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Abstract. In this paper, we study a nonlocal multi-point Hilfer generalized proportional sequential frac-
tional multi-valued boundary value problem. We consider both the cases of convex as well as non-convex
valued maps, and we apply standard methods from multi-valued analysis to establish our existence re-
sults. In the convex case, we apply the nonlinear alternative of Leray-Schauder for multi-valued maps,
while a fixed point theorem of Covitz-Nadler for contractive multi-valued maps is applied in the non
convex case. Numerical examples are constructed to illustrate our obtained results.
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1. INTRODUCTION

Fractional calculus has captivated and motivated numerous researchers across a wide spec-
trum of practical and scientific disciplines. Fractional integrals and derivatives, which can in-
terpolate between operators of integer order, have a long track record and are often employed
in real-world applications, such as biology, robotics, physics, ecology, viscoelasticity, control
theory, control theory, economics, and so on. For a systematic development of fractional cal-
culus as well as fractional differential equations, we refer the reader to the monographs [1]-[7].
Boundary value problems (BVP, for short) for fractional differential equations and inclusions
for different kinds of equations and boundary conditions have been investigated by numerous
researchers. Fractional BVP with integral and multi-point boundary conditions were studied in
[8], with multi-strip boundary conditions in [9], with dual-antiperiodic boundary conditions in
[10], with variable order in [11], fractional sequential BVP with nonlocal integral conditions
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in [12], for systems with integral coupled boundary conditions in [13], and so on. Most of
the papers listed in the literature used the classical fractional derivative operators of Riemann-
Liouville or Caputo, but these fractional operators are not appropriate to study the appeared
models in my cases. To avoid the difficulties, certain modifications were introduced and some
new types of fractional order derivative operators, such as Hadamard, Hilfer, Katugampola,
to name a few, were proposed. Fractional derivative operators due to Hilfer [14] extend both
fractional derivative operators of Riemann—Liouville and Caputo. For applications of Hilfer
fractional derivative in nonlocal integro-differential equations, we refer to [15, 16, 17]. The
topic of BVP for Hilfer fractional differential inclusions was studied in [18]. The notion of
Hilfer generalized proportional fractional derivative operator were introduced in [19], which
unifies the both Riemann—Liouville and Caputo generalized proportional fractional derivative.

Recently, the authors in [20] studied a BVP consisting of Hilfer proportional sequential frac-
tional derivative operator of order in (1,2], subject to nonlocal multi-point boundary conditions
given by

(1.1)

where DZ‘;”*’G denotes the Hilfer proportional fractional derivative operator of order & € (1,2]

and parameter 1, € [0,1], 6 € (0,1],k € R, f: [ag,bp] x R — R is a continuous function, ag > 0,
0; € R, and éj € (ag,bo) for j =1,2,3,...,m. The existence and uniqueness results were
established in the scalar case with the help of Banach and Krasnosel’skii fixed point theorems
and the Leray-Schauder nonlinear alternative. Also an existence result was established when
S [ao,bo] x E — E with (E, || - ||) a real Banach space via Monch’s fixed point theorem and
the technique of noncompactness measure.

In this paper, we continue the study of problem (1.1) to cover the multi-valued fractional
differential equations (inclusions). To be more precisely, we, in this paper, investigate the ex-
istence of solutions for the following Hilfer-type sequential fractional proportional BVP for
multi-valued fractional differential equations including multi-point nonlocal boundary condi-
tions

(D;ﬁ”*’f’ +kD;x+_l’n*’6> n(w) € I(w,(w)), w € [ag, bo],

o (1.2)
717(610)20, ﬂ(bo): Zejn(§j>7
j=1
where IT: [ag, bo] x R — Z(R) is a multi-valued map (here we denote the family of all nonempty
subsets of R by #2(R)) and the other notations are the same as in problem (1.1).

Multi-valued differential equations are the generalizations of single-valued differential equa-
tions, and have effective and interesting applications in mathematical economics, control the-
ory, sweeping process, optimization, stochastic analysis, and other fields; see, e.g., [21, 22, 23].
Nonlocal boundary conditions can be applied in physics and is more natural than the classical
boundary conditions; see the survey paper [24]. They appeared in thermodynamics, petroleum
exploitation, wave propagation, elasticity, and so on; see, e.g., [25] and the references therein.
Two existence results are proved for the Hilfer sequential inclusion problem (1.2), one via the
multi-valued version of Leray-Schauder nonlinear alternative when the multi-valued maps are
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convex and the other in the case of non-convex multi-valued maps by using Covitz and Nadler
fixed point theorem. Numerical examples are also presented illustrating the obtained theoretical
results in this paper.

Notice that y-Hilfer nonlocal fractional BVP with order in (0, 1] was studied in [26], while y-
Hilfer nonlocal generalized proportional fractional BVP of order in (1,2] was studied recently in
[27] for single and multi-valued differential equations. We emphasize that no problems studied
in [26] and [27] deals with sequential fractional differential equations. Our results are new and
contribute significantly to the new research topic of Hilfer generalized proportional fractional
differential inclusions, for which as a new subject the literature is very limited. Our results
may be the first results concerning nonlocal fractional BVP of order in (1,2], for sequential
fractional differential inclusions involving Hilfer generalized proportional derivative operators.
The paper is organized as follows. Some preliminary concepts of fractional calculus and multi-
valued analysis are recalled in Section 2. In Section 3, the main results are proved, while in
Section 4 some illustrative numerical examples are constructed. Section 5 ends up this paper.

2. PRELIMINARIES

In this section, some basic related concepts are recalled.

2.1. Fractional calculus.

Definition 2.1. [2] (i) Let b € L' ([ap, bo],R). The integral

I%F_)(w) = ﬁ/ﬁl:(w—g)““h@)dg,

is called Riemann-Liouville fractional integral operator of order o > 0.
(ii) Let b € C"([ag, bo),R). The fractional derivative operator of Caputo type of order & > 0 of
the function b is defined as

1

Cno i _ W _ n—o—1g(n) N
D f(w) F(n—a)/a(w ¢ (Ve n—1<a<n, neN.

0
Definition 2.2. [28] Let 6 € (0,1] and a € C with R(ex) > 0.

(i) The left-sided generalized fractional proportional integral of order ¢ > 0 of the function b is
defined by

45— 1 Woe 1, -
Iy hw) = aar(a)/ e'a I (w—g)*b(g)dg, w> ap.
ap

(i1) The left Riemann-Liouville generalized fractional proportional derivative of order o« > 0 of
the function b is defined by

Wbz, D"° Vool (y—g) n—o—1f
DEH) = grmaryay /. ¢ P e (g,
where n = [a] + 1, [¢] the integer part of a real number o,
D% =p°...p% (2.1)

n-times
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and Daﬁ_(w) =(1-8)h(v)+6h'(w).
(iii) Let h € C"([ag, bo|, R). Then, the left-sided Caputo type generalized fractional proportional
derivative of order o > 0 of the function b is defined by

Al 1 woos_ .
Cnryo,6 _ s (w=6)(y,, _ ~\1—a—1pn,6

provided that the right hand side exists.

Next, some properties of the previous defined operators are summarized.

Lemma 2.3. [28] Assume that o, @ € C satisfy R(o) > 0, R(a) > 0.
(i) Suppose that & € (0,1]. Then

o6 "T—‘ a1 . F<a) ";' o+a—1
(e e (s—a0)” )(w) = R GETIN (w—ao) :
a6 9l 6T (@) o a-a-—
(D" (5= a0 o) = e g
(ii) Suppose that & € (0,1]. If b € C([ao, bo],R), then

15 (1%%h)(w) = af’(ﬂ" Ch)(w) = (I *Th)(w), w = ao.
ag )
(iii) Suppose that t & € (0,1] and 0 < m* < [R(a)] + 1. Ifh € L' ([ao,bo],R), then
D%’G(I%;GE)(W) = (I%:m b)(w), w> ag.
Now we introduce the Hilfer generalized proportional fractional derivative.

Definition 2.4. [19] Let o« € (n—1,n),n €N, & € (0,1] and . € [0, 1]. Then the Hilfer type
proportional fractional derivative of the function b of order o, parameter 7, and proportional
number & is defined as

(DEM5) (w) = LD (11T ),

dy o ag
where D% is defined in (2.1) and ()9 is the generalized proportional fractional integral de-
fined in Definition 2.2.

The Hilfer type proportional fractional derivative is equivalent to
(D™ 5 (w) = L DO 0R) w) = (T DIR) (),
where ¥ = ot + 1. (n — @) and 7 satisfies:
l<y<2,y>a,y>N,n—y<n—1n.(n—a).

Lemma 2.5. [19] Let a € (n—1,n), 6 € (0,1}, n. € [0,1] and y = a+1n.(n—a) € [o,n]. If
b € L' (ag,bo) and IZ:Y’GF_) € C"(lao,bo],R), then

5 n —an)¥ =/
IOC,GD(Z,H*7 — A 71 W a() (W a()) [j*}’,&_ + .
at Yot h(w) =b(w ; &T-I0(y+1—J) ( b)(ao>

The following lemma, were proved in [20], is the basic tool to convert the nonlocal BVP (1.2)
into a fixed point problem.
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Lemma2.6. Let 1 <o <2, 1. €[0,1, y=a+1n.2—0a) € [e,2], 6 € (0,1], § € C([ao, bo], R),
and

(bo—a0)"™" et ay) v (&5 —a0)" ! e
A= D0AUT o5 boa) Y g ST I0 (G a)
I(y) ,_Zl T T(y)

Then 1 is the unique solution to the linear Hilfer-type sequential fractional proportional BVP:

(4 108, 19)st0) . w €

m 2.2)
w(ag) =0, 7(bo) =Y 6;7(g;)),
=1
if and only if
5 —ap)"! 1 u §i 1
xz(w) = I%°§(w)+ (w—ao) {A 9-/ e?@fﬂ) — )% 1§(s)ds
( ) at g( ) AF(’}’) GaF(OC)j_Zl J a0 (&J ) g()
1 bo & 4
_ T(bo—s) _ o—14
5T (al) /ao e (bo—s)*"a(s)ds
i Si 56— b 6 6
—éz 0; jn(s)e 61(§f_s)ds+§/ Oit(s)eTl(b(’ S)ds}e %5 (w—ao)
szl aop o ao
_k wﬂ:(s)e%(w_s)ds. (2.3)
6 Ja,

2.2. Multi-valued analysis. Here we recall some basic definitions from multi-valued analysis
[21, 22]. Consider a normed space (X, || -||). We use the notations &%, &, and &, . to indicate
the classes of all bounded, closed, and compact and convex sets, respectively in X. Also, by
Stz := {v € L' ([ap,bo],R) : v(w) € I(w,(w)) for a.e. w € [ap,bo]}, we define the selections
sets of IT, for each w € C([ap, bo],R), and the graph of ITby Gr(IT) = {(x,y) e X x Y,y € I[1(x) }.

3. EXISTENCE RESULTS

Let the Banach space C([ao, bo|,R) of all continuous functions from [ag, by into R be equipped
with the sup-norm || || := sup{|m(w)| : w € [ao, bo|}. Also, L ([ao, bo],R) is denoted the space
of functions 7 : [ag,bo] — R such that ||7||;1 = f:oo |m(g)|ds.

Definition 3.1. A function 7 € C([ao,bo],R) is a solution to problem (1.2) if there exists v €
L' ([ag, bo], R) such that v(w) € TI(w, ) for a.e. w € [ag, bo] and (D% +- kD% "M% ) 7 (w) =
v(w) on [ag, bol, m(ap) =0, m(bo) = Y7, 6,7(E;).

For convenience, we set

_ (o-a0)® | (bo—ao)""! )
PT Ger(arn) tjA(y oara+1 {ZO j—a0)®+ (bo—a0)® |, G.1)

. (bo—a()yl i k
d, = AT 6 Ze + (bo — ap) +6(b0 ap). (3.2)

Now, we prove the first existence result for the Hilfer-type nonlocal sequential fractional

proportional BVP (1.2) when IT has convex values by applying nonlinear alternative of Leray-
Schauder ([29]).
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Theorem 3.2. Assume that:

(Hp) ©, < 1, where @, is defined by (3.2);

(Hy) I1: [ag,bo] X R — P, o(R) is L'-Carathéodory; (i.e. (i) for each © € R, w — I1(w, )
is measurable; (ii) for almost all w € [ag,bo|, ® — II(w,T) is upper semicontin-
uous (u.s.c.); and (iii) for each ko > 0, there exists @y, € L' ([ag,bo],RT) such that

|ITL(w, )| = sup{|v| : v € I(w, )} < @, (W) for all ® € R with ||| < ko and for a.e.
w € [ao,bo].)

(H,) there exist an increasing function ¥ € C([0,0),(0,0)) and a positive continuous func-
tion A such that

ITI(w, ) || 2 := sup{|z| : z € I(w, )} < A(w)¥(||x||) for each (w, ) € [ag,bo] X R;
(Hz) there exists a constant M > 0 such that

(1—®2)M

—— > .
A (M) Dy

Then, Hilfer generalized sequential proportional BVP (1.2) has at least one solution on |ag, by).

Proof. By introducing an operator I : C([ag,bo],R) — Z(C([ap,bo],R)) by

( (D'GC([CI(),b()],R): )
( (w—ao)y_l{ 1 & o1ip_ _
_ 0; e 5 (& S)§~—sa Y(s)ds
AF('Y) &er (X) J; J a0 ( J ) ( )
1 bo 66—
- 5 (bo—s) _ o—1
60‘1“(05)/? e (bo—5)* "v(s)ds
F(r) = m o
WY @ ={ K § 6 [Mawe’s G as
6 & Ja
b 5
K ()% o %}e 7 v-a0)
6 Ja
—é Jr(s)eog (W*s)ds%—lafv(w), vESz
\ \ O Jg ’

for w € [ag,bp], we transform the nonlocal BVP (1.2) into a fixed point problem. The fixed
points of [F obviously are solutions of the Hilfer generalized proportional BVP (1.2).

We verify in the following steps, the hypotheses of Leray-Schauder multi-valued nonlinear
alternative ([29]).

Step 1. For each m € C([ag,bo|,R), F(x) is convex.

Since IT has convex values, it is obvious.

Step 2. Bounded sets in C([ag,bo|,R) are mapped by F(x) into bounded sets.
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Let B,, = {7 € C([ao,bo],R) : ||| < ro} be a bounded set in C([ap,bo],R). Then, for each
o € F(m),n € B,,, there exists v € Stz such that

i y—1 mn Si 6
g [ Y0 [ G ) (s

o(w) = Ioi’av w) + —~
( ) a ( ) Ar‘(y) Gar(a) = ao

1 bo &
—(/ OeT(bo_s)(bo—s)o‘_]v(s)ds

6or
= ie /”" et G954 X a:°n<s>e%<bo s%}f 25 (va0)
_g/ao 7(s)e’s V=9 s
Then, for w € [ag, by], we have
@)
< 5o /:e"ﬂw—”(w 9% v(s) ds
e o ZG [ - o
+ et ] :”6?(”“) (b0 5% (o)l
e N e
+§ a:|7r( §)]e5 ) g
< St (0= a)®
_ -1 m
HAHT(HTAHRF(?;) “) {6“1“(114—1)]:Zrlej(éj_c)a—{__éal“(ix +—1)(b0—a0)a

— a1 m
(bo |A|% ||n||§{ ). 6)(8—a0) +(bo —ao) +§(b0_a0)“n”

< ||A[¥(ro)®1 + roP,.

J

Consequently,

@] < [[A]¥(ro) @1 + ro®>.

Step 3. Bounded sets of C([ag,bo|,R) are mapped by F(w) into equicontinuous sets.
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Let ¥, % € [ag, bo] with ¥ < ¥, and 7 € B,,. Then, for each @ € F(r), we obtain

@(35) - ()
< et [ 102957 = (91— (s s
B
+ et (B2 ls)as
L (B2—a)™ = (B —ag)"!
AT(Y)

1 1 §i 61
. % (Ei=s) (. _ g0l
« {Mr(a)j_zlej/% %5 G0 (£, — )% Vu(s)|ds
1 bo
T(b()—s) _ oa—1
+ 3T / e (bo—5) \v(s)\ds]

(B2—ao)"! — (B —aq) " K [gh 1% ey
T E{Ze,/ 17 (s)[e ds

—I—/ |7(s) \eag/_s }

H 651
_ 5 (191 —s) _ 7(192*3)
*a[/ 7(5)| [ e [as+

ao B

_|_
=1 Ja

B

% [‘(192 —ap)® — (01 —ap)*| +2(% — ﬁl)a}

(%2 —ag)? ' — (¥ —ag)""! 1
AIT(y) ||A”‘P(r°>aar(a+ 1)

X [Fi 0;(8; —ao)” + (bo —ao)a}

(% —ao)"" = (% —ao)” k’”o - iy
+ AT 2| L, O5(& = a0) + (b o)

B, o .
+r0£ [/ i <e<fT—l(1slﬂ)_e°T—l(ﬂrs)>ds+
6 | Jag

+

L)

N <eéﬁ_lw2s)>ds} —0
1

as ¥, — ¥ — 0, independently of & € B,,.
By Arzeld-Ascoli theorem the operator F : C([ag,bo],R) — Z2(C([ap,bo],R)) is completely

continuous.
Next we prove that operator [F is upper semicontinuous (usc). It is enough to prove that the
graph of [F is closed since by Proposition 1.2 of [22] it is known that a multi-valued completely

continuous map is usc if and only its graph is closed.

Step 4. The graph of I is closed.
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Let m, — m,,®, € F(m,) and @, — @,. We prove that @, € F(x.). Let ®, € F(m,). Then
there exists v, € Stz such that, for each w € [ao, bo),

o,(w) = Ia+6vn(w)—|—

a

(w—ao)yl[ 1 L § o
AL(y)

We next prove that there exists v, € Sty z, such that, for each w € [ag, by,

w—a é/ 1
B.w) = 150+ AF(OY); [ 29/ % G (E;—5)* v (s)ds

Let the linear operator ® : L' ([ag, bo],R) — C([ao, bo],R) be given by

v O() ()
~ _ '}’—1 1 m é/ o
— 1%, (w + (W aO) |:A 0 e’s (&j—s) s ailv Ods
at ( ) AF()/) G“F(a) ]; J ” (§ ) ()
1 by 65—
- %5 (bo=s) a1
6T (at) / ¢ (bo— ) "v(s)ds
§ - b . .
—é ZG,/ "n(s)e%F Cds 4~ Ou(s)e L by S)ds]e 1 (w—a)
Gj:I ag ao
k [v 6
— = 5 (w=s)
CAT/a m(s)e ds

Observe that ||@, — @.|| — 0 as n — oo. Then, by a result on closed graphs due to Lazota-Opial
[30], the operator ® o Spy has a closed graph. Moreover, we have @,(w) € (S z,). Since
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T, — T, and then

— r-1 1 n &i 6
o.(w) = Iacrv* W +(W Clo) {A 0. eT(éJ s) R a—lv* $ds
( ) at ( ) AF(Y) Gal"(a) jZ] J a0 (5] ) ()
1 bo 61
69T (ar) /ao e's 0 (b —5)* v (s)ds
“ é fod b 65— 65—
—2291 Jm(s)e&(éfs)mg / On*<s)e6‘<bos>ds]ea<wao>
Jj=1 a0 ap
k v 6

for some v, € Sty 7, -

Step 5. We prove that there exists U C C([ag,bo|,R), an open set, such that &t ¢ oF(x) for
any @ € (0,1) and all m € JU.

Assume that @ € (0,1) and 7 € @F (). Then there exists v € L!([ag, bo],R) with v € Sp1 7
such that, for w € [ag, by,

5 w—ag)¥! & L(
o(w) = wl:;gv(w)+a)( AF(O}Z)Y [GO‘F ZG/ %5 (69) (E;— )" Tv(s)ds

F / %5 (bo=s) (bg — )% v (s)ds
m bo 1 6-1
Z / TR P / 7(1’0 S)ds}e 5 (w=ao)

—a)é ﬂ(s)ei(w S)ds.
6 Jay

- 6@
k

As Step 2, we have

A7) AP (b — o)
I gty 0" ey

1 L 1
- - 9:(E: — o b — o
' LAF"‘F(OHrl)-Z (6 =¢) +6“F(o¢—|—1)( 0= o) }
(bo —ao)"™ 1||7f|| k k
0;( + (bo — —(bo—
AT Z 0= ao) | + & (bo—ao) ||
< [[AI¥ ([ =]))Pr + ||7T||<I>z,
or (1 —dy)||z|| < ||A||¥(||||)Py, which implies that

(1-@jx _,
A ([l7]]) D1
By (A3), ([ao,bo),R) : ||z|| < M}. We see that F : U —
P (C(lao,bo),R)) is an usc compact multi-valued map, with closed convex values. By the defi-
nition of U there does not exists any 7w € JU for some @ € (0, 1), satisfying © € wF(x). By the
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Leray-Schauder nonlinear alternative ([29]), operator [ has a fixed point 7 € U. Consequently,
Hilfer fractional proportional BVP (1.2) has at least one solution on [ag,bo|, which ends the
proof. U

Now, we consider the case that the multi-valued IT is non-convex valued. Our existence result
in this case is proved via Covitz and Nadler fixed point theorem [31].

Theorem 3.3. Suppose that:
(A1) IT: [ag,bo] X R = P¢,p(R) is such that T1(-,7) : [ag,bo] = Pcp(R) is for each T € R
measurable;
(A2) Hy(IX(w, ), I(w, 7)) < pu(w)|w— 7| for a.a. w € ag,bo) and w, @ € R with u € C([ag, bo],
R™) and d(0,11(w,0)) < u(w) for a.a. w € |ag, bo)-
Then, the Hilfer generalized sequential proportional BVP (1.2) has at least one solution on
[ao, bo|, provided that ||| @1 + P, < 1, where @1 and P, are respectively defined by (3.1) and
(3.2).

Proof. We prove that F : C([ag,bo],R) — Z(C([ao,bo|,R)), where F is defined at the be-
ginning of the proof of Theorem 3.2, satisfies the hypotheses of Covitz and Nadler fixed point
theorem for multi-valued contractive maps [31]. By the measurable selection (see Theorem III.6
[32]), ITis measurable, and hence it admits a measurable selection. By (A,), we obtain |[v(w)| <
u(w)(1 4+ |(w)]), which means v € L!([ag,bo],R). Hence IT is integrably bounded. Thus
Stz # 0. Let {u, }n>0 € F(x) with u, — u (n — o) in C([ag,bo],R). Then u € C([ag, bo],R)
and there exists v, € Sty z, such that, for each w € [ag, bo],

(w—ap)"!

AT(7) Lar 29 /éj LG, — )7y, (s)ds

U (w) = Ij‘fvn(w) +

1 bo &
— T(b()—s) o a—1
5T (a >/ao e (bo— )% vn(s)ds
i /él Ta(s)e’ s G5 ds + /bo Tou(s)e s (b0~ S)ds]e %5 (wan)
k v 6-1

—— nn(s) 5 (v=s)gs,

A

O Jay
Then, as IT has compact values, we can obtain a subsequence (if necessary) v, converges to v in
L'(Jag,bo],R). Thus, v € Sp1 5. For each w € [ag, by], we have

up — u(w) = I;‘fv(w)%— (w—ao)"" [GO‘F Z 0; /él E5HE—9) (&;— )% 1v(s)ds

AL'(7)
1 bo 54
- S5 (bo=5) (py — )21
59T (ax) /ao ¢ (bo —5)" " v(s)ds
m E; . 5
_ézej/ Jn(s)eal(éj_s)ds+§/ 07t(s 51 (o s)ds}ecl(w ao)
S| a0 O Jag
k v 6-1
R T(W_S)d
& /. m(s)e s.

Thus u € F(m).
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Next, we prove that there exists d (8 := ||u||®; + P, < 1) such that
Hy(F(rm),F(7)) < 8||m — 7| for each 7, @ € C*([ag, bo),R).

Let 70, @ € C?([ao,bo],R) and @; € F(r). Then there exists v (w) € IT1(w, m(w)) such that, for
each w € [ag, bo],

_ a6 (W_aO)yi1 /él LEi—s) g, ao—1
Bi(w) = i)+ [ Z@ , $)* vi(s)ds
1 bo &
_ B (bo—s) _ o—1
59T (a )/0 e (bo—5)* vi(s)ds
f /@ &g 4 X /”“ %5 (b0~ %]e o5 (w-an)

—E m(s)e %5 v=s) g,

A

6 Jay
By (A;), we have
H(TU(w, ), T1(w, 7)) < () [7(w) — F(w)].
Hence, there exists z € ITI(w, T(w)) such that
vi(w) —z[ < p(w)|m(w) — (W), w € lao, bo]-

Define U : [ag,bo] — Z(R) by

Uw) ={weR:|vi(w) =z <p(w)|m(w) - Z(w)|}.

Then, there exists a function v, (w), which is a measurable selection for U since the multi-valued
operator U (w) NII(w, T(w)) is measurable (Proposition I11.4 [32]). Thus vy (w) € II(w, T(w)).
For each w € [ag, by], we have |vi(w) —vo(w)| < p(w)|m(w) — @(w)|. For each w € [ag, bg|, we
define

(w—ao)H S S ey 1
Bw) = 1w+ 2 5,0 / %G9 (&) — )% uy(s)ds
1 bo 6—
T 5T (a )/ eTl(bO_s)(bo—S)“”Vz(s)ds
ap

f: /51 71 (&—s) as+ K /bo —1(170 s)dsle =1 (1y—ap)
k v

—— [ @(s)e 5 v=s) g,

A

6 Ja
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Thus

@1 (w) — B (w)|

< 159 (w16~ va(s) )
T o g
baatra ¢ F 0= () 26 s
sLo ¥ ats) e 5 6 s £ [ - 79"
45 [ ) =29l (0)e

< Lol o Loortan B ote s
x||u||||n—ﬁ||+{%§[éej@ )+ (on —ao)|

(HNHCDI‘l"I)z)Hﬂ—ﬁH.

Hence
|@ ~ @l < (Ill|@1+2) 17— 7

Interchanging the roles of 7 and 7, we have

Hy(F(m),F(%)) < (|| ®1 +®, ) |17 — |

13

—va(s)[)(s)ds

By ||u||®; + P, < 1, one sees that IF is a contraction. Consequently, F has a fixed point ©
by Covitz and Nadler theorem ([31]), which is a solution to Hilfer generalized proportional

boundary value problem (1.2). The proof is finished.

4. ILLUSTRATIVE EXAMPLES

O

Now, we construct some numerical examples to illustrate our theoretical results. Consider
the following BVP for Hilfer generalized fractional proportional differential inclusions with

nonlocal multi-point boundary conditions

( 712 1 312
(D?72’3+1—D‘1172’3) ( )EH(W 7'(( )) we |:_
9 9
1\ o (10 1 /2 +3 4 +5
x{=]=0,x|—)=—x|= 7=\ 0 23X
9 ’ 9 13 \9 23 \9 33

1 10
9°9 |’
<5) 4.1)

9
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Here a =7/4,m.=1/2,6=2/3,k=1/15,a=1/9,b=10/9,m =5, 6, = 1/13, 6, = 3/23,
03 =5/33,0,=7/43,05=9/53,& =2/9, & =4/9, E3=5/9, £, =17/9, and & = 8/9. Then
we can find that y = 15/8, A ~ 0.3354252898, & ~ 2.239711391, and &, ~ 0.5252426845.

(i)

I(

We consider the multifunction IT(w, ) defined by

) 1 L ), = L)) wo
= —e —e .
" 9r+10 \ 10(1 +2) ' 13 "9t + 1 \5(1+22) " 7 ’

for (w,m) € [1/9,10/9] x R. Then

1 1 1
I < =),
Il < (5 ) (57+7)

If A(w)=1/(9¢+41) and ¥(x) = (1/5)x*> + (1/7), then ||A|| = 1/2. Moreover there
exists M € (0.4203134569, 1.699411957) satisfying (A3). By application of Theorem
3.2, the proportional fractional BVP (4.1), with the multifunction IT given by (4.2) has
at least one solution on [1/9,10/9].

/) Let I1(w, ) be defined by

B 1 42k 1
M, ) = {0’ 9 +4 (2(1 +|x]) +§)} ’ 4-3)

for (w, ) € [1/9,10/9] x R. Note that F' is measurable for all 7 € R, and

1
H;(ITw, ), II(w, 7)) < -7
d( (W7 )7 (Wv ))— 9t+4‘x ‘a

forall m,7 € R. Setting u(w) =1/(9t+4), we obtain that ||u|| = 1/5 and d(0,I1(w,0)) =
(1/2)u(w) < u(w) for each w € [1/9,10/9]. Thus

|u|| Dy + Dy~ 0.9731849627 < 1.
Therefore, by Theorem 3.3, we conclude that the BVP (4.1) with the multi-valued I1
given by (4.3) has at least one solution on [1/9,10/9].

5. CONCLUSIONS

In this paper, we initiated the study of BVP consisting of Hilfer generalized proportional
sequential fractional differential inclusions operators, supplemented with nonlocal multi-point
boundary conditions. We considered both cases, convex-valued and non-convex-valued multi-
valued maps and established an existence result in the convex-valued case via multi-valued
nonlinear alternative of Leray-Schauder, and in the non-convex-valued case via a fixed point
theorem for multi-valued contractive maps due to Covitz and Nadler. Our results, which are new
and could enrich the literature on Hilfer generalized proportional sequential fractional BVP, are
illustrated by constructed numerical examples.
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