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VISCOSITY APPROXIMATION WITH MK CONTRACTIONS FOR A COMMON
FIXED POINT PROBLEM AND A SPLIT FEASIBILITY PROBLEM
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Abstract. In this paper, a new viscosity approximation method with projections and Meir-Keeler con-
tractive mappings (MK contractions) for solving a common fixed point problem of an infinite family of
nonexpansive mappings and a split feasibility problem with a bounded linear mapping is introduce and
investigated. A solution theorem of strong convergence is obtained in infinite dimensional spaces.
Keywords. Convergence; Image reconstruction; Inverse problem; Phase retrievals; Split feasibility prob-
lem.

1. INTRODUCTION

In this paper, H1 and H2 are always assumed to be two real Hilbert spaces. They are endowed
with inner products and associated induced norms, 〈·, ·〉 and ‖ · ‖, respectively. We borrow C to
denote a convex and closed set in H1 and Q to denote a convex and closed set in H2. In addition,
we use H to refer to a Hilbert space.

With convex and closed sets C and Q and a linear and bounded operator A : H1 → H2, we
consider the celebrated split feasibility problem: find a point x ∈ H1 such that

x ∈C, Ax ∈ Q, (1.1)

where Sol(SFP) is denoted the set of solutions of the split feasibility problem. Split feasibility
problem (1.1) is said to be consistent iff its solution set is not empty, i.e., Sol(SFP) 6= /0. This
problem first was initially investigated by Censor and Elfving [4] for a class of inverse problems
from image reconstruction and phase retrievals [3] in a finite dimensional space. Here, we
also mention split feasibility problem (1.1) are also usually employed to solve the associated
problems, such as computer tomograph, image restoration, machine learning, and radiation
therapy treatment planning [5, 6].
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On the other hand, a general problem in numerous research fields of applied mathematics,
physical science, and computer science consists of finding a point with certain constraints.
This problem is commonly referred to as a convex feasibility problem. To be more precise,
this problem can be presented as follows: Let C1,C2,C3, · · · be convex and closed sets with
∩∞

i=1Ci 6= /0. Find a point x in ∩∞
i=1Ci. Here Ci is referred as the constraint and ∩∞

i=1Ci is referred
as the solution set.

It is obvious that the split feasibility problem can be formulated as the following convex fea-
sibility problem: Find a point x ∈ C1 ∩C2, where C1 = C and C2A−1(Q). Recently, various
efficient numerical algorithms were investigated for the problems in finite and infinite dimen-
sional spaces; see, e.g., [10, 12, 17, 26, 27] and the references therein.

Fixed point problems of nonlinear mappings are core problems in numerous fields in com-
puter science, traffic network, management and financial engineering; see, e.g., [1, 25, 30, 33]
and the references therein. Recall that a nonlinear mapping T defined on set C is said to be
contractive iff

‖T x−Ty‖ ≤ κ‖x− y‖, ∀x,y ∈C.

From now on, the fixed point set of T is denoted by F(T ). Banach fixed point theorem ensures
that each contractive mapping has a unique fixed point in a complete metric space. Picard
iteration is efficient to find fixed points of contractive mappings. Indeed, this result plays a
significant role in many branches of pure and applied mathematics.

Recall that T is called to be Meir-Keeler contractive (MK contractive) if, for each ε > 0, there
exists δ = δ (ε) > 0 such that ε ≤ ‖x− y‖ < ε + δ implies ‖T x−Ty‖ < ε for each x,y ∈ X .
Every MK contractive mapping has a unique fixed point in metric spaces according to Meir
and Keeler [18] in 1969. It is obvious that a contractive mapping is a Meir-Keeler contractive
mapping, however, a Meir-Keeler contractive mapping is only a conditional contraction. Indeed,
it is contractive if some restriction is put on the domain of T .

Next, we further recall that T is nonexpansive iff

‖T x−Ty‖ ≤ ‖x− y‖, ∀x,y ∈C.

The theory and applications of nonexpansive mappings are important because their wide appli-
cations both in pure and applied mathematics; see, e.g., [9, 20, 21, 28]. Finally, we recall that
T is said to be firmly nonexpansive iff

‖T x−Ty‖2 ≤ 〈x− y,T x−Ty〉, ∀x,y ∈C.

From the viewpoint of mathematical programming computation, the class of firmly nonexpan-
sive mappings is significant. One knows that numerous mathematical programming problems
can be solved via its resolvent operators, which are firmly nonexpansive; see, e.g., [7, 8, 16,
22, 23] and the references therein. A trivial example of firmly nonexpansive mappings is near-
est point projection, Pro jH

C , which is defined by Pro jH
C (y) := argmin{‖x− y‖, x ∈C} for any

y ∈ H.
In this paper, we investigate the following problem: find a point x such that

x ∈ ∩∞
i=1F(Ti)∩Sol(SFP), (1.2)

where F(Ti) denotes the fixed point set of Ti and Sol(SFP) is the solution set of 1.1. We consider
a new iterative algorithm to solve this convex feasibility problem (both F(Ti) and Sol(SFP) are
convex sets) with the aid of Meir-Keeler contractions and nearest point projections.
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Recall that Normal Mann iterative method, which is a special Mann iterative method, is
an efficient mathemtaical tool to investigate fixed points of nonexpansive mappings and their
extensions. Normal Mann iterative method reads as follows. It generates a sequence {xn} in the
following manner: x1 ∈C is an initial and

xn+1 = αnT xn +(1−αn)xn, ∀n≥ 1,

where {αn} in (0,1) is viewed as a control sequence.
One knows that the Normal Mann iterative method is only weakly convergent in infinite

dimensional spaces. However, many problems in physics, economics, image recovery, and
control theory, arise in infinite dimension spaces. To investigate such problems, one strong con-
vergence, i.e., norm convergence, is often desirable than weak convergence, i.e., convergence
in weak topology, since it presents the physically tangible property. In addition, the important
of strong convergence was presented with the fact that a convex function T is minimized via the
proximal-point algorithm in [13] from which one sees that the rate of convergence of the value
sequence {T x} is better when sequence {xn} converges strongly that it converges weakly. Such
properties have a direct impact when the iterative method is executed in infinite dimensional
spaces.

To modify the Normal Mann iterative method, various regularization methods were con-
sidered recently. One of most popular method is the Halpern iterative method that was first
investigated for fixed points of nonexpansive mappings by Halpern [14] (implicit iteration by
Browder [2]). Halpern iterative method reads as follows

x1 ∈ H, xn+1 = (1−αn)T xn +αnv, ∀n≥ 1,

where v is a fixed vector (anchor), T is a nonexpansive mapping on set C, and {αn} is a real
sequence in (0,1).

Note that the new mapping, the convex combination of nonexpansive maping T and the
anchor v is a contractive mapping. It is known that, to force the convergence, the conditions
(c1) αn→ 0 as n→∞ and (c2) ∑

∞
n=1 αn =∞ are two necessary conditions if the Halpern iteration

converges strongly. One wishes that αn→ 0 as fast as possible, however, Halpern iteration may
not be a fast iteration due to restriction (c2). The following open question is raised by Haleprn.
Halpern Open Question: Are the conditions (C1) and (C2) are sufficient for the strong conver-
gence of the sequence {xn}?

In 1977, Lions [15] improved Halpern’s result in Hilbert spaces under the assumptions im-
posed on the sequence {αn}:

(C1) limn→∞ αn = 0
(C2) ∑

∞
n=1 αn = ∞

(C3) ∑
∞
n=1

αn+1−αn
α2

n+1
= 0.

But both Halpern’s result and Lions’ results exclude the canonical choice αn =
1
n .

In 1992, Wittmann [31] proved, still in Hilbert spaces, the strong convergence of the se-
quence, where {αn} satisfies the following conditions

(C1) limn→∞ αn = 0
(C2) ∑

∞
n=1 αn = ∞

(C3) ∑
∞
n=1 |αn+1−αn|< ∞.
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In 2000, Moudafi [19] considered a viscosity approximation method, which is known as
Moudafi’s viscosity method, for a nonexpansive self-mapping in Hilbert spaces

x1 ∈C, xn+1 = αng(xn)+(1−αn)T xn, ∀n≥ 1,

where g is a contractive mapping on C, T is a nonexpansive mapping with fixed points, and {αn}
is a real sequence in (0,1). Moudafi demonstrated that {xn} converges in norm to some fixed
point of mapping T and the fixed point is also the unique solution to the variational inequality
under some assumptions on {αn}: 〈g(x)− x,x− y〉 ≥ 0 for all y ∈ F(T ).

Recently, many authors investigated the viscosity approximation with various nonlinear op-
erators. In this paper, we consider a Meir-Keeler contractive mapping. Our viscosity method
is based on a metric projection and we prove that the vector sequence defined by our viscosity
method can converge strongly to a solution to (1.2) with no compact restrictions. This solution
also solves some variational inequality with the Meir-Keeler contractive mapping.

2. PRELIMINARIES

Here, one uses Pro jH2
Q to denote the nearest point projection from H2 onto Q and use Pro jH1

C
to denote the nearest point projection from H1 onto C. Let A∗ be the adjoint operator of A. One
knows that find a solution of split feasibility problem 1.1 is equivalent to finding a solution to
the following fixed point problem if problem (1.1) is consistent

x = Pro jH1
C (x− γA∗(Ax−Pro jH2

Q (Ax)), (2.1)

where γ is a positive real number.
Recall that a single-valued mapping T from C to H is said to be monotone iff

〈T x−Ty,x− y〉 ≥ 0, ∀x,y ∈C.

T is said to be inverse-strongly monotone iff

〈T x−Ty,x− y〉 ≥ ν‖T x−Ty‖2, ∀x,y ∈C,

where ν is a constant. One also says that T is ν-inverse-strongly monotone, one knows that if
T is ν-inverse-strongly monotone, then it is monotone and 1

ν
-Lipschitz continuous.

The following properties of nearest point projections are well known.

(a) Given x ∈H and z∈D⊂H, z = Pro jH
D x iff there holds the inequality: 〈x−z,y−z〉 ≤ 0,

y ∈ D.
(b) ‖Pro jH

D x−Pro jH
D y‖2 ≤ ‖x− y‖2−‖(I−Pro jH

D )x− (I−Pro jH
D )y‖2, ∀x,y ∈ H.

(c) ‖Pro jH
D x−Pro jH

D y‖2 ≤ 〈Pro jH
D x−Pro jH

D y,x− y〉, x,y ∈ H.
(d) ‖(I−Pro jH

D )x− (I−Pro jH
D )y‖2 ≤ 〈(I−Pro jH

D )x− (I−Pro jH
D )y,x− y〉, ∀x,y ∈ H.

Lemma 2.1. [32] Let {an} be a sequence of nonnegative real numbers such that an+1 ≤ (1−
tn)an + bn + cn, ∀n ≥ 0, where {cn} is a sequence of nonnegative real numbers, {tn} ⊂ (0,1)
and {bn} is a sequence of real numbers. Assume that

(a) limsupn→∞
bn
tn
≤ 0, ∑

∞
n=0 tn = ∞,

(b) ∑
∞
n=0 cn < ∞.

Then limn→∞ an = 0.
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Let T1,T2, · · · ,Tn, · · · be nonexpansive mappings of C into itself. Focus on the mapping Wn
generated by

Vn,n = δnTnVn,n+1 +(1−δn)Id,

Vn,n−1 = δn−1Tn−1Vn,n +(1−δn−1)Id,
...

Vn,k = δkTkVn,k+1 +(1−δk)Id,

Vn,k−1 = δk−1Tk−1Vn,k +(1−δk−1)Id,
...

Vn,2 = δ2T2Vn,3 +(1−δ2)Id,

Wn =Vn,1 = δ1T1Vn,2 +(1−δ1)Id,
where Vn,n+1 = Id, δ1,δ2, · · · are real numbers in (0,1).

From [29], if 0 < δn ≤ δ < 1, where δ is some real number in (0,1) for any n ≥ 1 and
∩∞

n=1F(Tn), for every x ∈C and k ∈ N, the limit limn→∞Vn,kx exists. Define a mapping W by

Wx = lim
n→∞

Wnx = lim
n→∞

Vn,1x,

∀x ∈C. Mapping W is called the W -mapping generated by δ1,δ2, · · · and T1,T2, · · · . From [29],
one has F(W ) = ∩∞

n=1F(Tn). From now on, one always assumes that 0 < δn ≤ δ < 1 for all
n≥ 1 and ∑Πn

i=1δi < ∞.

Lemma 2.2. [34] Let g be a MK contraction defined on set C. For each ε > 0, it holds that
there exists cε in (0,1) such that ‖y− x‖ ≥ ε implies ‖g(y)−g(x)‖ ≤ cε‖y− x‖, ∀y,x ∈ H.

Lemma 2.3. [24] Let C be a convex and closed set in a Hilbert space H. Let T be a nonexpan-
sive mapping with fixed points on set C. If xn ⇀ q, where ⇀ denotes the weak convergence, and
xn−T xn→ 0, then q is a fixed point of T , that is, q = T q.

Lemma 2.4. [11] Let H be a real Hilbert space, and let C be a closed, convex, and nonempty
subset of H. Let {Ti :C→C} be a family of infinitely nonexpansive mappings with∩∞

i=1Fix(Ti) 6=
/0. Then limn→∞ supx∈C ‖Wx−Wnx‖= 0.

3. MAIN RESULTS

Theorem 3.1. Let C be a convex and closed set in Hilbert space H1 and let Q be a convex and
clsoed set in Hilbert space H2. Let A : H1→ H2 be a bounded linear operator such that split
feasibility problem (1.1) is consistent. Let g be a Meir-Keeler contractive mapping on C and let
Ti be a nonexpansive mapping with fixed points on C for each positive integer i. Let {αn}, {βn}
and {γn} be real sequences in (0,1) with αn +βn + γn = 1. Let {xn} be a sequence defined by
the following iterative algorithm: x1 ∈C,

xn+1 = Pro jH1
C

(
αng(xn)+ γn(xn−µnA∗(I−Pro jH2

Q )Axn)+βnWnxn

)
, (3.1)

where Pro jH1
C denotes the nearest point projection from H1 onto C, Pro jH2

Q denotes the nearest
point projection from H2 onto Q, Wn is the mapping defined in Section 2. Assume that ∑

∞
n=1 αn =

∞, ∑
∞
n=1 |αn−αn+1|< ∞, limn→∞ αn = 0, ∑

∞
n=1 |γn− γn+1|< ∞, 0 < γ ≤ γn ≤ γ ′ < 1, and {µn}

is a real sequence such that ∑
∞
n=1 |µn−µn+1|< ∞, 2

‖A‖2 > µ ′ ≥ µn ≥ µ > 0, where γ ′,γ,µ ′ and
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µ are real numbers. If ∩∞
i=1F(Ti)∩Sol(SFP) 6= /0, then {xn} converges strongly to a point x̄ in

∩∞
i=1F(Ti)∩Sol(SFP) and the solution also solves the variational inequality

〈g(x̄)− x̄,x− x̄〉 ≤ 0, ∀x ∈ ∩∞
i=1F(Ti)∩Sol(SFP).

Proof. Define a mapping M from set C to space H1 by

Mx = A∗(I−Pro jH2
Q )Ax, ∀x ∈C.

On account of the properties of the nearest point projection, we have

〈x− y,Mx−My〉= 〈A∗(I−Pro jH2
Q )Ax−A∗(I−Pro jH2

Q )Ay,x− y〉

= 〈(I−Pro jH2
Q )Ax− (I−Pro jH2

Q )Ay,Ax−Ay〉

≥ ‖(I−Pro jH2
Q )Ax− (I−Pro jH2

Q )Ay‖2

≥ 1
‖A‖2‖A

∗(I−Pro jH2
Q )Ax−A∗(I−Pro jH2

Q )Ay‖2

=
1
‖A‖2‖Mx−My‖2,

(3.2)

which demonstrates that M is a 1
‖A‖2 -inverse-strongly monotone mapping. Observe that (3.1) is

equivalent to

x1 ∈C, xn+1 = Pro jH1
C

(
αng(xn)+ γn(xn−µnMxn)+βnWnxn

)
, (3.3)

By the fact that M is 1
‖A‖2 -inverse-strongly monotone, one asserts that

‖(I−µnM)x− (I−µnM)y‖2

= ‖x− y‖2−2µn〈Mx−My,x− y〉+µ
2
n‖Mx−My‖2

≤ ‖x− y‖2− 2µn

‖A‖2‖Mx−My‖2 +µ
2
n‖Mx−My‖2

= µn(µn−
2
‖A‖2 )‖Mx−My‖2 +‖x− y‖2.

By the restriction on {µn}, one sees that

‖(I−µnM)x− (I−µnM)y‖ ≤ ‖x− y‖,

that is, (I− µnM) is nonexpansive. Hence Pro jH1
C (x− γA∗(Ax−Pro jH2

Q (Ax)) is nonexpansive
due to the nonexpansivity of nearest point projection Pro jH1

C , which further guarantees that
Sol(SFP) is convex and closed. Observe that each F(Ti) is convex and closed for each positive
integer i. It results that the solution set is convex and closed and then Pro jH1

∩∞
i=1F(Ti)∩Sol(SFP)x for

all x ∈ H1 is well defined.
Next, we prove A−1(Q) = M−1(0). Fixing x ∈ A−1(Q), one clearly sees that x ∈ T−1(0),

which demonstrates that A−1(Q) is a subset of M−1(0). Now, fixing x ∈ M−1(0), one has
Mx = 0. From the assumption that ∩∞

i=1F(Ti)∩Sol(SFP) is not empty, one can pick a vector y
in it, which sends us to Wy = y and Ay = Pro jH2

Q Ay. Hence, My = 0. Observe that

‖(I−Pro jH2
Q )Ax‖2 = ‖(I−Pro jH2

Q )Ax− (I−Pro jH2
Q )Ay‖2.
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It follows from (3.2) that

‖(I−Pro jH2
Q )Ax− (I−Pro jH2

Q )Ay‖2 ≤ 〈Mx−My,x− y〉,

that imply that x is in A−1(Q), that is, M−1(0) is a subset of A−1(Q). It demonstrates that

A−1(Q) = M−1(0).

Noticing Pro jH1
C x∗ = x∗, one sees from (3.3) and the nonexpansivity of Wn that

‖xn+1− x∗‖= ‖Pro jH1
C

(
αng(xn)+ γn(xn−µnMxn)+βnWnxn

)
− x∗‖

≤ ‖
(
αng(xn)+ γn(xn−µnMxn)+βnWnxn

)
− x∗‖

≤ γn‖(xn−µnMxn)− x∗‖+αn‖g(xn)− x∗‖+βn‖Wnxn− x∗‖
≤ γn‖(xn−µnMxn)− x∗‖+αn‖g(x∗)− x∗‖+αn‖g(xn)−g(x∗)‖+βn‖xn− x∗‖.

Set a positive constant ε . If ‖xn− x∗‖ < ε , then it is obvious that vector sequence {xn} is a
bounded sequence. If ‖xn− x∗‖ ≥ ε , we by Lemma 2.2 have that there holds

‖g(x)−g(y)‖ ≤ cε‖x− y‖

for all x,y ∈C, where cε ∈ (0,1) is a real constant. Thus

‖xn+1− x∗‖ ≤
(
1−αn(1− cε)

)
‖xn− x∗‖+αn(1− cε)

‖x∗−g(x∗)‖
1− cε

.

It is easy to see that

‖xn+1− x∗‖ ≤max{‖x1− x∗‖, ‖g(x
∗)− x∗‖

1− cε

},

which demonstrates {xn} is a bounded vector sequence in both cases.
Now one is in a position to demonstrate

limsup
n→∞

〈 f (x̄)− x̄,xn+1− x̄〉 ≤ 0.

Setting yn = xn−µnMxn, one has

‖yn−1− yn‖ ≤ ‖(xn−µnMxn)− (xn−1−µn−1Mxn−1)‖
≤ |µn−1−µn|‖Mxn‖+‖xn−1− xn‖,

which is due to the fact that I−µnM is a nonexpansive mapping. Observe that

‖Wnxn−Wn−1xn‖= ‖(δ1T1Vn,2xn +(1−δ1)xn)− (δ1T1Vn−1,2xn +(1−δ1)xn)‖
≤ ‖δ1T1Vn,2xn−δ1T1Vn−1,2xn‖
≤ δ1‖Vn,2xn−Vn−1,2xn‖
= δ1‖(δ2T2Vn,3xn +(1−δ2)xn)− (δ2T2Vn−1,3xn +(1−δ2)xn)‖
≤ δ1‖δ2T2Vn,3xn−δ2T2Vn−1,3xn‖
≤ δ1δ2‖Vn,3xn−Vn−1,3xn‖.

It follows that
‖Wnxn−Wn−1xn‖ ≤CΠ

n
i=1δi,
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where C is some appropriate constant. Furthermore, one has

‖Wnxn−Wn−1xn−1‖ ≤ ‖Wn−1xn−1−Wn−1xn‖+‖Wn−1xn−Wnxn‖
≤ ‖xn−1− xn‖+CΠ

n
i=1δi.

Thus

‖xn+1− xn‖
≤ ‖
(
αng(xn)+ γnyn +βnWnxn

)
−
(
αn−1g(xn−1)+ γn−1yn−1 +βn−1Wn−1xn−1

)
‖

≤ αn‖g(xn)−g(xn−1)‖+ γn‖yn− yn−1‖+βn‖Wnxn−Wn−1xn−1‖
+ |αn−αn−1|‖g(xn−1)‖+ |βn−βn−1|‖Wn−1xn−1‖+ |γn− γn−1|‖yn−1‖
≤
(
1−αn(1− cε)

)
‖xn− xn−1‖+ γn|µn−µn−1|‖Mxn‖++CΠ

n
i=1δi

+ |αn−αn−1|‖g(xn−1)‖+ |γn− γn−1|‖yn−1‖+ |βn−βn−1|‖Wn−1xn−1‖.

By Lemma 2.1, we have

lim
n→∞
‖xn+1− xn‖= 0 (3.4)

due to the conditions imposed on {αn}, {γn}, {µn}, and {δn}. Since ‖ · ‖2 is convex, we find
from (3.5) that

‖xn+1− x∗‖2 ≤ ‖
(
αng(xn)+ γnyn +βnWnxn

)
− x∗‖2

≤ αn‖g(xn)− x∗‖2 + γn‖yn− x∗‖2 +βn‖Wnxn− x∗‖2.

Observe that

‖yn− x∗‖2 = µ
2
n‖Mxn−Mx∗‖2 +‖xn− x∗‖2−2µn〈xn− x∗,Mxn−Mx∗〉

≤ µ
2
n‖Mxn−Mx∗‖2 +‖xn− x∗‖2− 2µn

‖A‖2‖Mxn−Mx∗‖2

= ‖xn− x∗‖2− (
2µn

‖A‖2 −µ
2
n )‖Mxn‖2.

(3.5)

It follows that

‖xn+1− x∗‖2 ≤ (1−αn)‖xn− x∗‖2 +αn‖g(xn)− x∗‖2 + γn(µ
2
n −

2µn

‖A‖2 )‖Mxn‖2

≤ ‖xn− x∗‖2 +αn‖g(xn)− x∗‖2 + γn(µ
2
n −

2µn

‖A‖2 )‖Mxn‖2,

which implies that

γn(
2µn

‖A‖2 −µ
2
n )‖Mxn‖2

≤ ‖xn− x∗‖2−‖xn+1− x∗‖2 +αn‖g(xn)− x∗‖2

≤ ‖xn+1− xn‖(‖xn− x∗‖+‖xn+1− x∗‖)‖+αn‖g(xn)− x∗‖2.

Using the conditions imposed on {αn}, {γn} {µn}, we find from (3.4) that Mxn→ 0 as n→ ∞.
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Next, we prove that xn−Wxn→ 0 as n→ ∞. Note that

‖Wnxn− xn‖ ≤ ‖Pro jH1
C

(
αng(xn)+ γnyn +βnWnxn

)
−Wnxn‖+‖xn− xn+1‖

≤ ‖
(
αng(xn)+ γnyn +βnWnxn

)
−Wnxn‖+‖xn− xn+1‖

≤ αn‖g(xn)−Wnxn‖+ γn‖yn−Wnxn‖+‖xn− xn+1‖
≤ αn‖g(xn)−Wnxn‖+ γn‖xn−Wnxn‖+ γn‖yn− xn‖+‖xn− xn+1‖,

which yields

‖xn−Wnxn‖ ≤
αn

1− γn
‖g(xn)−Wnxn‖+

γn

1− γn
‖yn− xn‖+

1
1− γn

‖xn− xn+1‖.

Using the conditions imposed on {αn} and {γn}, we find that limn→∞ ‖Wnxn−xn‖= 0. Observe
that

‖Wxn− xn‖ ≤ ‖Wnxn−Wxn‖+‖Wnxn− xn‖.
From Lemma 2.4, we have xn−Wxn→ 0 as n→ ∞.

Now, we demonstrate that

limsup
n→∞

〈g(x̄)− x̄,xn− x̄〉 ≤ 0, (3.6)

We pick a subsequence {xn j} of {xn} such that

limsup
n→∞

〈g(x̄)− x̄,xn− x̄〉= lim
j→∞
〈g(x̄)− x̄,xxn j

− x̄〉. (3.7)

We may assume, without loss of generality, that {xn j} converges weakly to x̂ ∈ H1. From 2.3,
one has x̂ ∈ F(W ), i.e., x̂ ∈∩∞

i=1F(Ti). From the fact that set C is weakly closed, it results x̂ ∈C.
Since M is 1

‖A‖2 -inverse-strongly monotone,

1
‖A‖2‖Mx̂−Mxn j‖

2 ≤ 〈xn j − x̂,Mxn j −Mx̂〉. (3.8)

Letting j→ ∞ in (3.8), one obtains

0≤ 1
‖A‖2‖T x̂‖2 ≤ 0,

which demonstrate that Mx̂ = 0, that is, x̂ ∈ M−1(0). Observe x̂ ∈ C ∩M−1(0)∩ Fix(S) =
Sol(SFP)∩Fix(W ). Hence, (3.6) holds. Thus

limsup
n→∞

〈g(x̄)− x̄,xn+1− x̄〉

≤ ‖g(x̄)− x̄‖ limsup
n→∞

‖xn+1− xn‖+ limsup
n→∞

〈g(x̄)− x̄,xn− x̄〉,

which results
limsup

n→∞

〈xn+1− x̄,g(x̄)− x̄〉 ≤ 0. (3.9)

Finally, one proves xn → x̄ in norm as n → ∞. Assume that the sequence {xn} does not
converge to x̄ in norm, so there exists ε > 0 and a subsequence {xni} such that ‖xni− x̄‖ ≥ ε for
all i. One may assume that ‖xn− x̄‖ ≥ ε . By Lemma 2.2, one has that there holds

‖g(xn)−g(x̄)‖ ≤ cε‖xn− x̄‖
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for all x,y ∈C, where cε ∈ (0,1) is a real constant. Observe that

‖xn+1− x̄‖2 ≤ 〈αn(g(xn)− x̄)+ γn(yn− x̄)+βn(Wnxn− x̄),xn+1− x̄〉
≤ αn〈g(xn)− x̄,xn+1− x̄〉+ γn〈yn− x̄,xn+1− x̄〉+βn〈Wnxn− x̄,xn+1− x̄〉
≤ αn〈g(xn)−g(x̄),xn+1− x̄〉+αn〈g(x̄)− x̄,xn+1− x̄〉
+ γn‖xn+1− x̄‖‖yn− x̄‖+βn‖xn+1− x̄‖‖x̄−Wnxn‖
≤
(
1− (1− cε)αn

)
‖xn+1− x̄‖‖xn− x̄‖

+αn(1− cε)
〈xn+1− x̄,g(x̄)− x̄〉

1−κ
.

Hence,
2‖xn+1− x̄‖2 ≤

(
1− (1− cε)αn

)
(‖xn+1− x̄‖2 +‖xn− x̄‖2)

+2αn(1− cε)
〈xn+1− x̄,g(x̄)− x̄〉

1−κ
,

that is,
‖xn+1− x̄‖2 ≤

(
1− (1− cε)αn

)
‖xn+1− x̄‖2

+2αn(1− cε)
〈xn+1− x̄,g(x̄)− x̄〉

1−κ
,

Using Lemma 2.1, we find that xn→ x̄ as n→ ∞. This completes the proof. �

From Theorem 3.1, we have the following sub-results.

Corollary 3.2. Let C be a convex and closed set in Hilbert space H1 and let Q be a convex
and clsoed set in Hilbert space H2. Let A : H1 → H2 be a bounded linear operator such that
split feasibility problem (1.1) is consistent. Let g be a Meir-Keeler contractive mapping on C
and let W be a nonexpansive mapping with fixed points on C. Let {αn}, {βn} and {γn} be
real sequences in (0,1) with αn +βn + γn = 1. Let {xn} be a sequence defined by the following
iterative algorithm: x1 ∈C,

xn+1 = Pro jH1
C

(
αng(xn)+ γn(xn−µnA∗(I−Pro jH2

Q )Axn)+βnWxn

)
,

where Pro jH1
C denotes the nearest point projection from H1 onto C, Pro jH2

Q denotes the nearest
point projection from H2 onto Q. Assume that ∑

∞
n=1 αn =∞, ∑

∞
n=1 |αn−αn+1|<∞, limn→∞ αn =

0, ∑
∞
n=1 |γn− γn+1|< ∞, 0 < γ ≤ γn ≤ γ ′ < 1, and {µn} is a real sequence such that ∑

∞
n=1 |µn−

µn+1| < ∞, 2
‖A‖2 > µ ′ ≥ µn ≥ µ > 0, where γ ′,γ,µ ′ and µ are real numbers. If Sol(SFP)∩

F(W ) 6= /0, then {xn} converges strongly to a point x̄ in Sol(SFP)∩F(W ) and the solution also
solves the variational inequality 〈g(x̄)− x̄,x− x̄〉 ≤ 0 for all x ∈ Sol(SFP)∩F(W ).

Corollary 3.3. Let C be a convex and closed set in Hilbert space H1 and let Q be a convex and
clsoed set in Hilbert space H2. Let A : H1→ H2 be a bounded linear operator such that split
feasibility problem (1.1) is consistent. Let g be a Meir-Keeler contractive mapping on C. Let
{αn}, {βn} and {γn} be real sequences in (0,1) with αn +βn + γn = 1. Let {xn} be a sequence
defined by the following iterative algorithm: x1 ∈C,

xn+1 = Pro jH1
C

(
αng(xn)+ γn(xn−µnA∗(I−Pro jH2

Q )Axn)+βnxn

)
,
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where Pro jH1
C denotes the nearest point projection from H1 onto C, Pro jH2

Q denotes the nearest
point projection from H2 onto Q. Assume that ∑

∞
n=1 αn =∞, ∑

∞
n=1 |αn−αn+1|<∞, limn→∞ αn =

0, ∑
∞
n=1 |γn− γn+1|< ∞, 0 < γ ≤ γn ≤ γ ′ < 1, and {µn} is a real sequence such that ∑

∞
n=1 |µn−

µn+1|< ∞, 2
‖A‖2 > µ ′ ≥ µn ≥ µ > 0, where γ ′,γ,µ ′ and µ are real numbers. If Sol(SFP) 6= /0,

then {xn} converges strongly to a point x̄ in Sol(SFP) and the solution also solves the varia-
tional inequality 〈g(x̄)− x̄,x− x̄〉 ≤ 0 for all x ∈ Sol(SFP).

Remark 3.4. Corollary 3.3 is the case when each Ti is the identical map on C. In this case
F(Ti) = C, the formulation in Theorem 3.1 only involves Sol(SFP) rather than ∩∞

i=1F(Ti)∩
Sol(SFP) or F(W )∩Sol(SFP).
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