AN APPROXIMATE APPROACH FOR SOLVING FIXED POINT AND SYSTEMS OF VARIATIONAL INEQUALITY PROBLEMS WITHOUT CERTAIN CONSTRAINTS

PHANNIPA WORAPUN ${ }^{1}$, ATID KANGTUNYAKARN ${ }^{2, *}$
${ }^{1}$ Department of Applied Mathematics and Statistics, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
${ }^{2}$ King Mongkut Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Abstract

This paper constructs a new iterative method for identifying a common solution of a general system of variational inequalities and a fixed point problem of a nonexpansive mapping. Furthermore, this paper establishes some necessary and sufficient conditions of strong convergence of iterative sequences without any assumption that the solution set of the problem is nonempty in Hilbert spaces. Finally, some applications and examples are provided to support the main results.

Keywords. Approximate Approach; Convergence analysis; System of variational inequalities; Split feasibility problem.

1. Introduction

The Fixed Point Problem is a problem in mathematics that involves finding a special point in a set, that is, finding a point, which is mapped to itself by a given operator. This problem arises in many areas of pure and applied mathematics, such as in nonlinear functional analysis, topology, dynamical systems, optimization, physics, and engineering. The fixed point problem is important because it provides a way to study the behavior of an operator or a system, and it also helps to develop numerical methods for approximating solutions of certain types of operator equations; see, e.g., [15, 21, 22] and the references therein.

In this paper, we consider H as a real Hilbert space, equipped with inner product $\langle\cdot, \cdot\rangle$ and corresponding norm $|\cdot|$. Additionally, we take C to be a non-empty, closed, and convex subset of H.

In this context, we consider a nonlinear mapping $T: H \rightarrow H$ and set its fixed point as $F(T)$, that is, $F(T)=\{x \in H: T x=x\}$. Recall the following definitions.

[^0]i) T is said to be nonexpansive if the following inequality holds for all $x, z \in H:\|T x-T z\| \leq$ $\|x-z\|$.

There are numerous applications of nonexpansive operators in operator equations, optimization theory, and data science. In the last decade, many new results on fixed points of nonexpansive operators were established in various spaces; see, e.g., $[1,2,9,17]$ and the references therein.

Let A be a mapping defined on C to H. Recall the following definitions.
ii) A is said to be monotone if the following inequality holds for all $x, z \in H:\langle A x-A z, x-z\rangle \geq$ 0.
iii) A is said to be η-strongly monotone with a constant $\eta>0$ if the following inequality holds for all $x, z \in H:\langle A x-A z, x-z\rangle \geq \eta\|x-z\|^{2}$.
iv) A is said to be β-inverse-strongly monotone with a constant $\beta>0$ if the following inequality holds for all $x, z \in H:\langle A x-A z, x-z\rangle \geq \beta\|A x-A z\|^{2}$.
v) A is said to be L-Lipschitz with a constant $L>0$ if the following inequality holds for all $x, z \in C:\|A x-A z\| \leq L\|x-z\|$. If $L<1$, then A is called L-contraction or a contraction. It is obvious that inverse-strongly monotone operators are Lipschitz continuous.

Recall the classical monotone variational inequality, denote by $\operatorname{VI}(C, A)$, is to

$$
\text { find } x^{*} \in C \text { such that }\left\langle x-x^{*}, A x^{*}\right\rangle \geq 0
$$

for all x in set C, where A is a monotone operator from C to H. Many problems in engineering, economic, management, and computer sciences can modelled into a provides a variational inequality. One of the simplest methods for solving the inequality is the projected-gradient method: Given the current iterate x_{n}, calculate the next iterate x_{n+1} as $x_{n+1}=P_{C}\left(x_{n}-\lambda_{n} A x_{n}\right)$, where $P_{C}: H \rightarrow C$ denotes the metric (nearest point) projection from H onto C, characterized by $P_{C}(x):=\arg \min \{\|x-y\|, y \in C\}$ and $\left\{\lambda_{n}\right\}$ is a sequence of positive real numbers.

Recently, a number of researchers proposed various iterative methods for solving the problems via fixed point algorithms; see, e.g., $[10,11,13,19,20]$ and the references therein. Note that if A is not inverse-strongly monotone, then the sequence defined by the projected-gradient method above may fail to converge to its solution.

A widely recognized method for resolving the variational inequality problem in the Euclidean space \mathbb{R}^{n} is the extragradient method, which was developed by Korpelevich [8]. The extragradient method reads as follows: select an initial point x_{0} in C, and, for each $n \geq 0$, compute

$$
\begin{aligned}
y_{n} & =P_{C}\left(x_{n}-\lambda_{n} A x_{n}\right), \\
x_{n+1} & =P_{C}\left(x_{n}-\lambda_{n} A y_{n}\right),
\end{aligned}
$$

where A is a Lipschitz monotone operator with the constant L and $\left\{\lambda_{n}\right\}$ is a sequence in $\left(0, \frac{1}{L}\right)$. If $V I(C, A)$ is not empty, the sequence, $\left\{x_{n}\right\}$, generated by this method converges weakly to an element in $V I(C, A)$.

Recently, the convex feasibility problems with fixed point problems and variational inequality problems attracted much attention in the fields of nonlinear optimization. Nadezhkina and Takahashi [12], Yao and Yao [22], and Zeng and Yao [23] proposed several iterative methods for finding solutions in the intersection of $F(T)$ and $V I(C, A)$, where T is a nonexpansive mapping and A is a monotone operator. In particular, in [22], Yao and Yao developed a strong convergence theorem in a real Hilbert space under certain suitable conditions.

The results in [12], [22], and [23] were established under the assumption that the intersection of $F(T)$ and $V I(C, A)$ is not empty.

In 2008, Ceng et al. [3] presented a system and an iteration method, known as the relaxed extragradient method for fixed point problems and variational inequality problems. They investigated the problem of finding a point $\left(x^{*}, y^{*}\right) \in C \times C$ for all $x \in C$ that satisfies the following constraints

$$
\left\{\begin{array}{l}
\left\langle x-x^{*}, \alpha A_{1} y^{*}+x^{*}-y^{*}\right\rangle \geq 0 \tag{1.1}\\
\left\langle x-y^{*}, \beta A_{2} x^{*}+y^{*}-x^{*}\right\rangle \geq 0
\end{array}\right.
$$

where operators $A_{1}, A_{2}: C \rightarrow H$ are inverse-strongly monotone and parameters α and β are nonnegative.

In 2019, Siriyan and Kangtanyakarn [18] introduced a new system of variational inequalities in a real Hilbert space by modifying (1.1). Find a point $\left(x^{*}, y^{*}, z^{*}\right)$ in $C \times C \times C$ such that, for all $x \in C$,

$$
\left\{\begin{array}{l}
\left\langle x-x^{*}, x^{*}-\left(I-\alpha_{1} A_{1}\right)\left(b x^{*}+(1-b) y^{*}\right)\right\rangle \geq 0 \tag{1.2}\\
\left\langle x-y^{*}, y^{*}-\left(I-\alpha_{2} A_{2}\right)\left(b x^{*}+(1-b) z^{*}\right)\right\rangle \geq 0 \\
\left\langle x-z^{*}, z^{*}-\left(I-\alpha_{3} A_{3}\right) x^{*}\right\rangle \geq 0
\end{array}\right.
$$

where mappings $A_{1}, A_{2}, A_{3}: C \rightarrow H$ are inverse-strongly monotone, and $\alpha_{1}, \alpha_{2}, \alpha_{3}>0$ and $b \in[0,1]$ are constants.

By setting $b=0$ in (1.2), we have

$$
\left\{\begin{array}{l}
\left\langle x-x^{*}, x^{*}-\left(I-\alpha_{1} A_{1}\right) y^{*}\right\rangle \geq 0 \tag{1.3}\\
\left\langle x-y^{*}, y^{*}-\left(I-\alpha_{2} A_{2}\right) z^{*}\right\rangle \geq 0 \\
\left\langle x-z^{*}, z^{*}-\left(I-\alpha_{3} A_{3}\right) x^{*}\right\rangle \geq 0
\end{array}\right.
$$

By setting $x^{*}=z^{*}$ and $A_{3}=0$, the new system problem (1.2) can be reduced to general system problem (1.1). Additionally, a new iteration process was introduced to find solutions of problem (1.2). Researchers developed strong convergence theorems for solutions of the variational inequality problem by using the condition on the fixed point set and the solution set of variational inequalities, which is non-empty according to [3, 23].

In 2013, Kangtanyakarn [7] proposed a strong convergence theorem for finding solutions to both the fixed point problem of a nonexpansive mapping T and the solution set of the variational inequality problem associated with a mapping $A: C \rightarrow H$ in the framework of Hilbert space without assuming that $V I(C, A) \cap F(T) \neq \emptyset$. This was done by utilizing necessary and sufficient conditions. In this paper, we present a new iteration method for finding approximate solutions to both (1.2) and the fixed point problem of a nonexpansive mapping T in a real hilbert space. Unlike previous methods, this approach does not require the condition $F(T) \cap F(G) \neq \emptyset$, where G is a mapping defined in Lemma 2.1. Our method is inspired by the prior research of Siriyan and Kangtanyakarn [18] and Kangtanyakarn [7]. In addition, we use our main theorem to investigate the General Split Feasibility Problem (GSFP) and provide numerical examples to validate our results.

2. Preliminaries

Let P_{C} be the metric projection of H onto C, that is, for every $x \in H$, there is a unique nearest point $P_{C} x$ in C such that $\left\|P_{C} x-x\right\|=\min _{y \in C}\|y-x\|$. It is known that P_{C} has the following properties:
i) P_{C} is firmly nonexpansive, i.e.,

$$
\left\langle P_{C} x-P_{C} y, x-y\right\rangle \geq\left\|P_{C} x-P_{C} y\right\|^{2} \text { for all } x, y \in H
$$

ii) For each $x \in H$,

$$
\langle x-z, z-y\rangle \geq 0 \Leftrightarrow z=P_{C} x \text { for all } y \in C .
$$

The following known results are valid in a real Hilbert space H :
i) $\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle$ for all $x, y \in H$.
ii) $\|\alpha x+(1-\alpha) y\|^{2}=\alpha\|x\|^{2}+(1-\alpha)\|y\|^{2}-\alpha(1-\alpha)\|x-y\|^{2}$ for all $x, y \in H$ and $\alpha \in[0,1]$.
iii) $\left\|\lambda_{1} x+\lambda_{2} y+\lambda_{3} z\right\|^{2}=\lambda_{1}\|x\|^{2}+\lambda_{2}\|y\|^{2}+\lambda_{3}\|z\|^{2}-\lambda_{1} \lambda_{2}\|x-y\|^{2}-\lambda_{1} \lambda_{3}\|x-z\|^{2}-\lambda_{2} \lambda_{3} \| y-$ $z \|^{2}$ for all $x, y, z \in H$ and $\lambda_{1}, \lambda_{2}, \lambda_{3} \in[0,1]$ with $\lambda_{1}+\lambda_{2}+\lambda_{3}=1$.
Lemma 2.1. [18] Let $A_{1}, A_{2}, A_{3}: C \rightarrow H$ be three mappings. For $\alpha_{1}, \alpha_{2}, \alpha_{3}>0$ and $b \in[0,1]$, the following assertions are equivalent
i) The solution of problem (1.2) is $\left(x^{*}, y^{*}, z^{*}\right) \in C \times C \times C$,
ii) $x^{*} \in F(G)$, where defined $G: C \rightarrow C$ for all $x \in C$ by

$$
G(x)=P_{C}\left(I-\alpha_{1} A_{1}\right)\left(b x+(1-b) P_{C}\left(I-\alpha_{2} A_{2}\right)\left(b x+(1-b) P_{C}\left(I-\alpha_{3} A_{3}\right) x\right)\right)
$$

where $y^{*}=P_{C}\left(I-\alpha_{2} A_{2}\right)\left(b x^{*}+(1-b) z^{*}\right)$ and $z^{*}=P_{C}\left(I-\alpha_{3} A_{3}\right) x^{*}$.
We denote strong convergence of a sequence by symbol \rightarrow, and weak convergence by symbol \rightarrow.

Lemma 2.2. [14]. For any sequence $\left\{x_{n}\right\}$ that converges weakly to $x, x_{n} \rightharpoonup x$, the inequality

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|, \forall y \in H
$$

holds for all $y \neq x$.
We remark that the Opial's condition holds in Hilbert spaces.

3. Main Results

Theorem 3.1. Let C be a nonempty, convex and closed subset of a real Hilbert space H and T be a nonexpansive mapping defined on C. Let $A_{1}: C \rightarrow H$ be L-lipshitz γ_{1}-strongly monotone with $L \leq \gamma_{1}<\frac{1}{2}$ and let $A_{2}, A_{3}: C \rightarrow H$ be γ_{2}, γ_{3}-inverse-strongly monotone. For every $\alpha_{1} \in\left(0, \gamma_{1}\right)$, $\alpha_{2} \in\left(0,2 \gamma_{2}\right), \alpha_{3} \in\left(0,2 \gamma_{3}\right)$, define $G: C \rightarrow C$ by

$$
G(x)=P_{C}\left(I-\alpha_{1} A_{1}\right)\left(b x+(1-b) P_{C}\left(I-\alpha_{2} A_{2}\right)\left(b x+(1-b) P_{C}\left(I-\alpha_{3} A_{3}\right) x\right)\right), \forall x \in C
$$

where $b \in[0,1]$. Suppose that $x_{1} \in C$ and let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\begin{equation*}
x_{n+1}=G\left(\lambda x_{n}+(1-\lambda) T x_{n}\right), \tag{3.1}
\end{equation*}
$$

for all $n \geq 1$ and $\lambda \in(0,1)$. Then these statements are equivalent:
i) the sequence $\left\{x_{n}\right\}$ defined by (3.1) converges strongly to $x^{*} \in F(T) \cap F(G)$,
ii) $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0$.

Proof. Assume that $\left\{x_{n}\right\}$ converges strongly to $x^{*} \in F(T) \cap F(G)$. Since $x^{*} \in F(T) \cap F(G)$, then

$$
\left\|x_{n}-T x_{n}\right\| \leq\left\|x_{n}-x^{*}\right\|+\left\|T x^{*}-T x_{n}\right\| \leq 2\left\|x_{n}-x^{*}\right\|,
$$

which implies that $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0$.
Let $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0$. First, we demonstrate that G is a contraction. From the fact that $A_{1}: C \rightarrow H$ is L-lipshitz and γ_{1} strongly monotone, we have

$$
\begin{aligned}
& \left\|\left(I-\alpha_{1} A_{1}\right) x-\left(I-\alpha_{1} A_{1}\right) y\right\|^{2} \\
& =\|x-y\|^{2}+\alpha_{1}^{2}\left\|A_{1} x-A_{1} y\right\|^{2}-2 \alpha_{1}\left\langle x-y, A_{1} x-A_{1} y\right\rangle \\
& \leq\left(1-\alpha_{1} \gamma_{1}\right)^{2}\|x-y\|^{2}
\end{aligned}
$$

that is,

$$
\left\|\left(I-\alpha_{1} A_{1}\right) x-\left(I-\alpha_{1} A_{1}\right) y\right\| \leq\left(1-\alpha_{1} \gamma_{1}\right)\|x-y\|
$$

Since A_{2} is γ_{2}-inverse strongly monotone and $\alpha_{2} \in\left(0,2 \gamma_{2}\right)$, we have

$$
\begin{aligned}
& \left\|\left(I-\alpha_{2} A_{2}\right) x-\left(I-\alpha_{2} A_{2}\right) y\right\|^{2} \\
& =\|x-y\|^{2}+\alpha_{2}^{2}\left\|A_{2} x-A_{2} y\right\|^{2}-2 \alpha_{2}\left\langle x-y, A_{2} x-A_{2} y\right\rangle \\
& \leq\|x-y\|^{2}-\alpha_{2}\left(2 \gamma_{2}-\alpha_{2}\right)\left\|A_{2} x-A_{2} y\right\|^{2}
\end{aligned}
$$

that is,

$$
\left\|\left(I-\alpha_{2} A_{2}\right) x-\left(I-\alpha_{2} A_{2}\right) y\right\| \leq\|x-y\| .
$$

Hence $P_{C}\left(I-\alpha_{2} A_{2}\right)$ is a nonexpansive mapping. By employing the method used above, we have $\left(I-\alpha_{3} A_{3}\right)$ and $P_{C}\left(I-\alpha_{3} A_{3}\right)$ are also nonexpansive. Let $x, y \in C$. Then,

$$
\begin{aligned}
& \|G x-G y\| \\
& =\left(1-\alpha_{1} \gamma_{1}\right) \| b(x-y)+(1-a)\left(P_{C}\left(I-\alpha_{2} A_{2}\right)\left(b x+(1-b) P_{C}\left(I-\alpha_{3} A_{3}\right) x\right)\right. \\
& \left.-P_{C}\left(I-\alpha_{2} A_{2}\right)\left(b y+(1-b) P_{C}\left(I-\alpha_{3} A_{3}\right) y\right)\right) \| \\
& \leq\left(1-\alpha_{1} \gamma_{1}\right)\left(b\|x-y\|+(1-b) \| P_{C}\left(I-\alpha_{2} A_{2}\right)\left(b x+(1-b) P_{C}\left(I-\alpha_{3} A_{3}\right) x\right)\right. \\
& \left.-P_{C}\left(I-\alpha_{2} A_{2}\right)\left(b y+(1-b) P_{C}\left(I-\alpha_{3} A_{3}\right) y\right) \|\right) \\
& \leq\left(1-\alpha_{1} \gamma_{1}\right)\left(b\|x-y\|+(1-b)\left(b\|x-y\|+(1-b) \| P_{C}\left(I-\alpha_{3} A_{3}\right) x\right)\right. \\
& \left.\left.-P_{C}\left(I-\alpha_{3} A_{3}\right) y \|\right)\right) \\
& \leq\left(1-\alpha_{1} \gamma_{1}\right)\|x-y\|
\end{aligned}
$$

which demonstrates that G is a $\left(1-\alpha_{1} \gamma_{1}\right)$ contraction. Since G is a $\left(1-\alpha_{1} \gamma_{1}\right)$ contraction and T is a nonexpansive mapping, we conclude

$$
\begin{aligned}
\left\|x_{n+1}-x_{n}\right\| & \leq\left(1-\alpha_{1} \gamma_{1}\right)\left\|\left(\lambda x_{n}+(1-\lambda) T x_{n}\right)-\left(\lambda x_{n-1}+(1-\lambda) T x_{n-1}\right)\right\| \\
& \leq\left(1-\alpha_{1} \gamma_{1}\right)\left(\lambda\left\|x_{n}-x_{n-1}\right\|+(1-\lambda)\left\|T x_{n}-T x_{n-1}\right\|\right) \\
& \leq\left(1-\alpha_{1} \gamma_{1}\right)\left\|x_{n}-x_{n-1}\right\| \\
& \leq\left(1-\alpha_{1} \gamma_{1}\right)\left(\left(1-\alpha_{1} \gamma_{1}\right)\left\|x_{n-1}-x_{n-2}\right\|\right) \\
& \leq\left(1-\alpha_{1} \gamma_{1}\right)^{3}\left\|x_{n-2}-x_{n-3}\right\| \\
& \cdots \\
& \leq\left(1-\alpha_{1} \gamma_{1}\right)^{n}\left\|x_{1}-x_{0}\right\| .
\end{aligned}
$$

For any number $n, k \in \mathbb{N}$, we conclude

$$
\begin{aligned}
\left\|x_{n+k}-x_{n}\right\| & \leq \sum_{j=n}^{n+k-1}\left\|x_{j+1}-x_{j}\right\| \\
& \leq \sum_{j=n}^{n+k-1}\left(1-\alpha_{1} \gamma_{1}\right)^{j}\left\|x_{1}-x_{0}\right\| \\
& \leq \frac{\left(1-\alpha_{1} \gamma_{1}\right)^{n}}{1-\left(1-\alpha_{1} \gamma_{1}\right)}\left\|x_{1}-x_{0}\right\| .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty}\left(1-\alpha_{1} \gamma_{1}\right)^{n}=0$, we have that $\left\{x_{n}\right\}$ is a Cauchy sequence. Thus there is $x^{*} \in C$ such that $\lim _{n \rightarrow \infty} x_{n}=x^{*}$. In view of $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0$, and the Opial's property, we have $x^{*} \in F(T)$. From definition of x_{n} and $x^{*} \in F(T)$, we have

$$
\left\|G\left(\lambda x_{n}+(1-\lambda) T x_{n}\right)-G x^{*}\right\| \leq \lambda\left\|x_{n}-x^{*}\right\|+(1-\lambda)\left\|T x_{n}-x^{*}\right\| \leq\left\|x_{n}-x^{*}\right\|,
$$

which demonstrates that

$$
x^{*}=\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} G\left(\lambda x_{n}+(1-\lambda) T x_{n}\right)=G x^{*}
$$

It follows that $x^{*} \in F(G)$, so $x^{*} \in F(T) \cap F(G)$. Therefore $\left\{x_{n}\right\}$ converges strongly to $x^{*} \in$ $F(T) \cap F(G)$. This completes our proof.

By using Theorem 3.1, we obtain the method for solving a general system of variational inequalities (1.2) without assumption $F(T) \cap F(G) \neq \emptyset$.

Finally, we give the following example.
Example 3.2. Let \mathbb{R} be the set of real number, $C=\{x \in \mathbb{R} \mid\langle x, u\rangle=\xi\}$, and

$$
P_{C} x=x+\frac{\xi-\langle x, u\rangle}{\|u\|^{2}} u
$$

with $u=2$ and $\xi=5$. Let the sequence $\left\{x_{n}\right\}$ be generated by $x_{1} \in C, x_{n+1}=P_{C}\left(I-\frac{1}{3} A_{1}\right) x_{n}$ for all $n \in \mathbb{N}$, where A_{1} is mapping on \mathbb{R} defined by $A_{1} x=\frac{x}{4}$. Then $\left\{x_{n}\right\}$ convergence strongly to $\frac{5}{2}$.

Observe that the sequence can be rewritten as

$$
\begin{aligned}
x_{n+1} & =P_{C}\left(I-\frac{1}{3} A_{1}\right) x_{n} \\
& =P_{C}\left(I-\frac{1}{3} A_{1}\right)\left(b I+(1-b) P_{C}\left(I-2 A_{2}\right)\left(b I+(1-b) P_{C}\left(I-3 A_{3}\right) I\right)\right)\left(\frac{1}{4} x_{n}+\frac{3}{4} I x_{n}\right)
\end{aligned}
$$

where $A_{2} \equiv A_{3} \equiv 0, b=0$. Putting

$$
G \equiv P_{C}\left(I-\frac{1}{3} A_{1}\right)\left(b I+(1-b) P_{C}\left(I-2 A_{2}\right)\left(b I+(1-b) P_{C}\left(I-3 A_{3}\right) I\right)\right) .
$$

It is obvious that I is a nonexpansive mapping, and $\lim _{n \rightarrow \infty}\left\|x_{n}-I x_{n}\right\|=0$. From theorem 3.1, we have that $\left\{x_{n}\right\}$ converges strongly to $\frac{5}{2} \in F(T) \cap F(G)$.

4. Applications

In this section, we apply our main results to the general system of variational inequality and fixed points of a nonexpansive mapping provided that $F(T) \cap F(G)$ is non-empty.

Theorem 4.1. Let $G, T, A_{1}, A_{2}, A_{3}$, be mappings and $\alpha_{1}, \alpha_{2}, \alpha_{3}, \gamma_{1}, \gamma_{2}, \gamma_{3}, b, \lambda$ be defined as in Theorem 3.1. If $F(T) \cap F(G) \neq \emptyset$, then the sequence $\left\{x_{n}\right\}$ define as in (3.1) converges strongly to $x^{*} \in F(T) \cap F(G)$.

Proof. From Theorem 3.1, we see that $\left\{x_{n}\right\}$ is a Cauchy sequence with $\left\{x_{n}\right\}$ converging strongly to $x^{*} \in C$, which implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{4.1}
\end{equation*}
$$

Fixing $p \in F(T) \cap F(G)$, we have

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} & =\left\|G\left(\lambda x_{n}+(1-\lambda) T x_{n}\right)-p\right\|^{2} \\
& \leq\left\|\lambda\left(x_{n}-p\right)+(1-\lambda)\left(T x_{n}-p\right)\right\|^{2} \\
& \leq\left\|x_{n}-p\right\|^{2}-\lambda(1-\lambda)\left\|x_{n}-T x_{n}\right\|^{2}
\end{aligned}
$$

which yields that

$$
\lambda(1-\lambda)\left\|x_{n}-T x_{n}\right\|^{2} \leq\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)\left\|x_{n+1}-x_{n}\right\| .
$$

From (4.1), we have $\lim _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=0$. By Theorem 3.1, ii) $\rightarrow \mathrm{i}$), we conclude that sequence $\left\{x_{n}\right\}$ converges strongly to $x^{*} \in F(T) \cap F(G)$. Thus the proof is complete.

Split Feasibility Problem (SFP) is a type of optimization problem whose goal is to find a solution that simultaneously satisfies two or more constraints that are given in the form of separate feasibility problems. The SFP is often encountered in a variety of fields, including signal processing, control systems, and image processing.

Let C and Q be convex and closed subsets in Hilbert spaces H_{1} and H_{2}, respectively. Censor and Elfving [4] defined this problem is to find x^{*} in $C D x^{*} \in Q$, where D is a linear and bounded operator from H_{1} to H_{2}. Notice that the SFP can be transformed into constrained minimization problems, fixed point problems, and variational inequality problems. Recently, various iterative algorithms were introduced to investigate solutions of the SFP; see, e.g., $[5,6,16]$ and the references therein.

In 2019, Kangtanyakarn [6] introduced the Generalized Split Feasibility Problem (GSFP), which is to find a point x^{*} in C such that $D_{1} x^{*}, D_{2} x^{*} \in Q$, with $D_{2}: H_{1} \rightarrow H_{2}$ being a bounded linear operator. The set of all solutions to the GSFP is denoted by $\Gamma=\left\{x \in C: D_{1} x, D_{2} x \in Q\right\}$. If $D_{1} \equiv D_{2}$, the GSFP is reduced to the SFP. Kangtanyakarn presented the following results to solve the GSFP.

Lemma 4.2. [6]. Let C, Q be closed and convex subset of two real Hilbert spaces H_{1} and H_{2}, respectively. Let $D_{1}, D_{2}: H_{1} \rightarrow H_{2}$ be bounded linear operators with D_{1}^{*}, D_{2}^{*} are adjoint of D_{1} and D_{2}, respectively. Let Γ be a nonempty set. Then, the followings are equivalent:
i) $x^{*} \in \Gamma$,
ii) $x^{*}=P_{C}\left(I-b\left(\frac{D_{1}^{*}\left(I-P_{Q}\right) D_{1}}{2}+\frac{D_{2}^{*}\left(I-P_{Q}\right) D_{2}}{2}\right)\right) x^{*}$, for all $b>0$,
where $L_{D_{1}}, L_{D_{2}}$ are spectal redius of $D_{1}^{*} D_{1}$ and $D_{2}^{*} D_{2}$, respectively with $b \in\left(0, \frac{2}{L}\right)$ and $L=$ $\max \left\{L_{D_{1}}, L_{D_{2}}\right\}$.
Theorem 4.3. Let C, Q be closed and convex subsets of two real Hilbert spaces H_{1} and H_{2}. Let D_{1}, D_{2} be bounded linear operators from H_{1} to H_{2} with adjoints D_{1}^{*}, D_{2}^{*} and $\Gamma \neq \emptyset$. The mappings A_{1}, A_{2}, A_{3}, G and constants $\alpha_{1}, \alpha_{2}, \alpha_{3}, \gamma_{1}, \gamma_{2}, \gamma_{3}, a, \lambda$ are defined as in Theorem 3.1. The mapping T in equation (3.1) is defined as

$$
T=P_{C}\left(I-\bar{b}\left(\frac{D_{1}^{*}\left(I-P_{Q}\right) D_{1}}{2}+\frac{D_{2}^{*}\left(I-P_{Q}\right) D_{2}}{2}\right)\right)
$$

where $L_{D_{1}}$ and $L_{D_{2}}$ are spectal redius of $D_{1}^{*} D_{1}$ and $D_{2}^{*} D_{2}$, respectively with $\bar{b} \in\left(0, \frac{2}{L}\right)$ and $L=\max \left\{L_{D_{1}}, L_{D_{2}}\right\}$. If $F(\Gamma) \cap F(G) \neq \emptyset$, then the sequence $\left\{x_{n}\right\}$ define as in (3.1) converges strongly to $x^{*} \in F(\Gamma) \cap F(G)$.
Proof. The conclusion can be derived from Theorem 4.1 and Lemma 4.2 immediately.
Example 4.4. Let \mathbb{R} be the set of real number and A_{1}, A_{2}, A_{3} be the mappings defined from $[0,30]$ to \mathbb{R} by $A_{1} x=\frac{x-1}{2}, A_{2} x=\frac{x-1}{3}$, and $A_{3} x=\frac{x-1}{4}$. Let T be a mapping from $[0,30]$ into itself defined by $T x=\frac{x+3}{4}$ for all $x \in[0,30]$. Let $x_{1} \in \mathbb{R}$ and $\left\{x_{n}\right\}$ be generated by (3.1), where $b=0.5$, $\alpha_{1}=\frac{1}{3}, \alpha_{2}=1, \alpha_{3}=1.5$, and $\lambda=\frac{1}{2}$. By the definition A_{1}, A_{2}, A_{3}, and $T,\{1\} \in F(T) \cap F(G)$. Theorem 4.1 implies that sequence $\left\{x_{n}\right\}$ converges strongly to 1 .

Figure 1. The convergence of the sequence $\left\{x_{n}\right\}$.

TABLE 1. The sequence $\left\{x_{n}\right\}$ starting with $x_{1}=5$

n	x_{n}	n	x_{n}
1	5	11	1.0009
2	2.7361	12	1.0004
3	1.7535	13	1.005
4	1.327	14	1.0022
5	5	15	1.0009
6	2.7361	16	1.0004
7	1.7535	17	1.0002
8	1.327	18	1.0001
9	1.005	19	1
10	1.0022	20	1

Example 4.5. Let \mathbb{R} be the set of real number,

$$
C=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1} u_{1}+x_{2} u_{2}=\eta\right\}
$$

and

$$
P_{C}\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}\right)+\frac{\eta-x_{1} u_{1}-x_{2} u_{2}}{\sqrt{u_{1}^{2}+u_{2}^{2}}}\left(u_{1}, u_{2}\right)
$$

for all $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. Let A_{1}, A_{2}, A_{3} be the mappings on C defined by $A_{1}\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(x_{1}-2, x_{2}-\right.$ 3), $A_{2}\left(x_{1}, x_{2}\right)=\frac{1}{3}\left(x_{1}-2, x_{2}-3\right)$, and $A_{3}\left(x_{1}, x_{2}\right)=\frac{1}{4}\left(x_{1}-2, x_{2}-3\right)$ for all $\left(x_{1}, x_{2}\right) \in C$. Let T be a mapping from C into itself defined by $T\left(x_{1}, x_{2}\right)=\frac{1}{4}\left(x_{1}+6, x_{2}+9\right)$ for all $\left(x_{1}, x_{2}\right) \in C$. Let $\left\{\left(x_{1}^{n}, x_{2}^{n}\right)\right\}$ be a sequence generated by (3.1) and $\left(x_{1}^{1}, x_{2}^{1}\right) \in \mathbb{R}^{2}$, where $u=(2,1), \eta=7, b=\frac{1}{2}$, $\alpha_{1}=\frac{1}{3}, \alpha_{2}=\frac{3}{2}, \alpha_{3}=2$, and $\lambda=\frac{1}{2}$. By the definition A_{1}, A_{2}, A_{3}, and $T,(2,3) \in F(T) \cap F(G)$. Theorem 4.1 implies that sequence $\left\{\left(x_{1}^{n}, x_{2}^{n}\right)\right\}$ converges strongly to $(2,3)$.

Table 2. The sequence $\left\{\left(x_{1}^{n}, x_{2}^{n}\right)\right\}$ starting with $\left(x_{1}^{1}, x_{2}^{1}\right)=(5,5)$.

n	$\left(x_{1}^{n}\right.$,	$\left.x_{2}^{n}\right)$
1	$(5$,	$5)$
2	$(3.875$,	$4.25)$
3	$(1.3874$,	$2.8056)$
4	$(2.1452$,	$3.1127)$
5	$(2.1452$	$, 2.9886)$
6	$(2.0109$	$3.0106)$
7	$(1.9956$	$, 2.9996)$
8	$(2.0008$	$, 3.0011)$
9	$(1.9996$	$, 3)$
10	$(2.0001$,	$3.0001)$

Figure 2. The convergence of the sequence $\left\{\left(x_{1}^{n}, x_{2}^{n}\right)\right\}$.

5. Conclusions

In Theorem 3.1, we proposed a new iteration process for solving both fixed point problems and the general systems of variational inequalities. We also proved the strong convergence of this process without assuming the existence of solutions for these problems. By letting $b=0$ and $A_{2} \equiv A_{3} \equiv 0$ in Theorem 3.1, we can reduce $F(G)=V I\left(C, A_{1}\right)$. The sequence $\left\{x_{n}\right\}$ defined by modifying (3.1) converges strongly to an element $x^{*} \in V I\left(C, A_{1}\right) \cap F(T)$ without the assumption of $F(T) \cap V I\left(C, A_{1}\right) \neq \emptyset$. Using Theorem 3.1, we also proved the convergence for the general split feasibility problem. To further support our findings, we provided three numerical examples, Example 3.2, Example 4.4, and Example 4.5.

Funding

This research project was supported by Science Research and Innovation Fund (Contract No. FF66-P1-087).

REFERENCES

[1] H.A. Abass, C. Izuchukwu, O.T. Mewomo, On split equality generalized equilibrium problems and fixed point problems of Bregman relatively nonexpansive semigroups, J. Appl. Numer. Optim. 4 (2022) 357-380.
[2] L.C. Ceng, A modified inertial subgradient extragradient method for solving pseudomonotone variational inequalities and common fixed point problems, Fixed Point Theory 21 (2020) 93-108.
[3] L.C. Ceng, C.Y. Wang, J. C. Yao, Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math Meth Oper Res. 67 (2008) 375-390.
[4] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algo. 8 (1994) 221-239.
[5] Q.L. Dong, An alternated inertial general splitting method with linearization for the split feasibility problem, Optimmization, 10.1080/02331934.2022.2069567.
[6] A. Kangtunyakarn, Iterative scheme for finding solutions of the general split feasibility problem and the general constrained minimization problems, Filomat 33 (2019) 233-243.
[7] A. Kangtunyakarn, Approximation method for fixed point problem and variational inequality problem without assumption on the set of fixed point and the set of variational inequality, Thai J. Math. 11 (2013) 313-317.
[8] G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Ekonomika i Mathematicheskie Metody. Inequal. Appl. 12 (1976) 747-756.
[9] L. Liu, X. Qin, Strong convergence theorems for solving pseudo-monotone variational inequality problems and applications, Optimization, 71 (2022) 3603-3626.
[10] L. Liu, S.Y. Cho, J.C. Yao, Convergence analysis of an inertial Tseng's extragradient algorithm for solving pseudomonotone variational inequalities and applications, J. Nonlinear Var. Anal. 5 (2021) 627-644.
[11] L. Liu, B. Tan, S.Y. Cho, On the resolution of variational inequality problems with a double-hierarchical structure, J. Nonlinear Convex Anal. 21 (2020) 377-386.
[12] N. Nadezhkina, W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim. 16 (2006) 1230-1241.
[13] L.V. Nguyen, Some results on strongly pseudomonotone quasi-variational inequalities, Set-Valued Var. Anal. 28 (2020) 239-257.
[14] Z. Opial, Weak convergence of the sequence of successive approximation of nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967) 591-597.
[15] X. Qin, J.C. Yao, Weak convergence of a Mann-like algorithm for nonexpansive and accretive operators, J. Inequal. Appl. 2016 (2016) 232.
[16] X. Qin, A. Petrusel, J.C. Yao, CQ iterative algorithms for fixed points of nonexpansive mappings and split feasibility problems in Hilbert spaces, J. Nonlinear Convex Anal. 19 (2018) 157-165.
[17] B.D. Rouhani, H. Khatibzadeh, V. Mohebbi, Ergodic and fixed point theorems for Bregman nonexpansive sequences and mappings in Banach spaces, Appl. Set-Valued Anal. Optim. 4 (2022) 311-321.
[18] K. Siriyan, A. Kangtunyakarn, A new general system of variational inequalities for convergence theorem and application, Numer. Algo. 81 (2019) 99-123.
[19] B. Tan, X. Qin, S.Y. Cho, Revisiting subgradient extragradient methods for solving variational inequalities, Numer. Algo. 90 (2022) 1593-1615.
[20] B. Tan, S.Y. Cho, Strong convergence of inertial forward-backward methods for solving monotone inclusions, Appl. Anal. 101 (2022) 5386-5414
[21] H.K. Xu, N. Altwaijry, I. Alzughaibi, S. Chebbi, The viscosity approximation method for accretive operators in Banach spaces, J. Nonlinear Var. Anal. 6 (2022) 37-50.
[22] Y. Yao, J. C. Yao, On modified iterative method for nonexpansive mappings and monotone mappings, Appl. Math. Comput. 186 (2006) 1551-1558.
[23] L.C. Zeng, J. C. Yao, Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems, Taiwanese J. Math. 10 (2006) 1293-1303.

[^0]: *Corresponding author.
 E-mail address: phannipa.math@gmail.com (P. Worapun), beawrock@hotmail.com (A. Kangtunyakarn).
 Received February 3, 2023; Accepted July 10, 2023.

