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Abstract. This paper constructs a new iterative method for identifying a common solution of a general system of
variational inequalities and a fixed point problem of a nonexpansive mapping. Furthermore, this paper establishes
some necessary and sufficient conditions of strong convergence of iterative sequences without any assumption
that the solution set of the problem is nonempty in Hilbert spaces. Finally, some applications and examples are
provided to support the main results.
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1. INTRODUCTION

The Fixed Point Problem is a problem in mathematics that involves finding a special point
in a set, that is, finding a point, which is mapped to itself by a given operator. This problem
arises in many areas of pure and applied mathematics, such as in nonlinear functional analysis,
topology, dynamical systems, optimization, physics, and engineering. The fixed point problem
is important because it provides a way to study the behavior of an operator or a system, and it
also helps to develop numerical methods for approximating solutions of certain types of operator
equations; see, e.g., [15, 21, 22] and the references therein.

In this paper, we consider H as a real Hilbert space, equipped with inner product 〈·, ·〉 and
corresponding norm |·|. Additionally, we take C to be a non-empty, closed, and convex subset
of H.

In this context, we consider a nonlinear mapping T : H→ H and set its fixed point as F(T ),
that is, F(T ) = {x ∈ H : T x = x}. Recall the following definitions.
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i) T is said to be nonexpansive if the following inequality holds for all x,z ∈H: ‖T x−T z‖ ≤
‖x− z‖.

There are numerous applications of nonexpansive operators in operator equations, optimiza-
tion theory, and data science. In the last decade, many new results on fixed points of nonex-
pansive operators were established in various spaces; see, e.g., [1, 2, 9, 17] and the references
therein.

Let A be a mapping defined on C to H. Recall the following definitions.
ii) A is said to be monotone if the following inequality holds for all x,z∈H: 〈Ax−Az,x− z〉≥

0.
iii) A is said to be η−strongly monotone with a constant η > 0 if the following inequality

holds for all x,z ∈ H: 〈Ax−Az,x− z〉 ≥ η ‖x− z‖2 .
iv) A is said to be β−inverse-strongly monotone with a constant β > 0 if the following in-

equality holds for all x,z ∈ H: 〈Ax−Az,x− z〉 ≥ β ‖Ax−Az‖2 .
v) A is said to be L-Lipschitz with a constant L > 0 if the following inequality holds for all

x,z ∈C: ‖Ax−Az‖ ≤ L‖x− z‖ . If L < 1, then A is called L-contraction or a contraction. It is
obvious that inverse-strongly monotone operators are Lipschitz continuous.

Recall the classical monotone variational inequality, denote by V I(C,A), is to

find x∗ ∈C such that 〈x− x∗,Ax∗〉 ≥ 0

for all x in set C, where A is a monotone operator from C to H. Many problems in engineer-
ing, economic, management, and computer sciences can modelled into a provides a variational
inequality. One of the simplest methods for solving the inequality is the projected-gradient
method: Given the current iterate xn, calculate the next iterate xn+1 as xn+1 = PC(xn−λnAxn),
where PC : H →C denotes the metric (nearest point) projection from H onto C, characterized
by PC(x) := argmin{‖x− y‖, y ∈C} and {λn} is a sequence of positive real numbers.

Recently, a number of researchers proposed various iterative methods for solving the prob-
lems via fixed point algorithms; see, e.g., [10, 11, 13, 19, 20] and the references therein. Note
that if A is not inverse-strongly monotone, then the sequence defined by the projected-gradient
method above may fail to converge to its solution.

A widely recognized method for resolving the variational inequality problem in the Euclidean
space Rn is the extragradient method, which was developed by Korpelevich [8]. The extragra-
dient method reads as follows: select an initial point x0 in C, and, for each n≥ 0, compute

yn = PC(xn−λnAxn),

xn+1 = PC(xn−λnAyn),

where A is a Lipschitz monotone operator with the constant L and {λn} is a sequence in
(
0, 1

L

)
.

If V I(C,A) is not empty, the sequence, {xn}, generated by this method converges weakly to an
element in V I(C,A).

Recently, the convex feasibility problems with fixed point problems and variational inequal-
ity problems attracted much attention in the fields of nonlinear optimization. Nadezhkina and
Takahashi [12], Yao and Yao [22], and Zeng and Yao [23] proposed several iterative methods
for finding solutions in the intersection of F(T ) and V I(C,A), where T is a nonexpansive map-
ping and A is a monotone operator. In particular, in [22], Yao and Yao developed a strong
convergence theorem in a real Hilbert space under certain suitable conditions.
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The results in [12], [22], and [23] were established under the assumption that the intersection
of F(T ) and V I(C,A) is not empty.

In 2008, Ceng et al. [3] presented a system and an iteration method, known as the relaxed
extragradient method for fixed point problems and variational inequality problems. They inves-
tigated the problem of finding a point (x∗,y∗) ∈C×C for all x ∈C that satisfies the following
constraints {

〈x− x∗,αA1y∗+ x∗− y∗〉 ≥ 0,
〈x− y∗,βA2x∗+ y∗− x∗〉 ≥ 0,

(1.1)

where operators A1,A2 : C → H are inverse-strongly monotone and parameters α and β are
nonnegative.

In 2019, Siriyan and Kangtanyakarn [18] introduced a new system of variational inequalities
in a real Hilbert space by modifying (1.1). Find a point (x∗,y∗,z∗) in C×C×C such that, for
all x ∈C, 

〈x− x∗,x∗− (I−α1A1)(bx∗+(1−b)y∗)〉 ≥ 0,
〈x− y∗,y∗− (I−α2A2)(bx∗+(1−b)z∗)〉 ≥ 0,
〈x− z∗,z∗− (I−α3A3)x∗〉 ≥ 0,

(1.2)

where mappings A1,A2,A3 : C → H are inverse-strongly monotone, and α1,α2,α3 > 0 and
b ∈ [0,1] are constants.

By setting b = 0 in (1.2), we have
〈x− x∗,x∗− (I−α1A1)y∗〉 ≥ 0,
〈x− y∗,y∗− (I−α2A2)z∗〉 ≥ 0,
〈x− z∗,z∗− (I−α3A3)x∗〉 ≥ 0.

(1.3)

By setting x∗ = z∗ and A3 = 0, the new system problem (1.2) can be reduced to general
system problem (1.1). Additionally, a new iteration process was introduced to find solutions
of problem (1.2). Researchers developed strong convergence theorems for solutions of the
variational inequality problem by using the condition on the fixed point set and the solution set
of variational inequalities, which is non-empty according to [3, 23].

In 2013, Kangtanyakarn [7] proposed a strong convergence theorem for finding solutions to
both the fixed point problem of a nonexpansive mapping T and the solution set of the variational
inequality problem associated with a mapping A : C→ H in the framework of Hilbert space
without assuming that V I(C,A)∩F(T ) 6= /0. This was done by utilizing necessary and sufficient
conditions. In this paper, we present a new iteration method for finding approximate solutions
to both (1.2) and the fixed point problem of a nonexpansive mapping T in a real hilbert space.
Unlike previous methods, this approach does not require the condition F(T )∩F(G) 6= /0, where
G is a mapping defined in Lemma 2.1. Our method is inspired by the prior research of Siriyan
and Kangtanyakarn [18] and Kangtanyakarn [7]. In addition, we use our main theorem to
investigate the General Split Feasibility Problem (GSFP) and provide numerical examples to
validate our results.
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2. PRELIMINARIES

Let PC be the metric projection of H onto C, that is, for every x ∈H, there is a unique nearest
point PCx in C such that ‖PCx− x‖ = miny∈C ‖y− x‖. It is known that PC has the following
properties:

i) PC is firmly nonexpansive, i.e.,

〈PCx−PCy,x− y〉 ≥ ‖PCx−PCy‖2 for all x,y ∈ H.

ii) For each x ∈ H,
〈x− z,z− y〉 ≥ 0⇔ z = PCx for all y ∈C.

The following known results are valid in a real Hilbert space H:
i) ‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉 for all x,y ∈ H.
ii) ‖αx+(1−α)y‖2 =α‖x‖2+(1−α)‖y‖2−α(1−α)‖x−y‖2 for all x,y∈H and α ∈ [0,1].
iii) ‖λ1x+λ2y+λ3z‖2 = λ1‖x‖2+λ2‖y‖2+λ3‖z‖2−λ1λ2‖x−y‖2−λ1λ3‖x−z‖2−λ2λ3‖y−

z‖2 for all x,y,z ∈ H and λ1,λ2,λ3 ∈ [0,1] with λ1 +λ2 +λ3 = 1.

Lemma 2.1. [18] Let A1,A2,A3 : C→ H be three mappings. For α1,α2,α3 > 0 and b ∈ [0,1],
the following assertions are equivalent

i) The solution of problem (1.2) is (x∗,y∗,z∗) ∈C×C×C,
ii) x∗ ∈ F(G), where defined G : C→C for all x ∈C by

G(x) = PC(I−α1A1)
(

bx+(1−b)PC(I−α2A2)
(
bx+(1−b)PC(I−α3A3)x

))
,

where y∗ = PC(I−α2A2)
(
bx∗+(1−b)z∗

)
and z∗ = PC(I−α3A3)x∗.

We denote strong convergence of a sequence by symbol→, and weak convergence by symbol
⇀.

Lemma 2.2. [14]. For any sequence {xn} that converges weakly to x, xn ⇀ x, the inequality

liminf
n→∞

‖xn− x‖< liminf
n→∞

‖xn− y‖,∀y ∈ H

holds for all y 6= x.

We remark that the Opial’s condition holds in Hilbert spaces.

3. MAIN RESULTS

Theorem 3.1. Let C be a nonempty, convex and closed subset of a real Hilbert space H and T be
a nonexpansive mapping defined on C. Let A1 : C→ H be L-lipshitz γ1-strongly monotone with

L≤ γ1 <
1
2

and let A2,A3 : C→ H be γ2,γ3-inverse-strongly monotone. For every α1 ∈ (0,γ1),

α2 ∈ (0,2γ2), α3 ∈ (0,2γ3), define G : C→C by

G(x) = PC(I−α1A1)
(

bx+(1−b)PC(I−α2A2)
(
bx+(1−b)PC(I−α3A3)x

))
, ∀x ∈C,

where b ∈ [0,1]. Suppose that x1 ∈C and let {xn} be a sequence generated by

xn+1 = G
(
λxn +(1−λ )T xn

)
, (3.1)

for all n≥ 1 and λ ∈ (0,1). Then these statements are equivalent:
i) the sequence {xn} defined by (3.1) converges strongly to x∗ ∈ F(T )∩F(G),
ii) lim

n→∞
‖xn−T xn‖= 0.
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Proof. Assume that {xn} converges strongly to x∗ ∈ F(T )∩F(G). Since x∗ ∈ F(T )∩F(G),
then

‖xn−T xn‖ ≤ ‖xn− x∗‖+‖T x∗−T xn‖ ≤ 2‖xn− x∗‖,

which implies that limn→∞ ‖xn−T xn‖= 0.
Let limn→∞ ‖xn−T xn‖= 0. First, we demonstrate that G is a contraction. From the fact that

A1 : C→ H is L-lipshitz and γ1 strongly monotone, we have

‖(I−α1A1)x− (I−α1A1)y‖2

= ‖x− y‖2 +α
2
1‖A1x−A1y‖2−2α1〈x− y,A1x−A1y〉

≤ (1−α1γ1)
2‖x− y‖2,

that is,

‖(I−α1A1)x− (I−α1A1)y‖ ≤ (1−α1γ1)‖x− y‖.

Since A2 is γ2-inverse strongly monotone and α2 ∈ (0,2γ2), we have

‖(I−α2A2)x− (I−α2A2)y‖2

= ‖x− y‖2 +α
2
2‖A2x−A2y‖2−2α2〈x− y,A2x−A2y〉

≤ ‖x− y‖2−α2(2γ2−α2)‖A2x−A2y‖2,

that is,

‖(I−α2A2)x− (I−α2A2)y‖ ≤ ‖x− y‖.

Hence PC(I−α2A2) is a nonexpansive mapping. By employing the method used above, we
have (I−α3A3) and PC(I−α3A3) are also nonexpansive. Let x,y ∈C. Then,

‖Gx−Gy‖

= (1−α1γ1)
∥∥∥b(x− y)+(1−a)

(
PC(I−α2A2)

(
bx+(1−b)PC(I−α3A3)x

)
−PC(I−α2A2)

(
by+(1−b)PC(I−α3A3)y

))∥∥∥
≤ (1−α1γ1)

(
b‖x− y‖+(1−b)

∥∥∥PC(I−α2A2)
(
bx+(1−b)PC(I−α3A3)x

)
−PC(I−α2A2)

(
by+(1−b)PC(I−α3A3)y

)∥∥∥)
≤ (1−α1γ1)

(
b‖x− y‖+(1−b)

(
b‖x− y‖+(1−b)

∥∥PC(I−α3A3)x
)

−PC(I−α3A3)y
∥∥))

≤ (1−α1γ1)‖x− y‖,
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which demonstrates that G is a (1−α1γ1) contraction. Since G is a (1−α1γ1) contraction and
T is a nonexpansive mapping, we conclude

‖xn+1− xn‖ ≤ (1−α1γ1)
∥∥∥(λxn +(1−λ )T xn

)
−
(
λxn−1 +(1−λ )T xn−1

)∥∥∥
≤ (1−α1γ1)

(
λ‖xn− xn−1‖+(1−λ )‖T xn−T xn−1‖

)
≤ (1−α1γ1)‖xn− xn−1‖
≤ (1−α1γ1)

(
(1−α1γ1)‖xn−1− xn−2‖

)
≤ (1−α1γ1)

3‖xn−2− xn−3‖
· · ·
≤ (1−α1γ1)

n‖x1− x0‖.

For any number n,k ∈ N, we conclude

‖xn+k− xn‖ ≤
n+k−1

∑
j=n
‖x j+1− x j‖

≤
n+k−1

∑
j=n

(1−α1γ1)
j‖x1− x0‖

≤ (1−α1γ1)
n

1− (1−α1γ1)
‖x1− x0‖.

Since limn→∞(1−α1γ1)
n = 0, we have that {xn} is a Cauchy sequence. Thus there is x∗ ∈ C

such that limn→∞ xn = x∗. In view of limn→∞ ‖xn−T xn‖= 0, and the Opial’s property, we have
x∗ ∈ F(T ). From definition of xn and x∗ ∈ F(T ), we have∥∥∥G

(
λxn +(1−λ )T xn

)
−Gx∗

∥∥∥≤ λ‖xn− x∗‖+(1−λ )‖T xn− x∗‖ ≤ ‖xn− x∗‖,

which demonstrates that

x∗ = lim
n→∞

xn+1 = lim
n→∞

G
(
λxn +(1−λ )T xn

)
= Gx∗.

It follows that x∗ ∈ F(G), so x∗ ∈ F(T )∩F(G). Therefore {xn} converges strongly to x∗ ∈
F(T )∩F(G). This completes our proof. �

By using Theorem 3.1, we obtain the method for solving a general system of variational
inequalities (1.2) without assumption F(T )∩F(G) 6= /0.

Finally, we give the following example.

Example 3.2. Let R be the set of real number, C = {x ∈ R|〈x,u〉= ξ} , and

PCx = x+
ξ −〈x,u〉
‖u‖2 u

with u = 2 and ξ = 5. Let the sequence {xn} be generated by x1 ∈C, xn+1 = PC(I− 1
3A1)xn for

all n ∈N, where A1 is mapping on R defined by A1x = x
4 . Then {xn} convergence strongly to 5

2 .
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Observe that the sequence can be rewritten as

xn+1 = PC(I−
1
3

A1)xn

= PC(I−
1
3

A1)
(

bI +(1−b)PC(I−2A2)
(
bI +(1−b)PC(I−3A3)I

))
(
1
4

xn +
3
4

Ixn
)
,

where A2 ≡ A3 ≡ 0, b = 0. Putting

G≡ PC(I−
1
3

A1)
(

bI +(1−b)PC(I−2A2)
(
bI +(1−b)PC(I−3A3)I

))
.

It is obvious that I is a nonexpansive mapping, and limn→∞ ‖xn− Ixn‖ = 0. From theorem 3.1,
we have that {xn} converges strongly to 5

2 ∈ F(T )∩F(G).

4. APPLICATIONS

In this section, we apply our main results to the general system of variational inequality and
fixed points of a nonexpansive mapping provided that F(T )∩F(G) is non-empty.

Theorem 4.1. Let G,T,A1,A2,A3, be mappings and α1,α2,α3,γ1,γ2,γ3,b,λ be defined as in
Theorem 3.1. If F(T )∩F(G) 6= /0, then the sequence {xn} define as in (3.1) converges strongly
to x∗ ∈ F(T )∩F(G).

Proof. From Theorem 3.1, we see that {xn} is a Cauchy sequence with {xn} converging strongly
to x∗ ∈C, which implies that

lim
n→∞
‖xn+1− xn‖= 0. (4.1)

Fixing p ∈ F(T )∩F(G), we have

‖xn+1− p‖2 = ‖G
(
λxn +(1−λ )T xn

)
− p‖2

≤ ‖λ (xn− p)+(1−λ )(T xn− p)‖2

≤ ‖xn− p‖2−λ (1−λ )‖xn−T xn‖2,

which yields that

λ (1−λ )‖xn−T xn‖2 ≤
(
‖xn− p‖+‖xn+1− p‖

)
‖xn+1− xn‖.

From (4.1), we have limn→∞ ‖T xn− xn‖ = 0. By Theorem 3.1, ii) → i), we conclude that se-
quence {xn} converges strongly to x∗ ∈ F(T )∩F(G). Thus the proof is complete. �

Split Feasibility Problem (SFP) is a type of optimization problem whose goal is to find a
solution that simultaneously satisfies two or more constraints that are given in the form of
separate feasibility problems. The SFP is often encountered in a variety of fields, including
signal processing, control systems, and image processing.

Let C and Q be convex and closed subsets in Hilbert spaces H1 and H2, respectively. Censor
and Elfving [4] defined this problem is to find x∗ in C Dx∗ ∈Q, where D is a linear and bounded
operator from H1 to H2. Notice that the SFP can be transformed into constrained minimization
problems, fixed point problems, and variational inequality problems. Recently, various iterative
algorithms were introduced to investigate solutions of the SFP; see, e.g., [5, 6, 16] and the
references therein.
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In 2019, Kangtanyakarn [6] introduced the Generalized Split Feasibility Problem (GSFP),
which is to find a point x∗ in C such that D1x∗, D2x∗ ∈ Q, with D2 : H1→ H2 being a bounded
linear operator. The set of all solutions to the GSFP is denoted by Γ = {x ∈C : D1x,D2x ∈ Q}.
If D1 ≡ D2, the GSFP is reduced to the SFP. Kangtanyakarn presented the following results to
solve the GSFP.

Lemma 4.2. [6]. Let C,Q be closed and convex subset of two real Hilbert spaces H1 and H2,
respectively. Let D1,D2 : H1→ H2 be bounded linear operators with D∗1,D

∗
2 are adjoint of D1

and D2, respectively. Let Γ be a nonempty set. Then, the followings are equivalent:
i) x∗ ∈ Γ ,

ii) x∗ = PC

(
I−b

(D∗1(I−PQ)D1

2
+

D∗2(I−PQ)D2

2

))
x∗, for all b > 0,

where LD1,LD2 are spectal redius of D∗1D1 and D∗2D2, respectively with b ∈ (0,
2
L
) and L =

max{LD1,LD2}.

Theorem 4.3. Let C,Q be closed and convex subsets of two real Hilbert spaces H1 and H2.
Let D1,D2 be bounded linear operators from H1 to H2 with adjoints D∗1,D

∗
2 and Γ 6= /0. The

mappings A1,A2,A3,G and constants α1,α2,α3,γ1,γ2,γ3,a,λ are defined as in Theorem 3.1.
The mapping T in equation (3.1) is defined as

T = PC

(
I− b̄

(D∗1(I−PQ)D1

2
+

D∗2(I−PQ)D2

2

))
,

where LD1 and LD2 are spectal redius of D∗1D1 and D∗2D2, respectively with b̄ ∈ (0,
2
L
) and

L = max{LD1,LD2}. If F(Γ )∩F(G) 6= /0, then the sequence {xn} define as in (3.1) converges
strongly to x∗ ∈ F(Γ )∩F(G).

Proof. The conclusion can be derived from Theorem 4.1 and Lemma 4.2 immediately. �

Example 4.4. Let R be the set of real number and A1,A2,A3 be the mappings defined from
[0,30] to R by A1x = x−1

2 , A2x = x−1
3 , and A3x = x−1

4 . Let T be a mapping from [0,30] into itself
defined by T x= x+3

4 for all x∈ [0,30]. Let x1 ∈R and {xn} be generated by (3.1), where b= 0.5,
α1 =

1
3 , α2 = 1, α3 = 1.5, and λ = 1

2 . By the definition A1,A2,A3,and T , {1} ∈ F(T )∩F(G).
Theorem 4.1 implies that sequence {xn} converges strongly to 1.

0 2 4 6 8 10 12 14 16 18 20
1
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Figure:Convergence of x
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n
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x
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FIGURE 1. The convergence of the sequence {xn}.
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TABLE 1. The sequence {xn} starting with x1 = 5

n xn n xn
1 5 11 1.0009
2 2.7361 12 1.0004
3 1.7535 13 1.005
4 1.327 14 1.0022
5 5 15 1.0009
6 2.7361 16 1.0004
7 1.7535 17 1.0002
8 1.327 18 1.0001
9 1.005 19 1

10 1.0022 20 1

Example 4.5. Let R be the set of real number,

C =
{
(x1,x2) ∈ R2|x1u1 + x2u2 = η

}
and

PC(x1,x2) = (x1,x2)+
η− x1u1− x2u2√

u2
1 +u2

2

(u1,u2)

for all (x1,x2) ∈R2. Let A1,A2,A3 be the mappings on C defined by A1(x1,x2) =
1
2(x1−2,x2−

3), A2(x1,x2) =
1
3(x1− 2,x2− 3), and A3(x1,x2) =

1
4(x1− 2,x2− 3) for all (x1,x2) ∈C. Let T

be a mapping from C into itself defined by T (x1,x2) =
1
4(x1 +6,x2 +9) for all (x1,x2) ∈C. Let

{(xn
1,x

n
2)} be a sequence generated by (3.1) and (x1

1,x
1
2) ∈ R2, where u = (2,1), η = 7, b = 1

2 ,

α1 =
1
3 , α2 =

3
2 , α3 = 2, and λ = 1

2 . By the definition A1,A2,A3, and T , (2,3) ∈ F(T )∩F(G).
Theorem 4.1 implies that sequence {(xn

1,x
n
2)} converges strongly to (2,3).

TABLE 2. The sequence {(xn
1,x

n
2)} starting with (x1

1,x
1
2) = (5,5).

n (xn
1 , xn

2)

1 ( 5 , 5 )
2 ( 3.875 , 4.25 )
3 ( 1.3874 , 2.8056 )
4 ( 2.1452 , 3.1127 )
5 ( 2.1452 , 2.9886 )
6 ( 2.0109 , 3.0106 )
7 ( 1.9956 , 2.9996 )
8 ( 2.0008 , 3.0011 )
9 ( 1.9996 , 3 )

10 ( 2.0001 , 3.0001 )
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FIGURE 2. The convergence of the sequence {(xn
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2)}.

5. CONCLUSIONS

In Theorem 3.1, we proposed a new iteration process for solving both fixed point problems
and the general systems of variational inequalities. We also proved the strong convergence
of this process without assuming the existence of solutions for these problems. By letting
b = 0 and A2 ≡ A3 ≡ 0 in Theorem 3.1, we can reduce F(G) = V I(C,A1). The sequence {xn}
defined by modifying (3.1) converges strongly to an element x∗ ∈ V I(C,A1)∩F(T ) without
the assumption of F(T )∩V I(C,A1) 6= /0. Using Theorem 3.1, we also proved the convergence
for the general split feasibility problem. To further support our findings, we provided three
numerical examples, Example 3.2, Example 4.4, and Example 4.5.
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