X . The function

g(x(t,θ)) =
q

∑
j=1

c j
3
√

x(t j,θ)

satisfies hypotheses (H3), (H6), and (H7). Then all the conditions in Theorem 3.4 are satisfied
and system (4.1) is exactly null controllable on [0,b].

5. CONCLUSIONS

In this paper, by using operator semigroups and fixed point theorems, we discussed the exact
null controllability of nonlocal semilinear differential equations. As the Lipschitz assumption
to nonlinear item is completely removed without any more conditions, our work generalizes
and improves previous works on exact null controllability of differential equations. It is worth
pointing out that the new assumption (H6) on nonlocal item is weaker that the previous results
and the method here is also available for other nonlocal differential systems, such as integro-
differential equations and fractional differential equations.
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